Characterization of the Metal Sulfide Sulfur-Dioxide Reaction in Aqueous

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of the Metal Sulfide Sulfur-Dioxide Reaction in Aqueous INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photoyapher suspected that the copy may have moved during exposure and thus cause a blurred image. You will find ja good image o f the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received. University Microfilms International 300 North Zeeb Road Ann Arbor, Michigan 48106 USA St. John's Road. Tyler’s Green High Wycombe, Bucks, Engiand HP10 8HR 77- 18,655 TH(M, Gary Carlisle, 1943- THE CHARACTERIZATION OF THE METAL SULFIDE SULFUR DIOXIDE REACTION IN AQUEOUS MEDIA. The American IMiversity, Ph.D., 1977 Oianistry, physical Xerox University Microfilms, Ann Arbor, Michigan 48ioe © 1977 GARY CARLISLE THOM ALL RIGHTS RESERVED THE CHARACTERIZATION OF THE METAL SULFIDE SULFUR DIOXIDE REACTION IN AQUEOUS MEDIA by Gary Carlisle Thom Submitted to the Faculty of the College of Arts and Sciences of The American University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry Signatures of Committee; ^ / V ' Cha±rman:^^î^ li S Dean of the College Dat‘='/ “ 1977 The American University Washington, D.C. 20016 THE AMERICAN UNIVERSITY LIBRARY 535-0 Man, being the servant and interpreter of nature, can do and understand as much and so much as he has observed in fact or in thought of the course of nature: beyond this he neither knows anything nor can do anything. Francis Bacon "Novum Organum" iii ACKNOWLEDGEMENT This work could not have been completed without the guidance and generous assistance given to me by Drs. Paul F. Waters, Robert T. Foley, and Albert F. Hadermann. I am most grateful to my mother, Ethel B. Thom, who spent many long hours typing the manuscript. Finally, I am indebted to The American University and its Department of Chemistry which has provided me with both my graduate and undergraduate training. This training, in which I was able to freely explore my academic interests, has laid the groundwork for a productive and rewarding career. iv TABLE OF CONTENTS Page ABSTRACT DEDICATION..................................................... H i ACKNOWLEDGEMENT................................................ iv LIST OF TABLES................................................. vii LIST OF FIGURES................................................ viii CHAPTER I. INTRODUCTION........................................... 1 A. Current Status of Flue Gas Desulfurization Processes.. 3 B. The FGD Sludge Disposal Problem.................... 4 C. Research Objectives................................ 10 II. BACKGROUND............................................. 13 A. The Metal Sulfide-Sulfur Dioxide Reaction in Aqueous Media.............................. 13 B. The Oxidation of Metal Sulfides in Hydrometallurgy.... 18 C. The Hydrogen Sulfide-Sulfur Dioxide Reaction in Aqueous Media.............................. 29 D. The Chemistry of Sulfur............................ 34 E. Analyses for Thiosulfate and Sulfane Sulfonates...... 51 F. The Kinetics and Mechanism of the Acid Decomposition of Thiosulfate........ 55 III. EXPERIMENTAL........................................... 59 A. Materials......................................... 59 B. Apparatus......................................... 60 C. Procedure.......................................... 62 D. Methods and Instrumentation........................ 65 E. Kinetic Studies.................................... 66 F. Data Analysis...................................... 67 TABLE OF CONTENTS (CONT'D) Page IV. RESULTS AND DISCUSSION................................. 69 A. Characterization of the Ferrous Sulfide-Sulfur Dioxide Reaction............................. 70 B. Characterization of the Sulfide Ore-Sulfur Dioxide Reaction............................. 101 C. Comparison of Sulfide Reactivities................. 115 D. Kinetics of the Acid Decomposition of Thiosulfate.... 124 E. Mechanism of the Oxidative Dissolution of Sulfide Ores.............................. 136 V. CONCLUSIONS........................................... 147 VI. FUTURE RESEARCH....................................... 149 APPENDIXES 1. DESCRIPTION OF FIRST AND SECOND GENERATION FLUE GAS DESULFURIZATION PROCESSES................. 151 2. HYDROMETALLURGICAL LEACHING REACTIONS................... 159 3. KINETIC DATA.......................................... 169 REFERENCES............................................ 175 vi LIST OF TABLES Page I. Domestic Reserves of Sulfide Ores...................... 11 II. Sulfur Oxide Emissions from Non-Ferrous Smelters....... 19 III. Sulfur Allotropes............................. 36 IV. Sulfur Molecular Species............................... 38 V. UV Spectra of the Sulfite, Thiosulfate, and Sulfane Disulfonate Anions.......................... 54 VI. Summary of Results for Base-line FeS Experiments........ 80 VII. Summary of Results for FeS-Reactant Variation Experiments......................................... 97 VIII. Qualitative Assessment of the Differences Between the Reactant Variation and Base-line Experiments......... 99 IX. Summary of Results for Sulfide Ore Experiments.......... 109 X. Qualitative Assessment of the Differences Between the Sulfide Ore and Base-line Experiments................ Ill XI. Summary of Effects of Ore Surface Area on the Reaction Rates at 75 °C and the Adsorption of SOg at 50 “C 116 XII. Summary of Kinetic Results for the Decomposition of Thiosulfate at 40.0 °C........................... 135 vii LIST OF FIGURES Page 1. Pourbaix diagram of the Sg/S^^/S^^/HgO system...... 23 2 . Pourbaix diagram of the Sg/S2 0 3 ^ /S^ /S^^/H^O system. 24 3. Pourbaix diagram of the Cu2 S/CuS/Sg/Cu/H2 0 system.... 25 4. Mole fraction of S , 2 < n < 8 , in a saturated vapor above the liquid phase............... 39 5. Viscosity-temperature curve for liquid sulfur...... 41 6. Sulfite reduction apparatus....................... 61 7. Heating curve for a reaction temperature of 70.8 °C. 64 8. FeS-S0 2 reaction characterization at 31.1 °C experiment 95 .......................... 73 9. FeS-SOg reaction characterization at 40.2 °C experiment 96 .......................... 74 10. FeS-S0 2 reaction characterization at 58.3 °C experiment 94 .......................... 75 11. FeS-S0 2 reaction characterization at 69.0 “C experiment 90 .......................... 76 12. FeS-S0 2 reaction characterization at 70.8 °C experiment 8 8 . 77 13. FeS-S0 2 reaction characterization at 71.9 “C experiment 89 .......................... 78 14. FeS-SOg reaction characterization at 82.0 °C experiment 91 .......................... 79 15. Composite of the SO2 pressure characterization curves for the FeS-S0 2 reaction at five temperatures..... 81 viii LIST OF FIGURES (CONT’D) Page 16. Relationship between -dP/dt and ^[SgOg "]/dt for the base-line FeS-S0 2 experiments (#), r^ = 0.98; points for the reactant variation experiments (a ), and the sulfide ore experiments (■) are identified by experiment number................................... 83 17. Relationship between -dP/dt and d[Fe^*l/dt for the base-line FeS-SOg experiments (•), r = 0.93; points for the reactant variation experiments (a ), and the sulfide ore experiments (■) are identified by experiment number................................... 84 18. Relationship between d[Fe ]/dt and d[S 2 Û 3 ]/dt for the base-line FeS-S0 2 experiments (#), r^ = 0.92; points for the reactant variation experiments (a ), and the sulfide ore experiments (■) are identified by experiment number................................... 85 19. Arrhenius plot for the -dP/dt data from the base-line FeS-SOo experiments; In k = -16,783/RT + 22.77, E„îa = 16.783 kcal mole“^, r^ = 0.98...................... 87 20. Arrhenius plot for the d[S2 0 g^"]/dt data from the base-line FeS-S0 2 experiments; In k = -15,569/RT + 17.56, Eg = 15.569 kcal mole"^ r^ = 0.97............... 8 8 21. Arrhenius plot for the d[Fe. 2 + ]/dt data from the base-line FeS-S0 2 experiments ; In k = -12,182/RT
Recommended publications
  • Hemoglobin, Myoglobin and Neuroglobin in Endogenous Thiosulfate Production Processes
    International Journal of Molecular Sciences Review The Role of Hemoproteins: Hemoglobin, Myoglobin and Neuroglobin in Endogenous Thiosulfate Production Processes Anna Bilska-Wilkosz *, Małgorzata Iciek, Magdalena Górny and Danuta Kowalczyk-Pachel Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum ,7 Kopernika Street, Kraków 31-034, Poland; [email protected] (M.I.); [email protected] (M.G.); [email protected] (D.K.-P.) * Correspondence: [email protected]; Tel.: +48-12-4227-400; Fax: +48-12-4223-272 Received: 5 May 2017; Accepted: 16 June 2017; Published: 20 June 2017 Abstract: Thiosulfate formation and biodegradation processes link aerobic and anaerobic metabolism of cysteine. In these reactions, sulfite formed from thiosulfate is oxidized to sulfate while hydrogen sulfide is transformed into thiosulfate. These processes occurring mostly in mitochondria are described as a canonical hydrogen sulfide oxidation pathway. In this review, we discuss the current state of knowledge on the interactions between hydrogen sulfide and hemoglobin, myoglobin and neuroglobin and postulate that thiosulfate is a metabolically important product of this processes. Hydrogen sulfide oxidation by ferric hemoglobin, myoglobin and neuroglobin has been defined as a non-canonical hydrogen sulfide oxidation pathway. Until recently, it appeared that the goal of thiosulfate production was to delay irreversible oxidation of hydrogen sulfide to sulfate excreted in urine; while thiosulfate itself was only an intermediate, transient metabolite on the hydrogen sulfide oxidation pathway. In the light of data presented in this paper, it seems that thiosulfate is a molecule that plays a prominent role in the human body. Thus, we hope that all these findings will encourage further studies on the role of hemoproteins in the formation of this undoubtedly fascinating molecule and on the mechanisms responsible for its biological activity in the human body.
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • United States Patent 19 11 4,289,699 Oba Et Al
    United States Patent 19 11 4,289,699 Oba et al. 45 Sep. 15, 1981 54 PROCESS FOR THE PRODUCTION OF Primary Examiner-Donald G. Daus N-(HYDROXYPHENYL) MALEIMEDES Assistant Examiner-D. B. Springer 75 Inventors: Masayuki Oba; Motoo Kawamata; Attorney, Agent, or Firm-Fisher, Christen & Sabol Hikotada Tsuboi; Nobuhito Koga, all 57 ABSTRACT of Yokohama, Japan N-(hydroxyphenyl) maleimides of the general formula 73 Assignee: Mitsui Toatsu Chemicals, Incorporated, Tokyo, Japan 21 Appl. No.: 88,825 (22 Filed: Oct. 26, 1979 N CO-m-CH Related U.S. Application Data (HO) 62) Division of Ser. No. 956,971, Nov. 2, 1978, Pat. No. 4,231,934. where R' stands for H, CH3, C2H5, F, Cl, Br or I and in 30 Foreign Application Priority Data is an integer of 1-5 are produced by treating the corre sponding maleamic acid or by treating the ester of said Nov. 2, 1977 (JP) Japan ................................ 52-130905 N-(hydroxyphenyl) maleimide at a temperature of Nov. 4, 1977 (JP Japan ................................ 52-3504 0-150° C. in the presence of at least one dehydrating 51) Int. Cl. .......................................... C07D 207/.452 agent selected for the group consisting of oxides and (52) U.S. Cl. .......................................... 260/326.5 FM oxyacids of sulfur or phosphorus and alkali metal and 58) Field of Search .............................. 260/326.5 FM alkaline earth metal salts of the said oxyacids. The cor responding maleamic acid can be obtained by reacting 56) - References Cited an aminophenol having one or more hydroxyl groups U.S. PATENT DOCUMENTS on its phenyl nucleus with maleic anhydride.
    [Show full text]
  • Recent Developments on the Origin and Nature of Reductive Sulfurous Off-Odours in Wine
    fermentation Review Recent Developments on the Origin and Nature of Reductive Sulfurous Off-Odours in Wine Nikolaus Müller 1,* and Doris Rauhut 2 1 Silvanerweg 9, 55595 Wallhausen, Germany 2 Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366 Geisenheim, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-6706-913103 Received: 9 July 2018; Accepted: 3 August 2018; Published: 8 August 2018 Abstract: Reductive sulfurous off-odors are still one of the main reasons for rejecting wines by consumers. In 2008 at the International Wine Challenge in London, approximately 6% of the more than 10,000 wines presented were described as faulty. Twenty-eight percent were described as faulty because they presented “reduced characters” similar to those presented by “cork taint” and in nearly the same portion. Reductive off-odors are caused by low volatile sulfurous compounds. Their origin may be traced back to the metabolism of the microorganisms (yeasts and lactic acid bacteria) involved in the fermentation steps during wine making, often followed by chemical conversions. The main source of volatile sulfur compounds (VSCs) are precursors from the sulfate assimilation pathway (SAP, sometimes named as the “sulfate reduction pathway” SRP), used by yeast to assimilate sulfur from the environment and incorporate it into the essential sulfur-containing amino acids methionine and cysteine. Reductive off-odors became of increasing interest within the last few years, and the method to remove them by treatment with copper (II) salts (sulfate or citrate) is more and more questioned: The effectiveness is doubted, and after prolonged bottle storage, they reappear quite often.
    [Show full text]
  • SAFETY DATA SHEET According to Safe Work Australia Printing Date 13.06.2013 Revision: 13.06.2013
    Page 1/5 SAFETY DATA SHEET According to Safe Work Australia Printing date 13.06.2013 Revision: 13.06.2013 1 . IDENTIFICATION: PRODUCT IDENTIFIER AND CHEMICAL IDENTITY Product Name: POOL PRO CHLORINE OUT Other Name: Sodium hyposulphite Recommended Use of the Chemical and Restriction on Use: Laboratory reagent, de-chlorinating agent and chrome tanning. Details of Manufacturer or Importer: The POPS Group Pty Ltd as Trustee for The Pool Shops Trust 10-12 Cairns Street Loganholme QLD 4129 Phone Number: 07 3209 7884 1800 143 788 Emergency telephone number: 1800 033 111 +61 3 9663 2130 International 2 . HAZARDS IDENTIFICATION Hazardous Nature: The product is not classified according to the Globally Harmonized System (GHS). Label Elements Signal Word Void Hazard Statements Void 3 . COMPOSITION AND INFORMATION ON INGREDIENTS Chemical Characterization: Mixtures Description: Mixture of substances listed below with nonhazardous additions. Hazardous Components: 10102-17-7 Thiosulfuric acid (H2S2O3), disodium salt, pentahydrate 99% 4 . FIRST AID MEASURES Inhalation: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Seek medical attention if symptoms persist. Skin Contact: Remove contaminated clothing and wash affected areas with soap and water. Seek medical attention if symptoms persist. Launder clothing before reuse. Eye Contact: In case of eye contact, check for and remove any contact lenses. Immediately irrigate eyes with plenty of running water for at least 15 minutes, keeping eyelids open. Seek immediate medical attention. Ingestion: Wash mouth with water. Do not induce vomiting. Never give anything by mouth to an unconscious person. Seek medical attention. Information for Doctor Treat symptomatically.
    [Show full text]
  • Thiosulfate Degradation During Gold Leaching In
    THIOSULFATE DEGRADATION DURING GOLD LEACHING IN AMMONIACAL THIOSULFATE SOLUTIONS : A FOCUS ON TRITHIONATE By NOELENE AHERN B.Sc, University of Natal, 1994 B.Sc. (Hons), University of Natal, 1995 M.A.Sc, University of Cape Town, 1997 A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Graduate Studies (Materials Engineering) The University of British Columbia October 2005 © Noelene Ahern, 2005 ABSTRACT Thiosulfate has shown considerable promise as an alternative to cyanide for gold leaching. However, one of the main limitations of the thiosulfate system is the high consumption of thiosulfate. Besides increasing the cost of the process, the degradation products of thiosulfate have been claimed to passivate gold surfaces and the polythionates often produced are loaded onto resins proposed for gold recovery. The thiosulfate degradation process is not completely understood. Of the degradation products, trithionate is a concern in the resin recovery of gold and is persistent in gold leach solutions. Very little is known about the expected behaviour of trithionate, both with respect to its formation and its interaction with other solution species. The focus of this work was therefore to further the understanding of the behaviour of trithionate in gold leach solutions. Experimental work was carried out to determine the kinetics of trithionate degradation in systems resembling gold leaching solutions, and a kinetic model was derived for trithionate degradation. The rate of degradation of trithionate in aqueous ammoniacal solutions was expressed by Equation 1. 2 + 2 -d[S306 -]/dt = (k3[NH4 ] + k2[NH3] + k,[OHl + k0)[S3O6 T [1] 1 1 1 1 1 where k0 = 0.012 h"\ = 0.74 IvV.h;, k2 = 0.0049 M" .h' , k3 = 0.01 M" .^ .
    [Show full text]
  • Hydrogen from Hydrogen Sulfide Ryan J. Gillis
    Theory and Applications for Sulfur Chemistry: Hydrogen from Hydrogen Sulfide by Ryan J. Gillis B.S., Brigham Young University (2015) Submitted to the Department of Chemical Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2020 ○c Massachusetts Institute of Technology 2020. All rights reserved. Author................................................................ Department of Chemical Engineering July 30, 2020 Certified by. William H. Green Professor Thesis Supervisor Accepted by . Patrick S. Doyle Graduate Officer, Department of Chemical Engineering 2 Theory and Applications for Sulfur Chemistry: Hydrogen from Hydrogen Sulfide by Ryan J. Gillis Submitted to the Department of Chemical Engineering on July 30, 2020, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering Abstract In this thesis, I explore the chemistry of reacting sulfur species computationally and experimentally. The computational work centers around creating the capability to automatically predict the thermochemical properties of arbitrary sulfur molecules and the kinetic parameters of reactions between these species. A demonstration of this enhanced capability is shown in the automatic creation of detailed chemical mech- anism describing the partial oxidation of dimethyl sulfide. The experimental work focuses on a hydrogen generating chemical cycle that uses a hydrogen sulfide feed- stock. Initially exploring the reactivity of hydrogen sulfide, water, and iodine mixtures to form hydroiodic acid, two competing pathways were discovered. The more inter- esting pathway involved the reaction of hydrogen sulfide with iodine and water to form hydroiodic acid and sulfur dioxide. A bench-top prototype was created demon- strating the creation of hydrogen gas from hydrogen sulfide through this pathway.
    [Show full text]
  • (CDR) by CASRN Or Accession Number
    List of Chemicals Reported for the 2012 Chemical Data Reporting (CDR) by CASRN or Accession Number For the 2012 CDR, 7,674 unique chemicals were reported by manufacturers (including importers). Chemicals are listed by CAS Registry Number (for non-confidential chemicals) or by TSCA Accession Number (for chemicals listed on the confidential portion of the TSCA Inventory). CASRN or CASRN or ACCESSION ACCESSION NUMBER CA INDEX NAME or GENERIC NAME NUMBER CA INDEX NAME or GENERIC NAME 100016 Benzenamine, 4-nitro- 10042769 Nitric acid, strontium salt (2:1) 10006287 Silicic acid (H2SiO3), potassium salt (1:2) 10043013 Sulfuric acid, aluminum salt (3:2) 1000824 Urea, N-(hydroxymethyl)- 10043115 Boron nitride (BN) 100107 Benzaldehyde, 4-(dimethylamino)- 10043353 Boric acid (H3BO3) 1001354728 4-Octanol, 3-amino- 10043524 Calcium chloride (CaCl2) 100174 Benzene, 1-methoxy-4-nitro- 100436 Pyridine, 4-ethenyl- 10017568 Ethanol, 2,2',2''-nitrilotris-, phosphate (1:?) 10043842 Phosphinic acid, manganese(2+) salt (2:1) 2,7-Anthracenedisulfonic acid, 9,10-dihydro- 100447 Benzene, (chloromethyl)- 10017591 9,10-dioxo-, sodium salt (1:?) 10045951 Nitric acid, neodymium(3+) salt (3:1) 100185 Benzene, 1,4-bis(1-methylethyl)- 100469 Benzenemethanamine 100209 1,4-Benzenedicarbonyl dichloride 100470 Benzonitrile 100210 1,4-Benzenedicarboxylic acid 100481 4-Pyridinecarbonitrile 10022318 Nitric acid, barium salt (2:1) 10048983 Phosphoric acid, barium salt (1:1) 9-Octadecenoic acid (9Z)-, 2-methylpropyl 10049044 Chlorine oxide (ClO2) 10024472 ester Phosphoric acid,
    [Show full text]
  • On the Reactivity of Nanoparticulate Elemental Sulfur
    ON THE REACTIVITY OF NANOPARTICULATE ELEMENTAL SULFUR: EXPERIMENTATION AND FIELD OBSERVATIONS Fotios Christos Kafantaris Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Earth Sciences, Indiana University December 2017 ii Accepted by the Graduate Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee ___________________________ Gregory K. Druschel, PhD, Chair ___________________________ Kevin Mandernack, PhD ___________________________ William P. Gilhooly III, PhD ___________________________ Gabriel Filippelli, PhD ___________________________ Steven E. Lacey, PhD October 2, 2017 ___________________________ Brandy M. Toner, PhD iii © 2017 Fotios Christos Kafantaris iv DEDICATION I would like to dedicate this work to three women. The first one is the Most Holy Theotokos and Ever-Virgin Mary, the most precious individual the human race has and will ever have, the Bridge from earth to Heaven and the Gate to Paradise. Through Her intercessions to the Holy Trinity I am still alive and safe. The second woman is my mother, Eleni, who is the angel-on-earth that protects, nourishes, teaches, provides, inspires and guides me in life. Words would be poor to attempt to describe her and her virtues in an accurate manner. My mother is the main contributor of what I have become so far in life. The third woman is my σύζυγος (spouse) Diana, who has given me life, as well as meaning for life. Diana is the main contributor of what I will hopefully do in life from this point onward, and through her help I will hopefully manage to be with the other two forever.
    [Show full text]
  • Are Strong Brønsted Acids Necessarily Strong Lewis Acids?
    Are Strong Brønsted Acids Necessarily Strong Lewis Acids? K. Gupta1,2, D. R. Roy1, V. Subramanian3,* and P. K. Chattaraj1,* 1Chemistry Department, Indian Institute of Technology, Kharagpur-721302, India 2On leave from Department of Chemisty, Ramananda College, Bishnupur-722122, Bankura, India. 3Chemical Laboratory, Central Leather Research Institute, Adyar, Chennai- 600 020, India. E-mail: [email protected], [email protected] Abstract The Brønsted and Lowry acid-base theory is based on the capacity of proton donation or acceptance (in the presence/absence of a solvent) whereas the Lewis acid- base theory is based on the propensity of electron pair acceptance or donation. We explore through DFT calculation the obvious question whether these two theories are in conformity with each other. We use pKa as the descriptor for the Brønsted and Lowry acidity. The DFT descriptors like ionization potential, electron affinity, electronegativity, hardness and global electrophilicity are computed for 58 organic and inorganic acids. The fractional electron transfer, ΔN and the associated energy change, ΔE for the reaction of these acids with trimethyl amine (a strong base) are used as the possible descriptors for the Lewis acidity. A near exponential decrease in ΔN and (–ΔE) values is observed in general with an increase in pKa values. The findings reveal that a stronger Brønsted acid in most cases behaves as a stronger Lewis acid as well. However it is not necessarily true for all acids. Keywords DFT, Brønsted acids, Lewis acids, pKa, electron transfer 1 Introduction Brønsted and Lowry1 suggested that any substance that acts as a proton donor should be classified as an acid and any substance that accepts a proton should be classified as a base.
    [Show full text]
  • ABSTRACT FEI, XIUZHU. Decolorization of Dyed Polyester
    ABSTRACT FEI, XIUZHU. Decolorization of Dyed Polyester Fabrics using Sodium Formaldehyde Sulfoxylate. (Under the direction of Dr. David Hinks and Dr. Harold S. Freeman). Polyethylene terephthalate (PET) fiber is now the largest single fiber type within global textile production, taking over from cotton. In view of environmental stewardship, an effective approach to recycling colored PET fabrics has drawn wide attention. A key step in the recycling process is dye removal. Disperse dyes are used to dye PET fibers and designed to be durable inside the fiber. In addition, disperse dyes are hydrophobic and will not be substantially extracted with water as the only solvent. In this work, the organic solvent, acetone, was used in combination with water to remove disperse dyes from the PET, and sodium formaldehyde sulfoxylate (SFS) was employed to decolorize the dye. This agent was found effective for decolorizing Disperse Yellow 42, Yellow 86, Blue 56 and Blue 60 in acetone/water solutions and the process was extended to decolorization of dyed PET. An optimized combination of treatment time (30 min), water to acetone ratio (1:2), SFS concentration (10g/L), temperature (100 ˚C), and liquor ratio (1:50) was found to give sufficient color removal for a broad range of disperse dyes. Reuse of the water/acetone medium for five times was achieved for decolorization of Disperse Yellow 42 but could not be achieved for Disperse Blue 56. Fabric strength assessments were also investigated. It was found that SFS decolorization has no adverse influence on PET strength, as judged by viscosity measurements. © Copyright 2015 Xiuzhu Fei All Rights Reserved Decolorization of Dyed Polyester Fabrics using Sodium Formaldehyde Sulfoxylate by Xiuzhu Fei A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Master of Science Textile Chemistry Raleigh, North Carolina 2015 APPROVED BY: _______________________________ _______________________________ Dr.
    [Show full text]
  • Sodium Dithionite Cas N°: 7775-14-6
    OECD SIDS SODIUM DITHIONITE FOREWORD INTRODUCTION SODIUM DITHIONITE CAS N°: 7775-14-6 OECD SIDS SODIUM DITHIONITE SIDS Initial Assessment Report For SIAM 19 Berlin, Germany, 19-22 October 2004 1. Chemical Name: Sodium dithionite 2. CAS Number: 7775-14-6 3. Sponsor Country: Germany Contact Point: BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) Contact person: Prof. Dr. Ulrich Schlottmann Postfach 12 06 29 D- 53048 Bonn 4. Shared Partnership with: 5. Roles/Responsibilities of BASF AG = lead company the Partners: • Name of industry sponsor BASF AG, Germany /consortium Contact person: Dr. Hubert Lendle GUP/CL – Z 570 D-67056 Ludwigshafen • Process used The BUA Peer Review Process : see next page 6. Sponsorship History • How was the chemical or by ICCA-Initiative category brought into the OECD HPV Chemicals Programme? 7. Review Process Prior to last literature search (update): the SIAM: 14 February 2003 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 5 February 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA 8. Quality check process: As basis for the SIDS-Dossier the IUCLID was used. All data have been checked and validated by BUA. A final evaluation of the human health part has been performed by the Federal Institute for Risk Assessment (BfR) and of the ecotoxicological part by the Federal Environment Agency (UBA). 9. Date of Submission: Deadline for circulation: 23 July 2004 10. Date of last Update: 11. Comments: OECD SIDS SODIUM DITHIONITE OECD/ICCA - The BUA* Peer Review Process Qualified BUA personnel (toxicologists, ecotoxicologists) perform a quality control on the full SIDS dossier submitted by industry.
    [Show full text]