Draft CCP, Appendicies H-L, November 2012 (Pdf 4.4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Reanalysis of Strauch's Osteological Data Set for The
TheCondor97:174-196 0 The Cooper Ornithological Society 1995 PHYLOGENETIC REANALYSIS OF STRAUCH’S OSTEOLOGICAL DATA SET FOR THE CHARADRIIFORMES PHILIP c. CHU Department of Biology and Museum of Zoology The University of Michigan, Ann Arbor, MI 48109 Abstract. Strauch’s (1978) compatibility analysisof relationshipsamong the shorebirds (Charadriifonnes) was the first study to examine the full range of charadriifonn taxa in a reproducibleway. SubsequentlyMickevich and Parenti (1980) leveled seriouscharges against Strauch’s characters,method of phylogenetic inference, and results. To account for these charges,Strauch ’s characterswere re-examined and recoded, and parsimony analyseswere performed on the revised matrix. A parsimony analysison 74 taxa from the revised matrix yielded 855 shortesttrees, each length = 286 and consistencyindex = 0.385. In each shortest tree there were two major lineages,a lineageof sandpiper-likebirds and a lineageof plover- like birds; the two formed a monophyletic group, with the auks (Alcidae) being that group’s sister taxon. The shortest trees were then compared with other estimates of shorebird re- lationships, comparison suggestingthat the chargesagainst Strauch’s results may have re- sulted from the Mickevich and Parenti decisions to exclude much of Strauch’s character evidence. Key words: Charadrilformes; phylogeny; compatibility analysis: parsimony analysis; tax- onomic congruence. INTRODUCTION Strauch scored 227 charadriiform taxa for 70 The investigation of evolutionary relationships characters. Sixty-three of the characters were among shorebirds (Aves: Charadriiformes) has a taken from either the skull or postcranial skel- long history (reviewed in Sibley and Ahlquist eton; the remaining seven involved the respec- 1990). Almost all studies used morphology to tive origins of three neck muscles, as published make inferences about shared ancestry; infer- in Burton (1971, 1972, 1974) and Zusi (1962). -
Abel Janszoon Tasman: a Biography Written by Grahame Anderson and Contributed to the Abel Tasman Website, October 2014
Abel Janszoon Tasman: a biography written by Grahame Anderson and contributed to the Abel Tasman website, October 2014 Grahame Anderson's major published works include: The Merchant of the Zeehaen: IsaacGilsemans and the voyages of Abel Tasman (Wellington Te Papa Press, 2001); fast light boats: a century of Kiwi innovation (Wellington, Te Papa Press, 1999); Fresh about Cook Strait: an appreciation of Wellington Harbour (Auckland, Methuen, 1984). If you have queries or comments, please contact Grahame at: [email protected] ----------- Tasman, Abel Janszoon c1603 - c1659 Commander, explorer, cartographer, merchant Born to subsistence farmers in Lutjegast the year the Dutch Republic was formed, Tasman may well have benefitted from its progressive education program. His ability to write, his knowledge of Latin, his rapid rise in rank, and the willingness of able officers to sail with him all bear witness to the quality of his education and to his command, seamanship, and navigation skills. He married his second wife Jannetje Tjaerts in Amsterdam in 1632, sailed for Batavia in 1633, and renewed his contract with the Dutch East India Company while back in the Republic in 1636. Tasman’s most well-known expedition of 1642-1643 was just one of twelve long voyages of which he was given command during his service with the Company. He began work with the VOC (Vereenigde Oostindische Compagnie), in 1634 by spending two years at sea patrolling the Moluccas as skipper of the Mocha. Though much of his time during that period involved enforcement of Company control of trade, he charted the seas between Amboyna, Banda and Ceram for the Company as he did so. -
Biological Control of St John's Wort Using Chrysolina Leaf Beetles (DSE
June 1999 Biological control of St John's wort LC0152 with the chrysolina leaf beetles ISSN 1329-833X Keith Turnbull Research Institute (Frankston) Common and scientific names Pupae - in globular cells in the soil at up to 5 cm depth. St John’s wort leaf beetles Life cycle Chrysolina hyperici (Förster) Females lay eggs on the undersides of leaves or leaf buds Chrysolina quadrigemina (Suffrian) in autumn. C. quadrigemina larvae emerge after about 3 Background weeks and overwinter as larvae. C. hyperici overwinters in the egg stage. Larvae consume the young leaves and buds St John’s wort, Hypericum perforatum, was introduced in of procumbent autumn and winter growth. Larger larvae the Ovens Valley of Victoria as a medicinal plant in the leave the plant during the day and return to feed at night. 1860s. It spread rapidly and was well established by the When mature, they pupate in the soil at a depth of a few early 1900s. It is a serious weed of improved pastures, centimetres. The pupal stage lasts 2 to 3 weeks and adults roadsides and neglected areas in north east Victoria and is emerge in the spring. Adult beetles defoliate the erect an increasing problem in dry forests and woodlands. In spring plants and enter a resting stage (aestivation or natural areas it is a serious environmental weed which can diapause) under the bark of trees during summer. out-compete other ground storey plants. St John’s wort is a Regionally Prohibited Weed in the Corangamite and Port Phillip West Catchment and Land Protection Regions, and a Regionally Controlled Weed in all other areas of Victoria except Mallee CaLP Region. -
Thylacinidae
FAUNA of AUSTRALIA 20. THYLACINIDAE JOAN M. DIXON 1 Thylacine–Thylacinus cynocephalus [F. Knight/ANPWS] 20. THYLACINIDAE DEFINITION AND GENERAL DESCRIPTION The single member of the family Thylacinidae, Thylacinus cynocephalus, known as the Thylacine, Tasmanian Tiger or Wolf, is a large carnivorous marsupial (Fig. 20.1). Generally sandy yellow in colour, it has 15 to 20 distinct transverse dark stripes across the back from shoulders to tail. While the large head is reminiscent of the dog and wolf, the tail is long and characteristically stiff and the legs are relatively short. Body hair is dense, short and soft, up to 15 mm in length. Body proportions are similar to those of the Tasmanian Devil, Sarcophilus harrisii, the Eastern Quoll, Dasyurus viverrinus and the Tiger Quoll, Dasyurus maculatus. The Thylacine is digitigrade. There are five digital pads on the forefoot and four on the hind foot. Figure 20.1 Thylacine, side view of the whole animal. (© ABRS)[D. Kirshner] The face is fox-like in young animals, wolf- or dog-like in adults. Hairs on the cheeks, above the eyes and base of the ears are whitish-brown. Facial vibrissae are relatively shorter, finer and fewer than in Tasmanian Devils and Quolls. The short ears are about 80 mm long, erect, rounded and covered with short fur. Sexual dimorphism occurs, adult males being larger on average. Jaws are long and powerful and the teeth number 46. In the vertebral column there are only two sacrals instead of the usual three and from 23 to 25 caudal vertebrae rather than 20 to 21. -
Seacare Authority Exemption
EXEMPTION 1—SCHEDULE 1 Official IMO Year of Ship Name Length Type Number Number Completion 1 GIANT LEAP 861091 13.30 2013 Yacht 1209 856291 35.11 1996 Barge 2 DREAM 860926 11.97 2007 Catamaran 2 ITCHY FEET 862427 12.58 2019 Catamaran 2 LITTLE MISSES 862893 11.55 2000 857725 30.75 1988 Passenger vessel 2001 852712 8702783 30.45 1986 Ferry 2ABREAST 859329 10.00 1990 Catamaran Pleasure Yacht 2GETHER II 859399 13.10 2008 Catamaran Pleasure Yacht 2-KAN 853537 16.10 1989 Launch 2ND HOME 856480 10.90 1996 Launch 2XS 859949 14.25 2002 Catamaran 34 SOUTH 857212 24.33 2002 Fishing 35 TONNER 861075 9714135 32.50 2014 Barge 38 SOUTH 861432 11.55 1999 Catamaran 55 NORD 860974 14.24 1990 Pleasure craft 79 199188 9.54 1935 Yacht 82 YACHT 860131 26.00 2004 Motor Yacht 83 862656 52.50 1999 Work Boat 84 862655 52.50 2000 Work Boat A BIT OF ATTITUDE 859982 16.20 2010 Yacht A COCONUT 862582 13.10 1988 Yacht A L ROBB 859526 23.95 2010 Ferry A MORNING SONG 862292 13.09 2003 Pleasure craft A P RECOVERY 857439 51.50 1977 Crane/derrick barge A QUOLL 856542 11.00 1998 Yacht A ROOM WITH A VIEW 855032 16.02 1994 Pleasure A SOJOURN 861968 15.32 2008 Pleasure craft A VOS SANTE 858856 13.00 2003 Catamaran Pleasure Yacht A Y BALAMARA 343939 9.91 1969 Yacht A.L.S.T. JAMAEKA PEARL 854831 15.24 1972 Yacht A.M.S. 1808 862294 54.86 2018 Barge A.M.S. -
Invasive Plant Management on Anticipated Conservation Benefits: a Scientific Assessment
CHAPTER 7 Invasive Plant Management on Anticipated Conservation Benefits: A Scientific Assessment Roger L. Sheley,1 Jeremy J. James,2 Mathew J. Rinella,3 Dana Blumenthal,4and Joseph M. DiTomaso5 Authors are 1Ecologist and 2Plant Physiologist, US Department of Agriculture– Agricultural Research Service, Burns, OR 97720, USA; 3Rangeland Management Specialist, US Department of Agriculture–Agricultural Research Service, Miles City, MT 59301, USA; 4Ecologist, US Department of Agriculture–Agricultural Research Service, Fort Collins, CO 80526, USA; and 5Weed Specialist, University of California-Davis, Davis, CA 95616, USA. Correspondence: Roger L. Sheley 67826-A Hwy 205, Burns, OR 97720; [email protected]. Reference to any commercial product or service is made with the understanding that no discrimination is intended and no endorsement by USDA is implied 291 A major weakness in invasive plant “management is our lack of knowledge about the efficacy of various prevention strategies. ” 292 Conservation Benefits of Rangeland Practices Invasive Plant Management on Anticipated Conservation Benefits: A Scientific Assessment 7 Roger L. Sheley, Jeremy J. James, Mathew J. Rinella, Dana Blumenthal, and Joseph M. DiTomaso IntroduCtIon at the same time posing minimal risk to people, property, resources, and the environment. Invasive plant species have many negative impacts on rangelands throughout the world. In recent years, invasive plant management Invasive plants can displace desirable species, has evolved to more frequently incorporate an alter ecological processes, reduce wildlife IPM philosophy, as opposed to focusing on a habitat, degrade riparian systems, and decrease single control option with little consideration productivity (DiTomaso 2000; Masters and of the ecosystem or the side effects of particular Sheley 2001). -
St. John's-Wort
A Guide to Weeds in British Columbia ST. JOHN’S-WORT DISTRIBUTION Hypericum perforatum L. Family: Clusiaceae (St. John’s-wort). Other Scientific Names: None. Other Common Names: Klamath weed, goatweed. Legal Status: Not categorized. Growth form: Perennial forb. Leaves: Leaves are opposite, 1–3 cm long, oval- Flower: Flowers shaped, with prominent veins and covered with are 2 cm in transparent dots. diameter, bright yellow, Stems: Mature plants are numerous in flat-topped 0.1–1.0 m high. The stems are clusters. Flowers have 5 erect, 2-sided, rust coloured, separate petals that are twice with numerous branches. as long as the sepals. Stamens Roots: Short rhizomes. are numerous and paired into Seedling: No information 3 groups. available. Seeds/Fruit: Seed pods are 6 mm long, rust-brown, with 3- Similar Species celled capsules that contain Exotics: None known. numerous seeds (Whitson et al. Natives: None known. 1996). Impacts ____________________________________________ Agricultural: St. John’s-wort invades grazed and irritation and blistering in light-coloured livestock disturbed lands. In dense stands, it displaces native when they are exposed to sunlight (Powell et al. 1994). plant species and reduces livestock and wildlife forage. Ecological: No information available. The plant also contains a toxin that causes skin Human: Commercially available as an antidepressant. Habitat and Ecology __________________________________ General requirements: In BC, St. John’s-wort grows Historical: Introduced from Eurasia. at low- to mid-elevations in coastal, grassland, and Life cycle: St. John’s-wort grows early in spring when open forested regions. It is commonly found on soil moisture is available, and flowers from June to rangeland, pasture, and meadows and along roadsides September, depending on geographic location. -
Piping Plover Comprehensive Conservation Strategy
Cover graphic: Judy Fieth Cover photos: Foraging piping plover - Sidney Maddock Piping plover in flight - Melissa Bimbi, USFWS Roosting piping plover - Patrick Leary Sign - Melissa Bimbi, USFWS Comprehensive Conservation Strategy for the Piping Plover in its Coastal Migration and Wintering Range in the Continental United States INTER-REGIONAL PIPING PLOVER TEAM U.S. FISH AND WILDLIFE SERVICE Melissa Bimbi U.S. Fish and Wildlife Service Region 4, Charleston, South Carolina Robyn Cobb U.S. Fish and Wildlife Service Region 2, Corpus Christi, Texas Patty Kelly U.S. Fish and Wildlife Service Region 4, Panama City, Florida Carol Aron U.S. Fish and Wildlife Region 6, Bismarck, North Dakota Jack Dingledine/Vince Cavalieri U.S. Fish and Wildlife Service Region 3, East Lansing, Michigan Anne Hecht U.S. Fish and Wildlife Service Region 5, Sudbury, Massachusetts Prepared by Terwilliger Consulting, Inc. Karen Terwilliger, Harmony Jump, Tracy M. Rice, Stephanie Egger Amy V. Mallette, David Bearinger, Robert K. Rose, and Haydon Rochester, Jr. Comprehensive Conservation Strategy for the Piping Plover in its Coastal Migration and Wintering Range in the Continental United States Comprehensive Conservation Strategy for the Piping Plover in its Coastal Migration and Wintering Range in the Continental United States PURPOSE AND GEOGRAPHIC SCOPE OF THIS STRATEGY This Comprehensive Conservation Strategy (CCS) synthesizes conservation needs across the shared coastal migration and wintering ranges of the federally listed Great Lakes (endangered), Atlantic Coast (threatened), and Northern Great Plains (threatened) piping plover (Charadrius melodus) populations. The U.S. Fish and Wildlife Service’s 2009 5-Year Review recommended development of the CCS to enhance collaboration among recovery partners and address widespread habitat loss and degradation, increasing human disturbance, and other threats in the piping plover’s coastal migration and wintering range. -
Milk Thistle
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S. -
31762102511050.Pdf (10.35Mb)
Age-specific life table studies of potential strains or host races of Calophasia lunula (Lepidoptera: Noctuidae) (Hufn.) reared on Dalmation toadflax, Linaria genistifolia ssp. dalmatica (L.) Maire and Petitmengen, or yellow toadflax, Linaria vulgaris (Mill.) by Todd Alan Breitenfeldt A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Todd Alan Breitenfeldt (1995) Abstract: Although the possible existence of host races in phytophagous biological control agents has only recently come under general consideration when screening and releasing these agents, the implications for successful establishment and impact on the target weed, and for minimizing impacts on nontarget plant species are enormous. The issues of potential host races and strain differences were investigated for different populations of the defoliating moth, Caloohasia lunula, which attacks Dalmatian toadflax, Linaria genistifolia ssp. dalmatica (L.) Maire and Petitmengen, and yellow toadflax, Linaria vulgaris (Mill'.), using age-specific life table studies. Life table studies of the three Calophasia populations (one obtained from Europe on Yellow toadflax, another obtained from yellow toadflax in Europe and established on Dalmatian toadflax in Montana, and the third obtained from Dalmatian toadflax from Yugoslavia) were tested on both Dalmatian toadflax and yellow toadflax. Little evidence of host races was evident. Caloohasia lunula rates of development and weight gain, survivorship, -
Biological Control
KLAMATH WEED (= ST. JOHN'S WORT) Hypericum perforatum L. – Hypericaceae Dr. E. Fred Legner, University of California Retrieved from: http://faculty.ucr.edu/~legneref/biotact/ch-66.htm This weed is of European origin, and was first reported as a pest in northern California near the Klamath River. It increased and spread rapidly and by 1944 had occupied over two million acres of rangeland in thirty counties of California. Not only were food forage plants greatly reduced but cattle and sheep lost weight when eating the weed because of its toxic effect, sensitizing them to sunlight. This resulted in such a great decrease in land values that it became almost impossible for ranchers to borrow money for development (DeBach 1974). Chemical herbicides were available but not practical because of cost and the inaccessibility of most of the infested land. Dr. Harry S. Smith, head of biological control work in California, proposed the importation of insects that attacked the weed as early as 1922, but the thought of deliberately introducing a plant feeding insect was not acceptable at that time. At the same time, in Australia phytophagous insects to control Klamath weed were being introduced from England and Europe beginning in 1929, and Dr. Smith in California followed the progress there with great interest through correspondence with Dr. A. J. Nicholson, Chief Entomologist for the Commonwealth Scientific and Industrial Research Organization (CSIRO). Authorization was finally obtained in 1944 to import three species of beetles that showed promise against the weed in Australia. It was not possible then to consider importations from Europe because of World War II, but rather simple to bring material from Australia through the cooperation of the United States Army Transport Command. -
Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO
Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area August 2015 CNHP’s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University 1475 Campus Delivery Fort Collins, CO 80523 (970) 491-7331 Report Prepared for: United States Air Force Academy Department of Natural Resources Recommended Citation: Smith, P., S. S. Panjabi, and J. Handwerk. 2015. Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Front Cover: Documenting weeds at the US Air Force Academy. Photos courtesy of the Colorado Natural Heritage Program © Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area El Paso County, CO Pam Smith, Susan Spackman Panjabi, and Jill Handwerk Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University Fort Collins, Colorado 80523 August 2015 EXECUTIVE SUMMARY Various federal, state, and local laws, ordinances, orders, and policies require land managers to control noxious weeds. The purpose of this plan is to provide a guide to manage, in the most efficient and effective manner, the noxious weeds on the US Air Force Academy (Academy) and Farish Recreation Area (Farish) over the next 10 years (through 2025), in accordance with their respective integrated natural resources management plans. This plan pertains to the “natural” portions of the Academy and excludes highly developed areas, such as around buildings, recreation fields, and lawns.