Salcombe Bioblitz 2015 Final Report.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum -
Fish) of the Helford Estuary
HELFORD RIVER SURVEY A survey of the Pisces (Fish) of the Helford Estuary A Report to the Helford Voluntary Marine Conservation Area Group funded by the World Wide Fund for Nature U.K. and English Nature P A Gainey 1999 1 Summary The Helford Voluntary Marine Conservation Area (hereafter HVMCA) was designated in 1987 and since that time a series of surveys have been carried out to examine the flora and fauna present. In this study no less that eighty species of fish have been identified within the confines of the HVMCA. Many of the more common fish were found to be present in large numbers. Several species have been designated as nationally scarce whilst others are nationally rare and receive protection at varying levels. The estuary is obviously an important nursery for several species which are of economic importance. A full list of the fish species present and the protection some of them receive is given in the Appendices Nine species of fish have been recorded as new to the HVMCA. ISBN 1 901894 30 4 HVMCA Group Office Awelon, Colborne Avenue Illogan, Redruth Cornwall TR16 4EB 2 CONTENTS Summary Location Map - Fig. 1.......................................................................................................... 1 Intertidal sites - Fig. 2 ......................................................................................................... 2 Sublittoral sites - Fig. 3 ...................................................................................................... 3 Bathymetric chart - Fig. 4 ................................................................................................. -
Lessons from Genome Skimming of Arthropod-Preserving Ethanol Benjamin Linard, P
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Lessons from genome skimming of arthropod-preserving ethanol Benjamin Linard, P. Arribas, C. Andújar, A. Crampton-Platt, A. P. Vogler To cite this version: Benjamin Linard, P. Arribas, C. Andújar, A. Crampton-Platt, A. P. Vogler. Lessons from genome skimming of arthropod-preserving ethanol. Molecular Ecology Resources, Wiley/Blackwell, 2016, 16 (6), pp.1365-1377. 10.1111/1755-0998.12539. hal-01636888 HAL Id: hal-01636888 https://hal.archives-ouvertes.fr/hal-01636888 Submitted on 17 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Lessons from genome skimming of arthropod-preserving 2 ethanol 3 Linard B.*1,4, Arribas P.*1,2,5, Andújar C.1,2, Crampton-Platt A.1,3, Vogler A.P. 1,2 4 5 1 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 6 5BD, UK, 7 2 Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot 8 SL5 7PY, UK, 9 3 Department -
Length Variation and Distribution of the Lesser Stag Beetle Dorcus Parallelipipedus (Coleoptera: Lucanidae)
58 entomologische berichten 73 (2) 2013 Length variation and distribution of the lesser stag beetle Dorcus parallelipipedus (Coleoptera: Lucanidae) Paul Hendriks KEYWORDS Biometry, body length, sexual dimorphism Entomologische Berichten 73 (2): 58-67 The lesser stag beetle (Dorcus parallelipipedus) varies considerably in length. To learn more about this variation, an analysis was made of the length of 1282 individuals throughout its distribution range in Europe. Specimens were from museum collections and from populations. The length distribution of this beetle is clearly affected by sexual dimorphism, the males having larger mandibles than the females and thus greater lengths. Therefore, length distributions of this beetle were analyzed separately for males and females. The maximum and minimum lengths found in this study match with the lengths given in the literature. The information given in this study allows comparison of lengths of beetles under different (environmental) conditions or populations to its general distribution of lengths. Introduction D. parallelipipedus, but these data appeared not to be available. The lesser stag beetle, Dorcus parallelipipedus Linnaeus (fig- In various publications, minimum and maximum lengths were ures 1-2), occurs throughout nearly the whole of Europe, south- given, but these differed considerably (see table 5). The aim ern Scandinavia, Turkey and into southern Russia. The beetle of the current study was to provide a length distribution of lives in rotting wood (Klausnitzer 1995). Although related to D. parallelipipedus across Europe that will make it possible to the stag beetle, Lucanus cervus (Linnaeus), its appearance is far compare the lengths of reared and wild beetles, and to compare less impressive, being two to three centimeters long, uniformly the lengths of beetles from different populations or different black in colour and with much smaller mandibles. -
Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims. -
(Insecta) a Mátra És Tarnavidék Területéről
16_Kovacs_Ritka_rovarok.qxd 2011.01.19. 15:23 Page 181 FOLIA HISTORICO NATURALIA MUSEI MATRAENSIS 2010 34: 181–195 Ritka és természetvédelmi szempontból jelentõs rovarok (Insecta) a Mátra és Tarnavidék területérõl II. KOVÁCS TIBOR, MAGOS GÁBOR & URBÁN LÁSZLÓ ABSTRACT: (Rare and protected insects (Insecta) in the area of the Mátra and Tarnavidék II.) This paper provides locality data of 106 insect species from the Mátra Mountains, the Tarna Region and the Uppony Hills. Eight spe- cies are of community interest listed in the Habitats Directive (Cerambyx cerdo, Cucujus cinnaberinus, Limoniscus violaceus, Lucanus cervus, Osmoderma eremita, Probaticus subrugosus, Rosalia alpina, Saga pedo); one species (Osmoderma eremita) is strictly protected and 49 species are protected in Hungary. Species interesting from faunistical point of view: Omoglymmius germari, Osmoderma eremita, Anthaxia plicata, Cerophytum elateroides, Megapenthes lugens, Podeonius acuticornis, Aplocnemus integer, Prostomis mandibularis, Tetratoma desmarestii, Mycetoma suturale, Necydalis ulmi. The following species are new to the Mátra Mountains: Omoglymmius germari (Rhysodidae); Anthaxia plica- ta (Buprestidae); Cerophytum elateroides (Cerophytidae); Ampedus elegantulus, A. nigerrimus, A. nigroflavus, Ischnodes sanguinicollis, Lacon querceus, Megapenthes lugens, Podeonius acuticornis, Reitterelater bouyoni (Elateridae); Chlorophorus hungaricus, Paracorymbia fulva, Necydalis ulmi (Cerambycidae); Camptorhinus simp- lex, C. statua (Curculionidae). The following natural habitats are especially valuable on the basis of their insect fauna (taking into the considera- tion a previous paper on the same area): Ágasvár – Ágasvár-oldal, Cserepes-tetõ, Disznó-tetõ – Fekete-tó, Ezerháztetõ – Szénégetõ – Tót-hegyes, Kisgombosi-legelõ, Mraznica-tetõ – Tõkés-kút-tetõ, Oroszlánvár, Óvár – Óvár-oldal, Som-hegy, Úrráteszi-rész (Mátra Mountains); Burja-hegyese, Debornya-fõ, Kis-Nádú-völgy, Ökör-hegy, Szállás- verõ-hegy, Szederjes-verõ, Vajdavár (Tarna Region); Damasa-hegy, Damasa-szakadék (Uppony Hills). -
Salcombe Conservation Area Appraisal Adopted 2010
Salcombe Conservation Area Appraisal Conservation Areas are usually located in the older parts of our towns and villages. They are places whose surviving historic, architectural and locally distinctive features make them special. Conservation area designation highlights the need to preserve and reinforce these qualities. The policies followed by the District Council when assessing proposals affecting conservation areas are set out in the South Hams Local Plan and Local Development Framework, while the Supplementary Planning Document ‘New Work in Conservation Areas’ explains how to achieve compliance with them. This is essential because the Council has a statutory duty to approve proposals only if they “preserve or enhance the character or appearance” of the conservation area. The purpose of this appraisal is to set out what makes the Salcombe Conservation Area special, what needs to be conserved and what needs to be improved. Adopted February 2010 Salcombe Introduction Salcombe is the southernmost town in the county of The Conservation Area was first designated in 1973 (later Devon, situated at the very end of the A381 spinal road, amended:1985 and 1998) and comprises the waterfront on the edge of the Salcombe/Kingsbridge Estuary. town’s historic core and close perimeter roads containing Otherwise, the only access to this isolated town is a later Victorian villas. A large number of properties within network of narrow lanes, the long established ferry this area are second homes and the local population of just services to Kingsbridge and E. Portlemouth and the SW over 2000 increases significantly in the summer months, in Coastal Path. common with many attractive settlements in tourist areas. -
Florida's Fintastic Sharks and Rays Lesson and Activity Packet
Florida's Fintastic Sharks and Rays An at-home lesson for grades 3-5 Produced by: This educational workbook was produced through the support of the Indian River Lagoon National Estuary Program. 1 What are sharks and rays? Believe it or not, they’re a type of fish! When you think “fish,” you probably picture a trout or tuna, but fishes come in all shapes and sizes. All fishes share the following key characteristics that classify them into this group: Fishes have the simplest of vertebrate hearts with only two chambers- one atrium and one ventricle. The spine in a fish runs down the middle of its back just like ours, making fish vertebrates. All fishes have skeletons, but not all fish skeletons are made out of bones. Some fishes have skeletons made out of cartilage, just like your nose and ears. Fishes are cold-blooded. Cold-blooded animals use their environment to warm up or cool down. Fins help fish swim. Fins come in pairs, like pectoral and pelvic fins or are singular, like caudal or anal fins. Later in this packet, we will look at the different types of fins that fishes have and some of the unique ways they are used. 2 Placoid Ctenoid Ganoid Cycloid Hard protective scales cover the skin of many fish species. Scales can act as “fingerprints” to help identify some fish species. There are several different scale types found in bony fishes, including cycloid (round), ganoid (rectangular or diamond), and ctenoid (scalloped). Cartilaginous fishes have dermal denticles (Placoid) that resemble tiny teeth on their skin. -
Lincolnshire Time and Tide Bell Community Interest Company The
To bid, visit #200Fish www.bit.ly/200FishAuction Art inspired by each species of fish found in the North Sea : mail - il,com Auction The At the exhibition and by e and exhibition At the biffvernon@gma Lincolnshire Time and Tide Bell Community Interest Company Bidding is open now by e-mail and at the gallery during the exhibition’s opening hours. Bidding ends 6 pm Monday 3rd September 2018 The #200Fish Auction Thanks to the many artists who have so generously donated their works to the Lincolnshire Time and Tide Bell Community Interest Company to raise funds for our future art and environmental projects, we are selling some of the artworks in the #200Fish exhibition by auction. Here’s how it works. Take a look through this catalogue and if you would like to buy a piece send us an email giving the Fish Number and how much you are willing to pay. Or if you visit the North Sea Observatory during the exhibition, 23rd August to 3rd September, you can hand in your bid on paper. Along with your bid amount, please include your e-mail address and postal address. After the auction closes, at 6pm Monday 3rd September 2018, the person who has bid the highest price wins and we’ll send you an e-mail. Sold works can be collected from the gallery on Tuesday the 4th or from my house in North Somercotes any time later. We can post them to you but will charge whatever it costs us. Bear in mind that the images displayed here are a bit rubbish, just low resolution versions of snapshots as often as not taken on a camera phone rather than in a professional art photo studio. -
Devon Rigs Group Sites Table
DEVON RIGS GROUP SITES EAST DEVON DISTRICT and EAST DEVON AONB Site Name Parish Grid Ref Description File Code North Hill Broadhembury ST096063 Hillside track along Upper Greensand scarp ST00NE2 Tolcis Quarry Axminster ST280009 Quarry with section in Lower Lias mudstones and limestones ST20SE1 Hutchins Pit Widworthy ST212003 Chalk resting on Wilmington Sands ST20SW1 Sections in anomalously thick river gravels containing eolian ogical Railway Pit, Hawkchurch Hawkchurch ST326020 ST30SW1 artefacts Estuary cliffs of Exe Breccia. Best displayed section of Permian Breccia Estuary Cliffs, Lympstone Lympstone SX988837 SX98SE2 lithology in East Devon. A good exposure of the mudstone facies of the Exmouth Sandstone and Estuary Cliffs, Sowden Lympstone SX991834 SX98SE3 Mudstone which is seldom seen inland Lake Bridge Brampford Speke SX927978 Type area for Brampford Speke Sandstone SX99NW1 Quarry with Dawlish sandstone and an excellent display of sand dune Sandpit Clyst St.Mary Sowton SX975909 SX99SE1 cross bedding Anchoring Hill Road Cutting Otterton SY088860 Sunken-lane roadside cutting of Otter sandstone. SY08NE1 Exposed deflation surface marking the junction of Budleigh Salterton Uphams Plantation Bicton SY041866 SY0W1 Pebble Beds and Otter Sandstone, with ventifacts A good exposure of Otter Sandstone showing typical sedimentary Dark Lane Budleigh Salterton SY056823 SY08SE1 features as well as eolian sandstone at the base The Maer Exmouth SY008801 Exmouth Mudstone and Sandstone Formation SY08SW1 A good example of the junction between Budleigh -
Nudibranquios De La Costa Vasca: El Pequeño Cantábrico Multicolor
Nudibranquios de la Costa Vasca: el pequeño Cantábrico multicolor Recopilación de Nudibranquios fotografiados en Donostia-San Sebastián Luis Mª Naya Garmendia Título: Nudibranquios de la Costa Vasca: el pequeño Cantábrico multicolor © Texto y Fotografías: Luis Mª Naya. Las fotografías del Thecacera pennigera fueron reali- zadas por Michel Ranero y Jesús Carlos Preciado. Editado por el Aquarium de Donostia-San Sebastián Carlos Blasco de Imaz Plaza, 1 20003 Donostia-San Sebastián Tfno.: 943 440099 www.aquariumss.com 2016 Maquetación: Imanol Tapia ISBN: 978-84-942751-04 Dep. Legal: SS-????????? Imprime: Michelena 4 Índice Prólogo, Vicente Zaragüeta ...................................................................... 9 Introducción ................................................................................................... 11 Nudibranquios y otras especies marinas ............................................... 15 ¿Cómo es un nudibranquio? ..................................................................... 18 Una pequeña Introducción Sistemática a los Opistobranquios, Jesús Troncoso ........................................................................................... 25 OPISTOBRANQUIOS .................................................................................... 29 Aplysia fasciata (Poiret, 1789) .............................................................. 30 Aplysia parvula (Morch, 1863) ............................................................. 32 Aplysia punctata (Cuvier, 1803) .......................................................... -
Seasonality of Planktonic Crustacean Decapod Larvae in the Subtropical Waters of Gran Canaria Island, NE Atlantic
SCIENTIA MARINA 82(2) June 2018, 119-134, Barcelona (Spain) ISSN-L: 0214-8358 https://doi.org/10.3989/scimar.04683.08A Seasonality of planktonic crustacean decapod larvae in the subtropical waters of Gran Canaria Island, NE Atlantic José M. Landeira 1, Fernando Lozano-Soldevilla 2 1 Department of Ocean Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan. (JML) (Corresponding author) E-mail: [email protected]. ORCID ID: http://orcid.org/0000-0001-6419-2046 2 Departamento de Biología Animal, Edafología y Geología. Universidad de La Laguna, Avd. Astrofísico Francisco Sánchez, s/n. 38200 La Laguna, Spain. (FL-S) E-mail: [email protected]. ORCID ID: http://orcid.org/0000-0002-1028-4356 Summary: A monitoring programme was established to collect plankton samples and information of environmental vari- ables over the shelf off the island of Gran Canaria during 2005 and 2006. It produced a detailed snapshot of the composi- tion and seasonal assemblages of the decapod larvae community in this locality, in the subtropical waters of the Canary Islands (NE Atlantic), where information about crustacean phenology has been poorly studied. The larval community was mainly composed of benthic taxa, but the contribution of pelagic taxa was also significant. Infraorders Anomura (33.4%) and Caridea (32.8%) accounted for more than half the total collected larvae. High diversity, relatively low larval abundance throughout the year and weak seasonality characterized the annual cycle. However, in relation to the temporal dynamics of temperature, two distinct larval assemblages (cold and warm) were identified that correspond to periods of mixing and strati- fication of the water column.