Psychological Conflict in the Poetry of Ea

Total Page:16

File Type:pdf, Size:1020Kb

Psychological Conflict in the Poetry of Ea SHARP RAYS OF THOUGHT: PSYCHOLOGICAL CONFLICT IN THE POETRY OF E. A. BARATYNSKY Elena Pedigo Clark A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Germanic and Slavic Languages and Literatures (Russian Literature). Chapel Hill 2012 Approved by: Dr. Lawrence Feinberg Dr. Radislav Lapushin Dr. Hana Píchová Dr. Christopher Putney Dr. Ewa Wampuszyc ©2012 Elena Pedigo Clark ALL RIGHTS RESERVED ii ABSTRACT ELENA PEDIGO CLARK: Sharp Rays of Thought: Psychological Conflict in the Poetry of E. A. Baratynsky (Under the direction of Radislav Lapushin) This dissertation examines psychological conflict in the work of the early nineteenth-century Russian poet E. A. Baratynsky (1800-1844) through a dual approach of close reading and interpretations based on the theories of analytical psychology. Baratynsky is demonstrated to be the “poet of thought” because thought acts in his poetry as the least favored psychic function, serving as both a source of pain and a source of inspiration. iii ACKNOWLEDGEMENTS I am grateful for the support and advice of my advisor, Dr. Radislav Lapushin, throughout the process of completing this dissertation. I would also like to thank Dr. Lawrence Feinberg for his comments on the first two chapters, Dr. John Wright for his willingness to discuss the poems with me, Jenny Charlton Barrier for her assistance in proofreading, Brian Barrier for his assistance in formatting the final text, and Natalia Chernysheva for her explanations of obscure points of Russian vocabulary. iv TABLE OF CONTENTS Chapter Introduction………………………………………………………………1 I. THE POET OF THOUGHT……………………………………..7 II. SHARP RAYS: BARATYNSKY’S POETRY OF THOUGHT………………….22 III. THE PSYCHE ACCORDING TO JUNG……………………….90 IV. CHILD OF PASSION AND DOUBT: BARATYNSKY’S POETRY OF FEELING………..153 V. MANY STORMY QUESTIONS HAVE I RESOLVED: FINLAND, ITALY, AND THE RECONCILIATION OF OPPOSITES IN BARATYNSKY’S POETRY………………..191 Appendix 1……………………………………………………………...226 Appendix 2……………………………………………………………...250 Appendix 3……………………………………………………………...261 Appendix 4……………………………………………………………...267 Works Cited…………………………………………………………….275 v The psyche is at cross purposes with itself C. G. Jung Introduction This dissertation examines the poetry of the poet E. A. Baratynsky (1800-1844) through the prism of psychological theories developed by C. G. Jung (1875-1961). As readers from Pushkin to the present have noted, the conflict between thought and feeling forms one of the knots that tie Baratynsky’s poetry together. This dissertation will confront this conflict through a dual approach: by performing close readings and structural analyses of significant poems from Baratynsky’s oeuvre, and by connecting these close readings with Jung’s theories on psychological types. The main thrust of the argument will be that thought, which is generally considered the central preoccupation of Baratynsky’s poetry, is central because it serves as what Jung calls the inferior function in the psyche of Baratynsky’s poetic persona, while feeling, which often appears to occupy a lower position than thought, does so precisely because it acts as the dominant function, the bedrock of the psyche. The aim of this dissertation is not to overturn or polemicize against previous conceptions of Baratynsky’s poetry, but to provide a set of conceptual tools that may allow readers to reconceptualize this central conflict. Taking theories from one discipline—in this case, psychology—and applying them to another—in this case, literature—can entail the risk of creating a theoretical chimera. In order to create an intellectually coherent argument, I have decided to use the approach that interdisciplinary theorist Lisa Lattuca calls “informed disciplinarity.” According to Lattuca, informed disciplinary research means that: “disciplinary questions may be informed by concepts or theories from another discipline or may rely upon methods from other disciplines, but these disciplinary contributions are made in the service of a disciplinary question” (Creating Interdisciplinarity 82). In the case of this dissertation, I will be consciously using the theories created for another discipline— psychology—in order to answer literature-focused questions about Baratynsky’s poetry. Because analytical psychology, like many other branches of psychology, is both an empirical science that relies on evidence gathered from experiments conducted according to the scientific method, and a set of theories used to describe certain phenomena as the theorist perceives them, it, rather like astronomy, is partly grounded in proven facts (if one is of a psychological type that accepts that “facts” can be “proven,” that is), and is partly based on speculation about the nature of things that are currently beyond our knowledge. This speculation is meant to provide possible explanations for perceived phenomena, while not claiming to be the last word in explaining these phenomena—more can always be discovered. As Jung himself says of his theories in “The Structure and Dynamics of the Psyche”: It is not a question of his [the psychologist’s] asserting anything, but of constructing a model which opens up a promising and useful field of inquiry. A model does not assert that something is so, it simply illustrates a particular mode of observation. (CW 8: 184) This is the approach I will be using to apply analytical psychology to literary analysis: I assume that the theories utilized here provide useful perspectives on Baratynsky’s poetry which “open up a promising and useful field of inquiry.” These 2 theories and the illustrations of these theories may be drawn from both the “scientific” and “non-scientific” branches of Jungian psychology. My purpose in doing so is not to attempt to “prove” or disprove anything other than that the kind of cross-fertilization that takes place when one ventures outside one’s home discipline can reveal exciting insights back in the home discipline. The use of theories developed in the early twentieth century on literature written in the early nineteenth century also raises the question of a potential anachronism. The answer to that is twofold. Firstly, the application of theories and techniques developed after a work was produced can be illuminating even if that work was not produced with those theories and techniques in mind. An example of this would be the use of Formalist techniques on nineteenth-century works of literature. Secondly, the psyches that stand behind the poetry of Baratynsky and the theories of Jung are not so different, informed as they both are by the spirit of Weimar Classicism. Leaving aside all claims that Jung’s theories describe transcultural and transhistorical psychic structures as being unprovable, this dissertation will make use of theories generated by one thinker profoundly influenced by Goethe, Schiller, and the philosophers of German Idealism—Jung—to explain certain aspects of poetry produced by another thinker—Baratynsky—who was also writing under the influence of these same poets and philosophers. This brings us to an important caveat, which is that the psyche we will be discussing here will be that of Baratynsky’s poetic persona, not that of Baratynsky the person. While Baratynsky the poet and Baratynsky the individual may have shared much in common, and the psychic conflicts and structures in Baratynsky’s poetry may very well reflect those of Baratynsky’s own psyche, we only have access to the poetry, not 3 Baratynsky’s conscious psychology. Therefore, while this dissertation will occasionally reference Baratynsky’s biography and personal correspondence when it seems enlightening to do so, it will do so with the aim of illuminating the poetry, not the person. I should add a warning that “thinking” in the Jungian sense,1 that is, objective/logical systems of organization, will come under question. The problem, of course, is that Jung’s own system is an attempt to impose “thinking” as he defines it on things that are only partially categorizable into rational categories. Furthermore, I myself will be guilty of the same thing, as I also impose a “thinking” approach to poetry, which does not necessarily respond well to this kind of treatment. Not only that, but if my thesis is correct, then “thinking” is, at a certain level, inimical to Baratynsky’s poetry and worldview, and by taking an overly “thinking” approach, I am in danger of doing him and his poetry a great disservice. On the other hand, it can be useful to classify and organize things, and doing so in a “thinking” fashion can be a very efficient method. In the case of my analysis, though, I would like to start with the warning that when analyzing poetry, clinging too hard to any one conceptual method is likely to obscure a whole host of other meanings inherent in the poem. Therefore, while I will be presenting a certain reading of certain poems and of Baratynsky’s oeuvre as a whole, I would like to say at the outset that this reading should not be taken as too cut-and-dried, even if at times it appears to be. I say this not to attack my own analysis and interpretation before I even offer it, but, I hope, to provide the kind of conceptual flexibility necessary for dealing with an organic entity such as a poem or 1Thinking and the other psychological functions as defined by Jung will be described in more detail in Chapter Three. 4 poetry. And now, having laid down some general theoretical principles about the dubious quality of theoretical principles, we should turn to the actual topic of this dissertation, which is psychological conflict in Baratynsky’s poetry. Because Baratynsky is the poet of the “quiet voice” and may not be a familiar figure to readers, I will nonetheless begin with a brief biographical sketch in order to orient the reader in the cultural and personal background against which the poems under discussion were written.
Recommended publications
  • Planetary Geologic Mappers Annual Meeting
    Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Orbital Detection and Implications of Akaganeite on Mars
    45th Lunar and Planetary Science Conference (2014) 2364.pdf ORBITAL DETECTION AND IMPLICATIONS OF AKAGANEITE ON MARS. J. Carter1, C. Viviano-Beck2, L. Le Deit3, J. Bishop4, D. Loizeau5, 1IAS (Paris-Sud University, France, [email protected]), 2JHU/APL (Laurel, MD), 3LPGN (Nantes University, France), 4SETI Institute (Mountain View, CA), 5LGL (Lyon 1 University, France). Introduction: Recent orbital and landed investiga- lands, and intertidal marshes; and within hydrothermal tions of the Martian surface have demonstrated that the brines [13,14,15,16]. The main conditions necessary planet underwent a complex geological and aqueous for akaganéite precipitation are high salinity, mild acid- alteration history, fragments of which are recorded in ity (pH ~6), oxidizing conditions, and most important- the mineralogy of the heavily disrupted surface [1,2,3]. ly, high iron (II/III) and chlorine concentrations. On Of particular interest are aqueously altered minerals Earth, the source of Fe in akaganéite formation is typi- that trace warmer and wetter surface environments on cally iron ore or sulfides (the latter also providing acid- Early Mars, some of which also exhibit biogenic for- ity as they dissolve) [15,16]. Highly concentrated chlo- mation pathways [4,5]. rine occurs within volcanic fumaroles or deep sea vents The most abundant alteration minerals on Mars that as well as within evaporating, closed or semi-closed have likely been detected are hydrated silicates, hy- water systems [15,16,17]. drated sulfates, and chloride salts [6,7,8]. The detection of minor phases remains important, however, as they further constrain localized geochemical environments at different epochs in the timeline of Mars’s geological history.
    [Show full text]
  • Workshop on the Martiannorthern Plains: Sedimentological,Periglacial, and Paleoclimaticevolution
    NASA-CR-194831 19940015909 WORKSHOP ON THE MARTIANNORTHERN PLAINS: SEDIMENTOLOGICAL,PERIGLACIAL, AND PALEOCLIMATICEVOLUTION MSATT ..V",,2' :o_ MarsSurfaceandAtmosphereThroughTime Lunar and PlanetaryInstitute 3600 Bay AreaBoulevard Houston TX 77058-1113 ' _ LPI/TR--93-04Technical, Part 1 Report Number 93-04, Part 1 L • DISPLAY06/6/2 94N20382"£ ISSUE5 PAGE2088 CATEGORY91 RPT£:NASA-CR-194831NAS 1.26:194831LPI-TR-93-O4-PT-ICNT£:NASW-4574 93/00/00 29 PAGES UNCLASSIFIEDDOCUMENT UTTL:Workshopon the MartianNorthernPlains:Sedimentological,Periglacial, and PaleoclimaticEvolution TLSP:AbstractsOnly AUTH:A/KARGEL,JEFFREYS.; B/MOORE,JEFFREY; C/PARKER,TIMOTHY PAA: A/(GeologicalSurvey,Flagstaff,AZ.); B/(NationalAeronauticsand Space Administration.GoddardSpaceFlightCenter,Greenbelt,MD.); C/(Jet PropulsionLab.,CaliforniaInst.of Tech.,Pasadena.) PAT:A/ed.; B/ed.; C/ed. CORP:Lunarand PlanetaryInst.,Houston,TX. SAP: Avail:CASIHC A03/MFAOI CIO: UNITEDSTATES Workshopheld in Fairbanks,AK, 12-14Aug.1993;sponsored by MSATTStudyGroupandAlaskaUniv. MAJS:/*GLACIERS/_MARSSURFACE/*PLAINS/*PLANETARYGEOLOGY/*SEDIMENTS MINS:/ HYDROLOGICALCYCLE/ICE/MARS CRATERS/MORPHOLOGY/STRATIGRAPHY ANN: Papersthathavebeen acceptedforpresentationat the Workshopon the MartianNorthernPlains:Sedimentological,Periglacial,and Paleoclimatic Evolution,on 12-14Aug. 1993in Fairbanks,Alaskaare included.Topics coveredinclude:hydrologicalconsequencesof pondedwateron Mars; morpho!ogical and morphometric studies of impact cratersin the Northern Plainsof Mars; a wet-geology and cold-climateMarsmodel:punctuation
    [Show full text]
  • Program of the 75Th Anniversary Meeting
    PROGRAM OF THE 75 TH ANNIVERSARY MEETING April 14−April 18, 2010 St. Louis, Missouri THE ANNUAL MEETING of the Society for American Archaeology provides a forum for the dissemination of knowledge and discussion. The views expressed at the sessions are solely those of the speakers and the Society does not endorse, approve, or censor them. Descriptions of events and titles are those of the organizers, not the Society. Program of the 75th Anniversary Meeting Published by the Society for American Archaeology 900 Second Street NE, Suite 12 Washington DC 20002-3560 USA Tel: +1 202/789-8200 Fax: +1 202/789-0284 Email: [email protected] WWW: http://www.saa.org Copyright © 2010 Society for American Archaeology. All rights reserved. No part of this publication may be reprinted in any form or by any means without prior permission from the publisher. Program of the 75th Anniversary Meeting 3 Contents 4............... Awards Presentation & Annual Business Meeting Agenda 5……….….2010 Award Recipients 10.................Maps of the America’s Center 12 ................Maps of Renaissance Grand St. Louis 14 ................Meeting Organizers, SAA Board of Directors, & SAA Staff 15 .............. General Information 18. ............. Featured Sessions 20 .............. Summary Schedule 25 .............. A Word about the Sessions 27............... Program 161................SAA Awards, Scholarships, & Fellowships 167............... Presidents of SAA . 168............... Annual Meeting Sites 169............... Exhibit Map 170................Exhibitor Directory 180................SAA Committees and Task Forces 184………….Index of participants 4 Program of the 75th Anniversary Meeting Awards Presentation & Annual Business Meeting America’s Center APRIL 16, 2010 5 PM Call to Order Call for Approval of Minutes of the 2009 Annual Business Meeting Remarks President Margaret W.
    [Show full text]
  • Orbital Evidence for More Widespread Carbonate- 10.1002/2015JE004972 Bearing Rocks on Mars Key Point: James J
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Orbital evidence for more widespread carbonate- 10.1002/2015JE004972 bearing rocks on Mars Key Point: James J. Wray1, Scott L. Murchie2, Janice L. Bishop3, Bethany L. Ehlmann4, Ralph E. Milliken5, • Carbonates coexist with phyllosili- 1 2 6 cates in exhumed Noachian rocks in Mary Beth Wilhelm , Kimberly D. Seelos , and Matthew Chojnacki several regions of Mars 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA, 2The Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA, 3SETI Institute, Mountain View, California, USA, 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 5Department of Geological Sciences, Brown Correspondence to: University, Providence, Rhode Island, USA, 6Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA J. J. Wray, [email protected] Abstract Carbonates are key minerals for understanding ancient Martian environments because they Citation: are indicators of potentially habitable, neutral-to-alkaline water and may be an important reservoir for Wray, J. J., S. L. Murchie, J. L. Bishop, paleoatmospheric CO2. Previous remote sensing studies have identified mostly Mg-rich carbonates, both in B. L. Ehlmann, R. E. Milliken, M. B. Wilhelm, Martian dust and in a Late Noachian rock unit circumferential to the Isidis basin. Here we report evidence for older K. D. Seelos, and M. Chojnacki (2016), Orbital evidence for more widespread Fe- and/or Ca-rich carbonates exposed from the subsurface by impact craters and troughs. These carbonates carbonate-bearing rocks on Mars, are found in and around the Huygens basin northwest of Hellas, in western Noachis Terra between the Argyre – J.
    [Show full text]
  • Observations of the Marker Bed at Gale Crater with Recommendations for Future Exploration by the Curiosity Rover
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1484.pdf OBSERVATIONS OF THE MARKER BED AT GALE CRATER WITH RECOMMENDATIONS FOR FUTURE EXPLORATION BY THE CURIOSITY ROVER. C. M. Weitz1, J. L. Bishop2, B. J. Thomson3, K. D. Seelos4, K. Lewis5, I. Ettenborough3, and R. E. Arvidson6. 1Planetary Science Institute, 1700 East Fort Lowell, Tuc- son, AZ ([email protected]); 2SETI Institute, Carl Sagan Center, Mountain View, CA; 3Dept. of Earth and Planetary Sciences, Univ. Tennessee, Knoxville, TN; 4Planetary Exploration Group, JHU Applied Physics Laboratory, Laurel, MD; 5Dept Earth and Planetary Sciences, John Hopkins University, Baltimore, MD; 6Dept Earth and Planetary Sci- ences, Washington University, St. Louis, Missouri. Introduction: A dark-toned marker bed is ob- pearance across the mound. Most of the sulfates served within the sulfates at Gale crater [1,2]. This above/below the marker bed are stratified, heavily marker bed is characterized by a dark-toned, smooth fractured, and erode into boulder-size blocks, but there surface that appears more indurated and retains more are examples where the sulfates appear massive with craters relative to the sulfate-bearing layers above and limited fracturing and no boulders eroding from the below it. The bed has a distinct physical appearance unit (Fig. 3a). from the sulfates in which it occurs, suggesting a change in the environment or geochemistry for a brief period of time within the depositional sequence that formed the sulfates or post-deposition alteration. In this study, we utilized HiRISE and CTX images to identify and map the occurrence of the marker bed throughout Aeolis Mons.
    [Show full text]
  • Pacing Early Mars Fluvial Activity at Aeolis Dorsa: Implications for Mars
    1 Pacing Early Mars fluvial activity at Aeolis Dorsa: Implications for Mars 2 Science Laboratory observations at Gale Crater and Aeolis Mons 3 4 Edwin S. Kitea ([email protected]), Antoine Lucasa, Caleb I. Fassettb 5 a Caltech, Division of Geological and Planetary Sciences, Pasadena, CA 91125 6 b Mount Holyoke College, Department of Astronomy, South Hadley, MA 01075 7 8 Abstract: The impactor flux early in Mars history was much higher than today, so sedimentary 9 sequences include many buried craters. In combination with models for the impactor flux, 10 observations of the number of buried craters can constrain sedimentation rates. Using the 11 frequency of crater-river interactions, we find net sedimentation rate ≲20-300 μm/yr at Aeolis 12 Dorsa. This sets a lower bound of 1-15 Myr on the total interval spanned by fluvial activity 13 around the Noachian-Hesperian transition. We predict that Gale Crater’s mound (Aeolis Mons) 14 took at least 10-100 Myr to accumulate, which is testable by the Mars Science Laboratory. 15 16 1. Introduction. 17 On Mars, many craters are embedded within sedimentary sequences, leading to the 18 recognition that the planet’s geological history is recorded in “cratered volumes”, rather than 19 just cratered surfaces (Edgett and Malin, 2002). For a given impact flux, the density of craters 20 interbedded within a geologic unit is inversely proportional to the deposition rate of that 21 geologic unit (Smith et al. 2008). To use embedded-crater statistics to constrain deposition 22 rate, it is necessary to distinguish the population of interbedded craters from a (usually much 23 more numerous) population of craters formed during and after exhumation.
    [Show full text]
  • Large Impact Crater Histories of Mars: the Effect of Different Model Crater Age Techniques ⇑ Stuart J
    Icarus 225 (2013) 173–184 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Large impact crater histories of Mars: The effect of different model crater age techniques ⇑ Stuart J. Robbins a, , Brian M. Hynek a,b, Robert J. Lillis c, William F. Bottke d a Laboratory for Atmospheric and Space Physics, 3665 Discovery Drive, University of Colorado, Boulder, CO 80309, United States b Department of Geological Sciences, 3665 Discovery Drive, University of Colorado, Boulder, CO 80309, United States c UC Berkeley Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720, United States d Southwest Research Institute and NASA Lunar Science Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, United States article info abstract Article history: Impact events that produce large craters primarily occurred early in the Solar System’s history because Received 25 June 2012 the largest bolides were remnants from planet ary formation .Determi ning when large impacts occurred Revised 6 February 2013 on a planetary surface such as Mars can yield clues to the flux of material in the early inner Solar System Accepted 25 March 2013 which, in turn, can constrain other planet ary processes such as the timing and magnitude of resur facing Available online 3 April 2013 and the history of the martian core dynamo. We have used a large, global planetary databas ein conjunc- tion with geomorpholog icmapping to identify craters superposed on the rims of 78 larger craters with Keywords: diameters D P 150 km on Mars, 78% of which have not been previously dated in this manner.
    [Show full text]
  • Apollo 17 Press
    7A-/ a NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington. D . C . 20546 202-755-8370 FOR RELEASE: Sunday t RELEASE NO: 72-220K November 26. 1972 B PROJECT: APOLLO 17 (To be launched no P earlier than Dec . 6) R E contents 1-5 6-13 U APOLLC 17 MISSION OBJECTIVES .............14 LAUNCH OPERATIONS .................. 15-17 COUNTDOWN ....................... 18-21 Launch Windows .................. 20 3 Ground Elapsed Time Update ............ 20-21 LAUNCH AND MISSION PROFILE .............. 22-32 Launch Events .................. 24-26 Mission Events .................. 26-28 EVA Mission Events ................ 29-32 APOLLO 17 LANDING SITE ................ 33-36 LUNAR SURFACE SCIENCE ................ 37-55 S-IVB Lunar Impact ................ 37 ALSEP ...................... 37 K SNAP-27 ..................... 38-39 Heat Flow Experiment ............... 40 Lunar Ejecta and Meteorites ........... 41 Lunar Seismic Profiling ............. 41-42 I Lunar Atmospheric Composition Experiment ..... 43 Lunar Surface Gravimeter ............. 43-44 Traverse Gravimeter ............... 44-45 Surface Electrical Properties 45 I-) .......... T Lunar Neutron Probe ............... 46 1 Soil Mechanics .................. 46-47 Lunar Geology Investigation ........... 48-51 Lunar Geology Hand Tools ............. 52-54 Long Term Surface Exposure Experiment ...... 54-55 -more- November 14. 1972 i2 LUNAR ORBITAL SCIENCE ............... .5 6.61 Lunar Sounder ................. .5 6.57 Infrared Scanning Radiometer ......... .5 7.58 Far-Ultraviolet Spectrometer ..........5
    [Show full text]
  • The Prophecy That Is Shaping History
    The Prophecy That Is Shaping History: New Research on Ezekiel’s Vision of the End Jon Mark Ruthven, PhD Ihab Griess, PhD Xulon Press 11350 Random Hills Drive #800 Fairfax, Virginia 22030 Copyright Jon Mark Ruthven © 2003 In memoriam Pamela Jessie Ruthven PhD, LCSW 26 March 1952 – 9 April 2001 Wife, mother, and faithful friend i Preface Great events in history often gather momentum and power long before they are recognized by the experts and commentators on world affairs. Easily one of the most neglected but powerfully galvanizing forces shaping history in the world today is the prophecy of Gog and Magog from the 38th and 39th chapters of the book of Ezekiel. This prophecy from the Jewish-Christian Bible has molded geo-politics, not only with- in the United States and the West but also, to an amazing degree, in the Muslim world as well. It seems that, millennia ago, Ezekiel’s vision actually named the nation which millions today believe plays the major role in this prophecy: the nation of Russia. Many modern scholars have dismissed Ezekiel’s Gog and Magog prophecy as a mystical apocalypse written to vindicate the ancient claims of a minor country’s deity. The very notion of such a prediction—that semi-mythical and unrelated nations that dwelt on the fringes of Israel’s geographical consciousness 2,500 years ago would, “in the latter days,” suddenly coalesce into a tidal wave of opposition to a newly regathered state of Jews—seems utterly incredible to a modern mentality. Such a scenario, the experts say, belongs only to the fundamentalist “pop religion” of The Late, Great Planet Earth and of TV evangelists.
    [Show full text]
  • Case Study of Aeolis Serpens in the Aeolis Dorsa, Mars, and Insight from the Mirackina Paleoriver, South Australia ⇑ Rebecca M.E
    Icarus 225 (2013) 308–324 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Variability in martian sinuous ridge form: Case study of Aeolis Serpens in the Aeolis Dorsa, Mars, and insight from the Mirackina paleoriver, South Australia ⇑ Rebecca M.E. Williams a, , Rossman P. Irwin III b, Devon M. Burr c, Tanya Harrison d,1, Phillip McClelland e a Planetary Science Institute, Tucson, AZ 85719-2395, United States b Center for Earth and Planetary Studies, Smithsonian Institution, Washington, DC 20013-7012, United States c Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996-1410, United States d Malin Space Science Systems, San Diego, CA 92121, United States e Ultramag Geophysics, Mount Hutton, NSW 2280, Australia article info abstract Article history: In the largest known population of sinuous ridges on Mars, Aeolis Serpens stands out as the longest Received 3 August 2012 (500 km) feature in Aeolis Dorsa. The formation of this landform, whether from fluvial or glacio-fluvial Revised 6 March 2013 processes, has been debated in the literature. Here we examine higher-resolution data and use a terres- Accepted 10 March 2013 trial analog (the Mirackina paleoriver, South Australia) to show that both the morphology and contextual Available online 2 April 2013 evidence for Aeolis Serpens are consistent with development of an inverted fluvial landform from differ- ential erosion of variably cemented deposits. The results of this study demonstrate that the induration Keywords: mechanism can affect preservation of key characteristics of the paleoriver morphology. For groundwater Mars, Surface cemented inverted fluvial landforms, like the Mirackina example, isolated remnants of the paleoriver are Geological processes Earth preserved because of the temporal and spatial variability of cementation sites.
    [Show full text]