Common Beetles (Order Coleoptera) in the Wichita Mountains and Surrounding Areas

Total Page:16

File Type:pdf, Size:1020Kb

Common Beetles (Order Coleoptera) in the Wichita Mountains and Surrounding Areas Common Beetles (Order Coleoptera) in the Wichita Mountains and Surrounding Areas Angel A. Chiri Considering the large size of the Coleoptera, few Entomologist beetles have common names recognized by the Entomological Society of America. Those Introduction which do are often agricultural, forest, or stored grain pests, such as the Colorado potato beetle, The beetles belong in the Kingdom Animalia, cotton boll weevil, confused flour beetle, and Phylum Arthropoda, Class Hexapoda (Insecta), Japanese beetle, all of which have been Order Coleoptera. Of the 158 families of extensively studied by entomologists. Relying Coleopteran known to occur in the U.S., 17 are on only common names at the species level may mentioned in this guide. Note that the family lead to confusion, since more than one common name for plants and animals, including insects, name may exist for the same species, or the always ends in "ae." The Coleoptera is the same name may be used for more than one largest insect order, with about 350,000 species species. Using the scientific name, which is the described worldwide. Of the estimated 92,000 same in any language or region, eliminates this species of insects recorded in the United States problem. Furthermore, only scientific names are and Canada, approximately 24,000 are beetles. used in the scientific literature. Common names This guide makes reference to only a few of the are not capitalized. more common and conspicuous beetles found in the area. The numbers of genera and species given for each family are based on Arnett (1993). The scientific name of an organism, whether plant or animal, consists of the genus and species, written in italics. The genus is writen in full the first time that it is mentioned in a paper (e.g. Hippodamia convergens). Thereafter, the genus name is abbreviated to its initial (e.g. H. convergens). If another genus with the same initial is being discussed in the same section, Figure 1. A rainbow scarab both genera are spelled out to avoid confusion. Often, the genus name is written, followed by Body form and structure (morphology) sp. (for one species) or spp. (for more than one species). For example, Hippodamia sp. The body of a beetle consists of three well- indicates that a beetle belongs to the genus defined regions, the head, thorax, and abdomen. Hippodamia, but the writer is not sure about the Head appendages consist of a pair of antennae, species. Hippodamia spp. means that the writer two compound eyes, three simple eyes (the is referring to two or more species in this genus. ocelli), and the mouthparts. The mouthparts consist of a pair of opposable mandibles, a pair 1 of maxillae, an upper labrum, and a lower five to eight times before it is ready to pupate. labium. The mandibles in beetles are designed Each larval stage between molts is known as an for biting. In general, the head points straight instar. For instance, a newly hatched larva is a forward in predaceous beetles and downward in first instar larva. Depending on the species and plant feeding species. The antenna shape, weather conditions, the larval stage may take length, number of segments, and presence and from a few weeks (most species) to as long as 2- form of a terminal club are features used to 3 years (some of the larger scarabs) to complete. identify beetle families. The pupal stage takes from weeks to months before the adult emerges. The thorax in insects consists of three segments, the prothorax (anterior segment, next to the The larval morphology can be highly variable, head), mesothorax (middle segment), and especially at the family level. However, all have metathorax (posterior segment, contiguous to the a well-developed head with functional first abdominal segment). The dorsal sclerite mandibles, most have well developed thoracic (hardened plate) of the prothorax is known as legs, and none has abdominal false legs. For the pronotum. The mesonotum and metanotum instance, ground beetle and rove beetle larvae are the dorsal sclerites of the mesothorax and are elongate, rather cylindrical, and highly metathorax, respectively. mobile. The larvae of lady beetles are active, their body narrows posteriorly, and their legs are A pair of legs arise from each thoracic segment, rather long and protrude sideways. Scarab each consisting of six articulated segments. beetle larvae are c-shaped and have well- Starting with the one attached to the thorax, developed legs. The larvae of weevils or snout these segments are the coxa, trochanter, femur, beetles are also c-shaped, but legless. Those of tibia, tarsus, and pretarsus or claws. Depending wood-boring beetles are mostly legless, rather on the family, the tarsus may have 3, 4, or 5 flat and broad anteriorly, and elongate and segments. The number of tarsal segments is cylindrical posteriorly. Darkling beetle and another feature used to identify families. For click beetle larvae are elongate and cylindrical, instance, a tarsal formula of 5-5-4 indicates that with short, but well-developed legs, and often the anterior and middle pair of legs have five with hardened skin. tarsal segments each, while the posterior pair has only four. Beetles are found in all biotic communities, including deserts, grasslands, savannas, A pair of wings arise from the mesothorax and a chaparral, and forests, as well as in croplands, second pair from the metathorax. In most backyards, gardens, and disturbed areas. Some beetles the anterior wings are hardened, forming families are aquatic and found in lakes, ponds, a case that covers and protects the posterior and other fresh water bodies. Some species are membranous wings and the abdomen. These agricultural pests and others infest stored grain hard wings are known as the elytra. Each wing and other products. is an elytron. Most beetles can fly using their membranous wings. Food habits - The food of coleopterans is highly diverse. Plant feeding species may feed on Beetles undergo a full metamorphosis, passing leaves, stems, fruit, flowers, seeds, or roots. The through egg, larval, and pupal stages before larvae of several families, including Buprestidae becoming adults. The developing larva molts and Cerambycidae, develop in living and dead 2 wood, attacking most forest trees. Predaceous species feed on smaller insects and spiders. Family Cicindelidae (tiger beetles) Their prey is often specific at the family level. For instance, larvae and adults of most lady Tiger beetles have large, bulging eyes, and long, beetles (Coccinellidae) prey on aphids. Other thin legs. The head is wider than the pronotum, lady beetles feed exclusively on plant-eating and the hind margin of the pronotum is narrower mites. The large ground beetles (Carabidae) than the base of the elytra. Both adults and prey on caterpillars and other insect larvae. larvae are predaceous. Their large, sharp mandibles are designed to grasp prey. In the The adults and larvae of several species of adult each mandible is also outfitted with a row aquatic beetles prey on the larvae of other of sharp teeth. Tiger beetles are usually found in aquatic insects. The larvae of some scarab areas with sparse vegetation and sandy soil. beetles feed on animal dung that females bury for their offspring. The larvae and adults in the Tiger beetles are active diurnal hunters, and can family Silphidae feed on carrion and on carrion often be seen running on the ground in search of feeding insects, including fly eggs and larvae. small insects and spiders. If approached, they Some species in the families Dermestidae, quickly run or fly away a short distance, keeping Staphylinidae, and Scarabaeidae also feed on a safe distance from the observer. They are carrion or on carrion feeding insect larvae. seldom still, and capturing or photographing Along with blow flies (Calliphoridae) and flesh them is a challenge. Some species are metallic flies (Sarcophagidae), beetles found in carrion blue or green, often with light spots. Most tiger play a role in forensic investigations. beetles are about ½ inch long, but the two species in the genus Megacephala are about ¾ Some species can be major agricultural pests, inch long, and the Great Plains giant tiger beetle, damaging field, vegetable, and fruit crops; Amblycheila cylindriformis, reaches 1.5 inches. stored grain and other stored products, forest trees, and lumber. Some dermestid beetles can The larva lives in a vertical burrow that it digs in destroy animal and plant museum specimens, sandy or sandy loam soil. It keeps its flat head including insect collections. On the other hand, flush with the ground, blocking the opening. several lady beetles (Coccinellidae) and ground When a small insect or spider approaches, it beetles (Carabidae) have been used as biological leaps at it, often backward, and quickly seizes it control agents. Integrated pest management with its sickle-shaped mandibles. A dorsal programs targeting aphids, scale insects, moth hump on the fifth abdominal segment anchors larvae, and various other crop pests depend the body to the burrow wall, making it difficult largely on the protection and augmentation of to be pulled out by a predator or a strong prey. predaceous and parasitic insects. Of 100 or so tiger beetle species found in the This guide describes some of the more common U.S. and Canada, about 80 are in the genus and conspicuous beetles found in the Wichita Cicindela. The six-spotted tiger beetle, C. Mountains and surrounding areas. All photos in sexguttata, is one of the most common in our this guide were taken by the author using a area. It is shiny metallic green, with three or Canon PowerShot SX110 IS camera. four small white spots on each elytron (Fig. 2). 3 legs and antennae (Fig. 5). It is nocturnal, rather secretive, and seldom flies.
Recommended publications
  • Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Entomology Museum, University of Nebraska State 12-2009 Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii Mary Liz Jameson Wichita State University, [email protected] Darcy E. Oishi 2Hawaii Department of Agriculture, Plant Pest Control Branch, Honolulu, [email protected] Brett C. Ratcliffe University of Nebraska-Lincoln, [email protected] Grant T. McQuate USDA-ARS-PBARC, U.S. Pacific Basin Agricultural Research Center, Hilo, HI, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Part of the Entomology Commons Jameson, Mary Liz; Oishi, Darcy E.; Ratcliffe, Brett C.; and McQuate, Grant T., "Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii" (2009). Papers in Entomology. 147. https://digitalcommons.unl.edu/entomologypapers/147 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AProcddition. HawaiianAl inv AEsiventomol scA.r SAocbs. in(2009) HAwA 41:25–30ii 25 Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii Mary Liz Jameson1, Darcy E. Oishi2, Brett C. Ratcliffe3, and Grant T. McQuate4 1Wichita State University, Department of Biological Sciences, 537 Hubbard Hall, Wichita, Kansas 67260 [email protected]; 2Hawaii Department of Agriculture, Plant Pest Control Branch, 1428 South King St., Honolulu, HI 96814 [email protected]; 3University of Nebraska State Museum, Systematics Research Collections, W436 Nebraska Hall, University of Nebraska, Lincoln, Nebraska 68588 [email protected]; 4USDA-ARS-PBARC, U.S.
    [Show full text]
  • Mountain Pine Beetle Voltinism and Life History Characteristics Across Latitudinal and Elevational Gradients in the Western United States
    For. Sci. 60(3):434–449 FUNDAMENTAL RESEARCH http://dx.doi.org/10.5849/forsci.13-056 entomology & pathology Mountain Pine Beetle Voltinism and Life History Characteristics across Latitudinal and Elevational Gradients in the Western United States Barbara Bentz, James Vandygriff, Camille Jensen, Tom Coleman, Patricia Maloney, Sheri Smith, Amanda Grady, and Greta Schen-Langenheim Substantial genetic variation in development time is known to exist among mountain pine beetle (Dendroctonus ponderosae Hopkins) populations across the western United States. The effect of this variation on geographic patterns in voltinism (generation time) and thermal requirements to produce specific voltinism pathways have not been investigated. The influence of voltinism on fitness traits, body size, and sex ratio is also unclear. We monitored mountain pine beetle voltinism, adult body size, sex ratio, and air temperatures at sites across latitudinal and elevational gradients in the western United States. With the exception of two sites at the coolest and warmest locations, the number of days required to complete a generation was similar. Thermal units required to achieve a generation, however, were significantly less for individuals at the coolest sites. Evolved adaptations explain this pattern, including developmental rates and thresholds that serve to synchronize cohorts and minimize cold-sensitive life stages in winter. These same adaptations reduce the capacity of mountain pine beetle at the warmest sites to take full advantage of increased thermal units, limiting the capacity for bivoltinism within the current realized distribution. Temperature was not correlated with adult size and sex ratio, and size was greatest in host trees other than lodgepole pine (Pinus contorta Dougl.).
    [Show full text]
  • Effects of Prescribed Fire and Fire Surrogates on Pollinators and Saproxylic Beetles in North Carolina and Alabama
    EFFECTS OF PRESCRIBED FIRE AND FIRE SURROGATES ON POLLINATORS AND SAPROXYLIC BEETLES IN NORTH CAROLINA AND ALABAMA by JOSHUA W. CAMPBELL (Under the Direction of James L. Hanula) ABSTRACT Pollinating and saproxylic insects are two groups of forest insects that are considered to be extremely vital for forest health. These insects maintain and enhance plant diversity, but also help recycle nutrients back into the soil. Forest management practices (prescribed burns, thinnings, herbicide use) are commonly used methods to limit fuel build up within forests. However, their effects on pollinating and saproxylic insects are poorly understood. We collected pollinating and saproxylic insect from North Carolina and Alabama from 2002-2004 among different treatment plots. In North Carolina, we captured 7921 floral visitors from four orders and 21 families. Hymenoptera was the most abundant and diverse order, with Halictidae being the most abundant family. The majority of floral visitors were captured in the mechanical plus burn treatments, while lower numbers were caught on the mechanical only treatments, burn only treatments and control treatments. Overall species richness was also higher on mechanical plus burn treatments compared to other treatments. Total pollinator abundance was correlated with decreased tree basal area (r2=0.58) and increased percent herbaceous plant cover (r2=0.71). We captured 37,191 saproxylic Coleoptera in North Carolina, comprising 20 families and 122 species. Overall, species richness and total abundance of Coleoptera were not significantly different among treatments. However, total numbers of many key families, such as Scolytidae, Curculionidae, Cerambycidae, and Buprestidae, have higher total numbers in treated plots compared to untreated controls and several families (Elateridae, Cleridae, Trogositidae, Scolytidae) showed significant differences (p≤0.05) in abundance.
    [Show full text]
  • Stored Grain Insects and Pea Weevil (Live)  Insects Large – Dead Or Alive
    To whom it may concern, Proposal for GTA Standards change regarding Cereal grains for categories: Stored Grain Insects and Pea Weevil (live) Insects Large – dead or alive Currently there is a lack of reference with insects of NIL tolerance applied by DA for export and that listed within GTA standards. This has the potential to cause contract disputes especially in the grower direct to port transactions. At present if a supplier delivers grain with live insects for example Small-eyed flour beetles and Black fungus beetles, there is no reference in the standards that declare such insects as NIL tolerance. If the buyer was loading a container direct for export this would pose a problem due to the NIL tolerance being applied by DA for export phytosanitary requirements. These insects are in the same category as Psocids which are listed in GTA receival standards. I would like to see the GTA "Stored Grain Insects and Pea Weevil (live)" & "Insects Large – dead or alive" reflect the Department of Agriculture PEOM 6a: Pests, Diseases and Contaminants of Grain and Plant Products (excluding horticulture) http://www.agriculture.gov.au/SiteCollectionDocuments/aqis/exporting/plants-exports-operation-manual/vol6A.pdf I put forward the motion to have all major and minor injurious pests listed within PEOM 6a that apply to cereal grains to be of NIL tolerance within the GTA standards. 1) This would involve moving the Hairy Fungus Beetle Typhaea stercorea from “Insects Large – dead or alive” to the list of “Stored Grain Insects and Pea Weevil (live)”. Thus taking it from a tolerance level of 3 per half litre to NIL.
    [Show full text]
  • Darkling Beetles and Mealworms Theresa A
    Darkling Beetles and Mealworms Theresa A. Dellinger and Eric R. Day, Department of Entomology, Virginia Tech Description Darkling beetles belong in the beetle family Tenebrionidae, which consists of more than 20,000 species of beetles. Adult darkling beetles widely range in shape and size, with most measuring from 2 – 19 mm (0.13” – 0.75”). Adults are usually a reddish-brown to brownish-black in color and can be shiny or dull. The elytra (the wing covers) can be smooth, grooved, or otherwise sculptured. Most do not have colorful patterns on their wing covers. Adults are most active at night and tend to avoid bright lights. Darkling beetle larvae are often referred to as mealworms or false wireworms. They are long, hard-bodied grubs with a cylindrical shape and are shiny yellow-brown to darKer brown in color. They are active crawlers. Yellow mealworm larva, top. Dark mealworm larva, bottom. Clemson University-USDA Cooperative Adult yellow mealworm, Tenebrio molitor. Extension Slide Series, Bugwood.org. Clemson University-USDA Cooperative Extension Slide Series, Bugwood.org. Life Cycle Darkling beetles have a complete life cycle with egg, larval, pupal, and adult stages. Most species of darkling beetles have a slow rate of development and may live for a year as an adult. Species living on grains or other stored products may develop faster. Habitat/Distribution Darkling beetles are found throughout the world except for places with very cold climates. They are scavengers and omnivores, feeding on decomposing plant material, dead insects, fungi, and stored products. Only a handful of darkling beetles are considered pests; the vast majority of them live in the wild and pose no harm.
    [Show full text]
  • Proceedings, 23Rd U.S. Department of Agriculture Interagency Research
    United States Department of Proceedings Agriculture 23rd U.S. Department of Agriculture Forest Service Northern Interagency Research Forum on Research Station Invasive Species 2012 General Technical Report NRS-P-114 The findings and conclusions of each article in this publication are those of the individual author(s) and do not necessarily represent the views of the U.S. Department of Agriculture or the Forest Service. All articles were received in digital format and were edited for uniform type and style. Each author is responsible for the accuracy and content of his or her paper. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal, agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fi sh or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Cover graphic by Vincent D’Amico, U.S. Forest Service, Northern Research Station. Manuscript received for publication August 2012 Published by: For additional copies: U.S.
    [Show full text]
  • A Faunal Survey of the Elateroidea of Montana by Catherine Elaine
    A faunal survey of the elateroidea of Montana by Catherine Elaine Seibert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Catherine Elaine Seibert (1993) Abstract: The beetle family Elateridae is a large and taxonomically difficult group of insects that includes many economically important species of cultivated crops. Elaterid larvae, or wireworms, have a history of damaging small grains in Montana. Although chemical seed treatments have controlled wireworm damage since the early 1950's, it is- highly probable that their availability will become limited, if not completely unavailable, in the near future. In that event, information about Montana's elaterid fauna, particularity which species are present and where, will be necessary for renewed research efforts directed at wireworm management. A faunal survey of the superfamily Elateroidea, including the Elateridae and three closely related families, was undertaken to determine the species composition and distribution in Montana. Because elateroid larvae are difficult to collect and identify, the survey concentrated exclusively on adult beetles. This effort involved both the collection of Montana elateroids from the field and extensive borrowing of the same from museum sources. Results from the survey identified one artematopid, 152 elaterid, six throscid, and seven eucnemid species from Montana. County distributions for each species were mapped. In addition, dichotomous keys, and taxonomic and biological information, were compiled for various taxa. Species of potential economic importance were also noted, along with their host plants. Although the knowledge of the superfamily' has been improved significantly, it is not complete.
    [Show full text]
  • Abundance and Diversity of Ground-Dwelling Arthropods of Pest Management Importance in Commercial Bt and Non-Bt Cotton Fields
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2007 Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields J. B. Torres Universidade Federal Rural de Pernarnbuco, [email protected] J. R. Ruberson University of Georgia Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Torres, J. B. and Ruberson, J. R., "Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields" (2007). Faculty Publications: Department of Entomology. 762. https://digitalcommons.unl.edu/entomologyfacpub/762 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Annals of Applied Biology ISSN 0003-4746 RESEARCH ARTICLE Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields J.B. Torres1,2 & J.R. Ruberson2 1 Departmento de Agronomia – Entomologia, Universidade Federal Rural de Pernambuco, Dois Irma˜ os, Recife, Pernambuco, Brazil 2 Department of Entomology, University of Georgia, Tifton, GA, USA Keywords Abstract Carabidae; Cicindelinae; Falconia gracilis; genetically modified cotton; Labiduridae; The modified population dynamics of pests targeted by the Cry1Ac toxin in predatory heteropterans; Staphylinidae.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • The Gypsy Moth and Its Natural Enemies Agriculture Information Bulletin No
    THE GYPSY MOTH AND ITS NATURAL ENEMIES AGRICULTURE INFORMATION BULLETIN NO. 381 U.S. DEPARTMENT OF AGRICULTURE FOREST SERVICE i^Q^^áh nú'3^1 '/■*X. -//' ■*iS3l^ THE AUTHOR ROBERT W. CAMPBELL is principal ecologist at the North- eastern Forest Experiment Station's research unit maintained at Syracuse, N. Y., in cooperation with the State University of New York College of Environmental Science and Forestry at Syracuse University. He received his bachelor's degree in forestry from the State University of New York College of Forestry in 1953 and his master's and Ph.D. degrees in forestry from the University of Michigan in 1959 and 1961. He joined the USDA Forest Service's Northeastern Forest Experiment Station in 1961. ACKNOWLEDGMENTS My thanks to both Wayne Trimm and Robert W. Brown, whose beautiful illustrations reflect careful study of their sub- jects. I also thank the many gypsy moth watchers who have shared their observations and experiences with me. Issued February 1975 11 THE GYPSY MOTH AND ITS NATURAL ENEMIES by Robert W. Campbell CONTENTS BEHAVIOR 2 Hatch and dispersal 2 Young larvae 2 Older larvae 4 Pre-pupae and pupae 4 Adults 6 Eggs 6 MORTALITY 8 Young larvae 8 Older larvae 11 Pre-pupae 18 Pupae 18 Adults 21 Eggs 21 AGENTS THAT KILL THE SEXES DIFFERENTIALLY 22 CHANGES IN GYPSY MOTH POPULATION DENSITY 23 A FEW LAST WORDS 27 111 CAMPBELL, ROBERT W. 1974. The Gypsy Moth and its Natural Enemies. Agr. Inf. Bull. No. 381,27 p., illus. Patterns of gypsy moth behavior are described, especially those related to population density.
    [Show full text]
  • Universidad Autónoma Del Estado De Hidalgo Instituto
    UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO INSTITUTO DE CIENCIAS BÁSICAS E INGENIERÍA ÁREA ACADÉMICA DE BIOLOGÍA LICENCIATURA EN BIOLOGÍA TAXONOMÍA DE LOS ESCARABAJOS TIGRE (COLEOPTERA: CARABIDAE, CICINDELINAE) DEL ESTADO DE HIDALGO, MÉXICO TESIS PARA OBTENER EL GRADO DE LICENCIADO EN BIOLOGÍA PRESENTA RICARDO DE JESÚS RAMÍREZ HERNÁNDEZ DIRECTOR: DR. JUAN MÁRQUEZ LUNA Mineral de la Reforma, Hidalgo, 2018 MINERAL DE LA REFORMA, HIDALGO, 2018 I Si se pudiera concluir acerca de la naturaleza del creador a partir del estudio de su creación, parecería que Dios tiene un interés especial por los escarabajos. J. B. S. Haldane. II Agradecimientos A mi director de tesis, el Dr. Juan Márquez Luna por todo el apoyo que me brindo tanto en laboratorio como en campo, el asesoramiento constante y sus consejos a lo largo del desarrollo de este proyecto, porque además de ser todo un profesional es una gran persona. A todos los integrantes del comité de sinodales, agradezco sus valiosos comentarios y observaciones que fueron de gran relevancia para la mejora de este trabajo con base en su experiencia y calidad de investigación. Al proyecto “Diversidad Biológica del Estado de Hidalgo” (tercera etapa) FOMIX-CONACYT-191908, por la beca que me brindo para la realización de este trabajo. Al Dr. Santiago Zaragoza Caballero, del Instituto de Biología UNAM, por permitirme revisar los ejemplares de escarabajos tigre de la Colección Nacional de Insectos de dicho instituto, y a la bióloga Susana Guzmán Gómez, responsable del área de digitalización de imágenes del laboratorio de microscopia y fotografía de la biodiversidad, por su asesoría técnica en la toma de las fotografías científicas de las especies aquí reportadas.
    [Show full text]
  • Enhancing Forensic Entomology Applications: Identification and Ecology
    Enhancing forensic entomology applications: identification and ecology A Thesis Submitted to the Committee on Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Faculty of Arts and Science TRENT UNIVERSITY Peterborough, Ontario, Canada © Copyright by Sarah Victoria Louise Langer 2017 Environmental and Life Sciences M.Sc. Graduate Program September 2017 ABSTRACT Enhancing forensic entomology applications: identification and ecology Sarah Victoria Louise Langer The purpose of this thesis is to enhance forensic entomology applications through identifications and ecological research with samples collected in collaboration with the OPP and RCMP across Canada. For this, we focus on blow flies (Diptera: Calliphoridae) and present data collected from 2011-2013 from different terrestrial habitats to analyze morphology and species composition. Specifically, these data were used to: 1) enhance and simplify morphological identifications of two commonly caught forensically relevant species; Phormia regina and Protophormia terraenovae, using their frons-width to head- width ratio as an additional identifying feature where we found distinct measurements between species, and 2) to assess habitat specificity for urban and rural landscapes, and the scale of influence on species composition when comparing urban and rural habitats across all locations surveyed where we found an effect of urban habitat on blow fly species composition. These data help refine current forensic entomology applications by adding to the growing knowledge of distinguishing morphological features, and our understanding of habitat use by Canada’s blow fly species which may be used by other researchers or forensic practitioners. Keywords: Calliphoridae, Canada, Forensic Science, Morphology, Cytochrome Oxidase I, Distribution, Urban, Ecology, Entomology, Forensic Entomology ii ACKNOWLEDGEMENTS “Blow flies are among the most familiar of insects.
    [Show full text]