Dechalcogenative Allylic Selenosulfide and Disulfide Rearrangements for Cysteine Modification and Glycoligation Venkataraman Subramanian Wayne State University

Total Page:16

File Type:pdf, Size:1020Kb

Dechalcogenative Allylic Selenosulfide and Disulfide Rearrangements for Cysteine Modification and Glycoligation Venkataraman Subramanian Wayne State University Wayne State University Wayne State University Dissertations 1-1-2010 Dechalcogenative Allylic Selenosulfide And Disulfide Rearrangements For Cysteine Modification And Glycoligation Venkataraman Subramanian Wayne State University Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Part of the Organic Chemistry Commons Recommended Citation Subramanian, Venkataraman, "Dechalcogenative Allylic Selenosulfide And Disulfide Rearrangements For Cysteine Modification And Glycoligation" (2010). Wayne State University Dissertations. Paper 31. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. DECHALCOGENATIVE ALLYLIC SELENOSULFIDE AND DISULFIDE REARRANGEMENTS FOR CYSTEINE MODIFICATION AND GLYCOLIGATION by VENKATARAMAN SUBRAMANIAN DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2010 MAJOR: CHEMISTRY (Organic) Approved by: Advisor Date DEDICATION To my beloved parents for their endless love and support ii ACKNOWLEDGEMENTS I owe my deepest gratitude to my advisor Professor David Crich for his endless patience, brilliant guidance, continuous encouragement and constant support throughout the years of my Ph.D study at University of Illinois at Chicago and at Wayne State University. Without his continuous help and guidance this dissertation would not have been possible. I wish to thank my dissertation committee members Professor Jin K Cha, Professor Andrew Feig and Professor Xuefei Huang for their time, valuable suggestions and assistance. I would like to thank my previous mentors Dr. Bipul Baruah and Dr. Manojit Pal for their encouragement and guidance. I extend my thanks to the past Crich group members especially Dr. Jayalath, Dr. Brebion, Dr. Karatholuvhu, Dr. Krishnamurthy and Dr. Yang for their intellectual discussions, help and support. My sincere thanks to the current Crich group members Dr Sasaki, Kasinath, Chandra, Inder, Mohammed and Myriame for their help and encouragement. I take pleasure in thanking my friends Karthik, Bala, Kavitha, Balaji, Guru and Sudhakar for their help and support. I truly thank my friends Dr. Dakshnamurthy, Raja, Rama and Venkatesh here at Wayne State University. I want to acknowledge the departments of Chemistry at UIC and WSU for their support. iii I especially thank my parents and my brother for their endless love and constant encouragement in all my endeavors. Finally, I would like to thank my wife for her love and support. iv TABLE OF CONTENTS Dedication .............................................................................................................ii Acknowledgements .............................................................................................. iii Table of Contents..................................................................................................v List of Figures...................................................................................................... iix List of Tables.........................................................................................................x List of Schemes....................................................................................................xi List of Abbreviations........................................................................................... xvi CHAPTER I. Introduction................................................................................... 1 1.1 Chemoselective ligations............................................................................ 1 1.1.1 Acyl-transfer ligations........................................................................... 2 1.1.2 Prior thiol capture................................................................................. 2 1.1.3 Pseudo proline ligation......................................................................... 3 1.1.4 Native chemical ligation ....................................................................... 4 1.1.5 Staundinger ligation ............................................................................. 5 1.2 Non-native ligations .................................................................................... 6 1.2.1 Cycloadditions...................................................................................... 6 1.2.2 Oxime formation................................................................................. 10 1.3 Thiol nucleophiles..................................................................................... 11 1.3.1 Thioesterification based chemoselective ligations.............................. 11 1.3.2 Thioetherification based chemoselective ligations ............................. 13 1.3.3 Synthesis of S-lipidated peptides ....................................................... 14 1.3.4 Synthesis of S-linked glycosyl amino acids and glycopeptides.......... 15 1.3.4.1 Alkylation of anomeric thiol ............................................................. 15 1.3.5 Michael Additions............................................................................... 16 v 1.4 Radical addition to form thioethers ........................................................... 17 1.5 Synthesis of S-linked glycoprotein mimics................................................ 18 1.5.1 Ligation via disulfide linkage .............................................................. 18 1.6 From Disulfides to thioether linked chemoselective ligations.................... 21 1.6.1 Allylic disulfide rearrangement ........................................................... 21 1.7 Allylic selenosulfide rearrangement .......................................................... 24 1.8 Thioether linked glycoproteins from disulfide bonds ................................. 25 1.9 Transition metal based chemoselective ligations...................................... 26 1.9.1 Metal mediated glycoconjugation....................................................... 28 2.0 Goal of this thesis ..................................................................................... 30 CHAPTER II. Dechalcogenative Allylic Selenosulfide Rearrangement; Modification to Cysteine Thiols ...................................................................... 31 2.1 Selenosulfides via selenocyanates........................................................... 31 2.2 Selenosulfide ligation via allylic selenocyanates....................................... 34 2.2.1 Application to simple thiols cysteine thiols ......................................... 34 2.2.2 Application to cysteine thiols .............................................................. 36 2.2.3 Application to cysteine containing peptides........................................ 37 2.3 Application of selenocyanate methodology to the allylation of a protein... 39 2.4 Application to a fluorous system ............................................................... 39 2.5 Application to carbohydrate chemistry...................................................... 41 2.6 Effect of various substituents on allylic selenosulfide rearrangement....... 42 2.6.1 Rearrangements requiring triphenylphosphine ...................................... 42 2.7 Attempts toward the synthesis of S-linked glycoconjugates through selenocyanate methodology........................................................................... 46 2.8 Secondary selenocyanates....................................................................... 49 2.9 Conclusion................................................................................................ 53 vi CHAPTER III. Desulfurative Allylic Disulfide Rearrangement ...................... 54 3.1 Background and significance.................................................................... 54 3.2 Drawbacks of triphenylphosphine............................................................. 54 3.2.1 Use of other thiophilic reagents.......................................................... 55 3.3 Synthesis of secondary allylic disulfides................................................... 57 3.3.1 Modified synthesis of a secondary allylic disulfide ............................. 58 3.3.2 Synthesis of tridecenyl containing allylic disulfide .............................. 59 3.4 Synthesis of a tertiary allyl disulfide.......................................................... 60 3.5 Application of secondary and tertiary allylic disulfides .............................. 61 3.6 Phosphine free thiophilic reagent ............................................................. 62 3.6.1 Silver mediated allylic disulfide rearrangement .................................. 62 3.7 Synthesis of an allyl aryl sulfide................................................................ 63 3.8 Application to carbohydrate chemistry...................................................... 64 3.8.1 Rearrangements involving anomeric thiol .......................................... 64 3.8.2 Application to cysteine functionalization............................................. 66 3.9 Olefinic stereoselection............................................................................. 67 3.9.1 Application to the synthesis of glycoconjugate................................... 68 4.0 Conclusion...............................................................................................
Recommended publications
  • Six New Induced Sesquiterpenes from the Cultures of Ascomycete Daldinia Concentrica Xiang-Dong Qin, Hong-Jun Shao, Ze-Jun Dong, Ji-Kai Liu
    J. Antibiot. 61(9): 556–562, 2008 THE JOURNAL OF ORIGINAL ARTICLE ANTIBIOTICS Six New Induced Sesquiterpenes from the Cultures of Ascomycete Daldinia concentrica Xiang-Dong Qin, Hong-Jun Shao, Ze-Jun Dong, Ji-Kai Liu Received: April 23, 2008 / Accepted: August 19, 2008 © Japan Antibiotics Research Association Abstract Six new sesquiterpenes having the botryane production titers of desired compounds. This approach was carbon skeleton (1ϳ6), together with known compounds successfully used as a valuable tool to exploit natural (7ϳ10) were induced and isolated from the ascomycete products diversity in the past, for example, actinomycetes Daldinia concentrica (strain S 0318). Structures (Streptomyces sp.) and fungi (Aspergillus sp., elucidation was accomplished by NMR spectroscopic and Sphaeropsidales sp.) produce additional compounds after X-ray crystallographic studies. variation of the culture conditions [3ϳ5]. Previous investigation reported the isolation of induced Keywords Sesquiterpenes, Daldinia concentrica, daldinins A, B, and C with a new skeleton and four known ascomycete, induction, botryane compounds from the cultures of ascomycete Daldinia concentrica [6]. Following the OSMAC approach, the strain S 0318 (Daldinia concentrica) has been cultivated Introduction and further investigated. In the culture broth extract from Erlenmeyer flasks (color, transparent; size, 500 ml; media, Fungi or bacteria that produce secondary metabolites often 300 ml) instead of reagent bottles under same cultivation have the potential to produce various compounds from a conditions we detected additional metabolites by TLC and single strain. Variation of cultivation parameters to induce HPLC. Careful investigation on the culture of D. the production of formerly unknown compounds is one of concentrica strain (S 0318) led to the isolation of new the approach to increase the number of secondary compounds methyl-7a-acetoxydeacetylbotryoloate (1), 7a- metabolites from one single organism.
    [Show full text]
  • Studies on the Chemistry of Paclitaxel
    STUDIES ON THE CHEMISTRY OF PACLITAXEL Haiqing Yuan Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in the partial fulfillment of the requirement for the degree of Doctor of Philosophy in Chemistry Dr. David G. I. Kingston, Chair Dr. Michael Calter Dr. Neal Castagnoli, Jr. Dr. Richard Gandour Dr. Larry Taylor August 11, 1998 Blacksburg, Virginia Keywords: Paclitaxel, Taxol®, synthesis, analog, SAR Copyright 1998, Haiqing Yuan STUDIES ON THE CHEMISTRY OF PACLITAXEL HAIQING YUAN (ABSTRACT) Paclitaxel is a natural occurring diterpene alkaloid originally isolated from the bark of Taxus brevifolia. It is now one of the most important chemotherapeutic agents for clinical treatment of ovarian and breast cancers. Recent clinical trials have also shown paclitaxel’s potential for the treatment of non-small-cell lung cancer, head and neck cancer, and other types of cancers. While tremendous chemical research efforts have been made in the past years, which established the fundamental structure-activity relationships of the paclitaxel molecule, and provided analogs for biochemical studies to elucidate the precise mechanism of action and for the development of second-generation agents, many areas remain to be explored. In continuation of our efforts in the structure-activity relationships study of A- norpaclitaxel, five new analogs modified at the C-1 substituent and analogs with expanded B-ring or contracted C-ring have now been prepared. Preliminary biological studies indicated that the volume rather than functionality at the C-1 position plays a role in determining the anticancer activity by controlling the relative position of the tetracyclic ring system, which in turn controls the positions of the most critical functionalities such as the C-2 benzoyl, the C-4 acetate, and the C-13 side chain.
    [Show full text]
  • Acetoxy Drug: Protein Transacetylase: a Novel Enzyme-Mediating Protein Acetylation by Polyphenolic Peracetates*
    Pure Appl. Chem., Vol. 77, No. 1, pp. 245–250, 2005. DOI: 10.1351/pac200577010245 © 2005 IUPAC Acetoxy drug: protein transacetylase: A novel enzyme-mediating protein acetylation by polyphenolic peracetates* Hanumantharao G. Raj1,‡, Brajendra K. Singh2, Ekta Kohli1, B. S. Dwarkanath3, Subhash C. Jain2, Ramesh C. Rastogi2, Ajit Kumar1, J. S. Adhikari3, Arthur C. Watterson4, Carl E. Olsen5, and Virinder S. Parmar2 1Biochemistry Department, V. P. Chest Institute, University of Delhi, Delhi 110 007, India; 2Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India; 3Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Delhi 110 054, India; 4INSET, Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA; 5Department of Chemistry, Royal Veterinary and Agricultural University, DK-1871 Frederiksburg C, Copenhagen, Denmark Abstract: The acetylation of proteins in biological systems is largely catalyzed by specific acetyl transferases utilizing acetyl CoA as the acetyl donor. The enzymatic acetylation of pro- teins independent of acetyl CoA was unknown until we discovered a unique membrane- bound enzyme in mammalian cells catalyzing the transfer of acetyl groups from polypheno- lic peracetates (PAs) to certain enzyme proteins, resulting in the modulation of their catalytic activities. Since for the enzyme, acetyl derivatives of several classes of polyphenols such as coumarins, flavones, chromones, and xanthones were found to be acetyl donors, the enzyme was termed as acetoxy drug: protein transacetylase (TAase). TAase was found to be ubiqui- tously present in tissues of several animal species and a variety of animal cells. Liver micro- somal cytochrome P-450 (CYP), NADPH-cytochrome c reductase and cytosolic glutathione S-transferase (GST) were found to be the targets for TAase-catalyzed acetylation by the model acetoxy drug 7,8-diacetoxy-4-methylcoumarin (DAMC).
    [Show full text]
  • S.T.E.T.Women's College, Mannargudi Semester Iii Ii M
    S.T.E.T.WOMEN’S COLLEGE, MANNARGUDI SEMESTER III II M.Sc., CHEMISTRY ORGANIC CHEMISTRY - II – P16CH31 UNIT I Aliphatic nucleophilic substitution – mechanisms – SN1, SN2, SNi – ion-pair in SN1 mechanisms – neighbouring group participation, non-classical carbocations – substitutions at allylic and vinylic carbons. Reactivity – effect of structure, nucleophile, leaving group and stereochemical factors – correlation of structure with reactivity – solvent effects – rearrangements involving carbocations – Wagner-Meerwein and dienone-phenol rearrangements. Aromatic nucleophilic substitutions – SN1, SNAr, Benzyne mechanism – reactivity orientation – Ullmann, Sandmeyer and Chichibabin reaction – rearrangements involving nucleophilic substitution – Stevens – Sommelet Hauser and von-Richter rearrangements. NUCLEOPHILIC SUBSTITUTION Mechanism of Aliphatic Nucleophilic Substitution. Aliphatic nucleophilic substitution clearly involves the donation of a lone pair from the nucleophile to the tetrahedral, electrophilic carbon bonded to a halogen. For that reason, it attracts to nucleophile In organic chemistry and inorganic chemistry, nucleophilic substitution is a fundamental class of reactions in which a leaving group(nucleophile) is replaced by an electron rich compound(nucleophile). The whole molecular entity of which the electrophile and the leaving group are part is usually called the substrate. The nucleophile essentially attempts to replace the leaving group as the primary substituent in the reaction itself, as a part of another molecule. The most general form of the reaction may be given as the following: Nuc: + R-LG → R-Nuc + LG: The electron pair (:) from the nucleophile(Nuc) attacks the substrate (R-LG) forming a new 1 bond, while the leaving group (LG) departs with an electron pair. The principal product in this case is R-Nuc. The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged.
    [Show full text]
  • "Point" of the Twist Danones.'4, 15 the Very Large Amplitudes
    OPTICAL ROTATORY DISPERSION AND THE TWIST CONFORMATION OF CYCLOHEXANONES* BY CARL DJERASSI AND W. KLYNE CHEMISTRY DEPARTMENT, STANFORD UNIVERSITY, STANFORD, CALIFORNIA AND WESTFIELD COLLEGE. UNIVERSITY OF LONDON, LONDON, N.W. 3, ENGLAND Communicated April 25, 1962 The Octant Rule1 provides a theoretical basis for the study of optical rotatory dispersion curves of ketones. The application of this rule to extensive collections of data for cyclohexanone types from our two laboratories has been described else- where.2 3 Among the hundreds of curves recorded, a few stand out by reason of their unusually large amplitudes (positive or negative), which cannot be rationlized even in a roughly quantitative fashion by the usual octant treatment as applied to an all-chair conformation. Recently,4-8 there has been much interest in the existence of boat and modified boat conformations of cylohexane rings. Several authors9-11 have discussed forms intermediate between chairs and boats but the discussion has often been in rather general terms. However, Johnson et al.11 have recently provided thermodynamic evidence for the existence of an intermediate "twist" form in a lactone derived from trans-decalin. It is now suggested that this twist conformation provides a possible explanation of some of the grossly abnormal amplitudes found in decalone derivatives; the concept has also been used in dealing with some monocylic compounds.12 The twist conformation consists of two sets of contiguous coplanar C-atoms, 2, 1, 2' and 3, 4, 3'; C-1 and C4 are on the line of intersection of the two planes and may be called the "points" of the twist form.
    [Show full text]
  • University Rawdah Q
    University Intramolecular Reactions of 3-Acetoxy- aminoquinazolin-4(3//)-ones with Aromatic Rings A thesis submitted to the Faculty of Science in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry at the University of Leicester by Rawdah Q. Lam NOVEMBER 2002 UMI Number: U168014 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U168014 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Intramolecular Reactions of 3-AcetoxyaminoquinazoIin-4(3//)-ones with Aromatic Rings Rawdah Q. Lamphon ABSTRACT The intramolecular reactions of 3-acetoxyaminoquinazolin-4(3//)-ones (QNHOAc) with aromatic rings linked to the 2-position of the quinazolinone (Q) ring have been studied. It has been shown previously that the reactivity of QNHOAc compounds as aziridinating agents for less reactive double bonds is increased in the presence of trifluoracetic acid (TFA). Similarly (Chapter 2), reaction of the tethered aromatic ring with the acetoxyamino nitrogen occurred only in the presence of TFA in QNHOAc compounds with 4-methoxy- phenyl-ethyl or -propyl and phenoxy-methyl or -ethyl as the (Q)2-substituent.
    [Show full text]
  • Review 0103 - 5053 $6.00+0.00
    http://dx.doi.org/10.5935/0103-5053.20150045 J. Braz. Chem. Soc., Vol. 26, No. 5, 837-850, 2015. Printed in Brazil - ©2015 Sociedade Brasileira de Química Review 0103 - 5053 $6.00+0.00 Recent Syntheses of Frog Alkaloid Epibatidine Ronaldo E. de Oliveira Filho and Alvaro T. Omori* Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André-SP, Brazil Many natives from Amazon use poison secreted by the skin of some colorful frogs (Dendrobatidae) on the tips of their arrows to hunt. This habit has generated interest in the isolation of these toxins. Among the over 500 isolated alkaloids, the most important is undoubtedly (-)-epibatidine. First isolated in 1992, by Daly from Epipedobates tricolor, this compound is highly toxic (LD50 about 0.4 µg per mouse). Most remarkably, its non-opioid analgesic activity was found to be about 200 times stronger than morphine. Due to its scarcity, the limited availability of natural sources, and its intriguing biological activity, more than 100 synthetic routes have been developed since the epibatidine structure was assigned. This review presents the recent formal and total syntheses of epibatidine since the excellent review published in 2002 by Olivo et al.1 Mainly, this review is summarized by the method used to obtain the azabicyclic core. Keywords: epibatidine, organic synthesis, azanorbornanes H Cl H 1. Introduction N N O N N At an expedition to Western Ecuador in 1974, Daly and Myers isolated traces of an alkaloid with potential biological (–)-Epibatidine(1) Epiboxidine(1a) activity from the skin of the species Epipedobastes tricolor.
    [Show full text]
  • Chem. Pharm. Bull. 68(1): 1-33 (2020)
    Vol. 68, No. 1 Chem. Pharm. Bull. 68, 1–33 (2020) 1 Review Development of New Synthetic Reactions Using Hetero-Heavy Atoms and Their Application to Synthesis of Biofunctional Molecules Shinya Harusawa Osaka University of Pharmaceutical Sciences; 4–20–1 Nasahara, Takatsuki, Osaka 569–1094, Japan. Received July 30, 2019 Novel reactions using hetero-heavy atoms (P, S, Si, Se, and Sn) were developed and applied to the syn- thesis of biofunctional molecules and some medicine-candidates, in which the following items are covered. 1) Development of introduction of C1-unit using cyanophosphates (CPs). 2) Carbene-generation under neutral condition from CPs and its application to organic synthesis. 3) [3,3]Sigmatropic rearrangement-ring expan- sion reactions of medium-sized cyclic thionocarbonates containing a sulfur atom and their application to natural product synthesis. 4) Stereoselective synthesis of novel β-imidazole C-nucleosides via diazafulvene intermediates and their application to investigating ribozyme reaction mechanism. 5) Developments of novel histamine H3- and H4-receptor ligands using new synthetic methods involving Se or Sn atoms. Key words cyanophosphate; carbene; sigmatropic rearrangement; ribozyme; histamine H3 receptor; antagonist 1. Introduction with DEPC to afford α-amino nitriles, the function of which is Organic synthesis has reached a high degree of perfection. easily converted into α-amino acids2) (Chart 2, Eq. 1); modi- However, reactions occurring within a living organism are fied Strecker synthesis for the preparation of α-amino nitriles much more mild, and more highly efficient, with specific- using DEPC from carbonyl compounds and amines in tetra- ity and selectivity. Thus, new efficient synthetic methods and hydrofuran (THF) under mild reaction conditions (Eq.
    [Show full text]
  • [Beta]-Keto Sulfoxides Leo Arthur Ochrymowycz Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 Chemistry of [beta]-keto sulfoxides Leo Arthur Ochrymowycz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Ochrymowycz, Leo Arthur, "Chemistry of [beta]-keto sulfoxides " (1969). Retrospective Theses and Dissertations. 3766. https://lib.dr.iastate.edu/rtd/3766 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received 70-7726 OCHRYMOWYCZ, Leo Arthur, 1943- CHEMISTRY OF p -KETO SULFOXIDES. Iowa State University, Ph.D., 1969 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan CHEMISTRY OF jg-KETO SULFOXIDES by Leo Arthur Ochrymowycz A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject ; Organic Chemistry Approved : Signature was redacted for privacy. f Major Work Signature was redacted for privacy. d of Maj Department Signature was redacted for privacy. Graduate College Iowa State University Of Science and Technology Ames, Iowa 1969 il TABLE OP CONTENTS Page
    [Show full text]
  • Synthesis and Characterization of Silicate Ester Prodrugs and Poly(Ethylene Glycol)
    Synthesis and Characterization of Silicate Ester Prodrugs and Poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) Block Copolymers for Formulation into Prodrug-Loaded Nanoparticles A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Adam Richard Wohl IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy Thomas R. Hoye, Advisor September 2012 © Adam Richard Wohl September 2012 Acknowledgements I have been blessed to have the support of my family, friends, and colleagues. Without your help and encouragement, my graduate career would not have been possible. First of all, I would like to thank my advisor Prof. Tom Hoye. Over the past five years, he has been a consistent and patient mentor that leads first and foremost by setting a world-class example. He has taught me so much about analyzing problems, having fun while working hard, and always paying attention to the details. He has constantly taught me during our experimental discussions, results analysis, and late night (or, as I believe Tom would say, “mid-evening”) grant/manuscript writing sessions. I have learned not only many, many chemical concepts and scientific strategies, but also other valuable skills – how to clearly present ideas and make a compelling presentation to the right audience. Thank you, Tom, for all of the time that you have invested in both my scientific career and life – you have my utmost appreciation and respect. I would also like to thank Prof. Chris Macosko for all of his time, help, and expertise that he has provided to this collaborative project.
    [Show full text]
  • Chapter 1 the Allylic Trihaloacetimidate
    c01.tex 7/18/05 12:41 PM Page 1 CHAPTER 1 THE ALLYLIC TRIHALOACETIMIDATE REARRANGEMENT LARRY E. OVERMAN University of California, Irvine, Irvine, California 92697 NANCY E. CARPENTER University of Minnesota, Morris, Morris, Minnesota 56267 CONTENTS PAGE ACKNOWLEDGMENTS . 3 INTRODUCTION . 3 MECHANISM . 4 Thermal Rearrangements . 4 Metal-Catalyzed Rearrangements . 6 SCOPE & LIMITATIONS . 9 Preparation and Stability of Allylic Trihaloacetimidates . 9 Preparation of Allylic Trichloroacetimidates . 9 Preparation of Allylic Trifluoroacetimidates . 10 Stability of Allylic Trihaloacetimidates . 11 Thermal Rearrangements of Allylic Trihaloacetimidates . 12 Reaction Conditions:Temperature, Solvent, and Additives . 12 Scope . 14 The Halogen Substituents . 15 Carbon Skeleton . 16 Cyclic Substrates . 18 Substituent Effects and Problematic Substituents . 20 Regioselectivity . 22 Stereochemistry . 22 Chiral Secondary Imidates: Chirality Transfer . 22 Diastereoselectivity Arising from Stereocenters Outside the Pericyclic Arena . 23 Geometry of the New Double Bond . 24 Catalyzed Rearrangements of Allylic Trihaloacetimidates . 25 General Conditions . 26 Scope . 27 Stereoselectivity . 29 [email protected] [email protected] Organic Reactions, Vol. 66, Edited by Larry E. Overman et al. © 2005 Organic Reactions, Inc. Published by John Wiley & Sons, Inc. 1 c01.tex 7/18/05 12:41 PM Page 2 2 ORGANIC REACTIONS Chiral Secondary Imidates:Chirality Transfer . 29 Chiral Primary Imidates:Diastereoselectivity . 29 Asymmetric Catalysis . 31 APPLICATIONS TO SYNTHESIS . 33 Overview . 33 Preparation of Allylic Amines . 33 Other Direct Uses of Allylic Trihaloacetamides . 38 Applications in the Total Synthesis of Natural Products . 39 (Ϯ)-Acivicin . 39 (ϩ)-Lactacystin . 40 (Ϯ)-Pancratistatin . 40 COMPARISON WITH OTHER METHODS . 41 Other Allylic Rearrangements . 41 Other Routes to Allylic Amines . 43 Amination of Allylic Electrophiles . 43 C-H Activation .
    [Show full text]
  • Jack Deruiter, Principles of Drug Action 2, Fall 2000 1 ACETYLCHOLINE and CHOLINERGIC AGONISTS: STRUCTURE-ACTIVITY RELATIONSHIPS
    Jack DeRuiter, Principles of Drug Action 2, Fall 2000 ACETYLCHOLINE AND CHOLINERGIC AGONISTS: STRUCTURE-ACTIVITY RELATIONSHIPS (SARs) PC/MC Objective: For which disease states/pathologies would ACh be a useful drug? PC/MC Objective: Why does ACh display limited efficacy as a therapeutic agent? · Does ACh display adequate cholinergic receptor selectivity (muscarinic and nicotinic receptors and receptor subtypes) to be a safe therapeutic agent? · Would ACh have an adequate half-life to be an effective therapeutic agent? O CH3 CH3 O + AChE and + CH CH N CH3 N 3 + CH 3 O BuChE HO 3 OH CH3 CH3 Choline · Would ACh be orally bioavailable? · Is ACh chemically stable? O CH3 + OH CH3 + N CH3 CH3 N CH3 O CH3 CH3 O OH CH3 HO- O - (Base-catalyzed) HO H2O CH3 OH O CH3 + + N CH CH CH 3 3 3 O + CH3 N CH3 HO H+ CH3 (Acid-catalyzed) H2O Choline + H+ H O CH3 OH CH3 + + N CH3 N CH3 CH3 O CH3 CH O 3 OH CH3 H2O PC/MC Objective: How could the structure of ACh be modified to yield derivatives with enhanced therapeutic potential? · Selective agonist activity? · Chemical and metabolic stability? Global Objectives: · What is an “Agonist”? What two properties define an agonist? · What is an “Antagonist”? what properties define an antagonist? · How are agonists and antagonists similar? · How are agonists and antagonists different? 1 Jack DeRuiter, Principles of Drug Action 2, Fall 2000 MC Objective: Which ACh structural features appear to be required or at least contribute to cholinergic receptor binding. O CH3 + N CH3 CH3 O CH3 Ester Quaternary Ammonium MC Objective:
    [Show full text]