Synthesis and Characterization of Silicate Ester Prodrugs and Poly(Ethylene Glycol)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sodium Silicate Crops
Sodium Silicate Crops 1 Identification of Petitioned Substance 2 3 Chemical Names: CAS Numbers: 4 Sodium Silicate 1344-09-8 5 6 Other Name: Other Codes: 7 Sodium metasilicate; Sodium silicate glass; EPA PC code: 072603 (NLM, 2011a); European 8 Sodium water glass; Silicic acid, sodium salt; Inventory of Existing Commercial Chemical 9 tetrasodium orthosilicate (IPCS, 2004) Substances (EINECS) Number: 215-687-4 (IPCS, 10 2004) 11 Trade Names: 12 Waterglass, Britesil, Sikalon, Silican, Carsil, 13 Dryseq, Sodium siloconate, Star, Soluble glass, 14 Sodium polysilicate (NLM, 2011a), N® - PQ 15 Corporation (OMRI, 2011) 16 Characterization of Petitioned Substance 17 18 Composition of the Substance: 19 The basic formula of sodium silicate is Na2O· nO2Si, which represents the components of silicon dioxide (SiO2) 20 and sodium oxide (Na2O) and the varying ratios of the two in the various formulations. This ratio is commonly 21 called the molar ratio (MR), which can range from 0.5 to 4.0 for sodium silicates and varies depending on the 22 composition of the specific sodium silicate. The structural formulas of these silicates are also variable and can be 23 complex, depending on the formulation, but generally do not have distinct molecular structures (IPCS, 2004). 24 The basic structure of soluble silicates, including sodium and potassium silicates, is a trigonal planar 25 arrangement of oxygen atoms around a central silicon atom, as depicted in Figure 1 below. Physical and 26 chemical properties of sodium silicate are summarized in Table 1, on page 2. 27 28 29 30 31 32 33 34 35 Figure 1: Chemical Structure of Sodium Silicate (NLM, 2011a) 36 37 Specific Uses of the Substance: 38 39 Sodium silicate and other soluble silicates have been used in many industries since the early 19th century. -
Guidance for Identification and Naming of Substance Under REACH
Guidance for identification and naming of substances under 3 REACH and CLP Version 2.1 - May 2017 GUIDANCE Guidance for identification and naming of substances under REACH and CLP May 2017 Version 2.1 2 Guidance for identification and naming of substances under REACH and CLP Version 2.1 - May 2017 LEGAL NOTICE This document aims to assist users in complying with their obligations under the REACH and CLP regulations. However, users are reminded that the text of the REACH and CLP Regulations is the only authentic legal reference and that the information in this document does not constitute legal advice. Usage of the information remains under the sole responsibility of the user. The European Chemicals Agency does not accept any liability with regard to the use that may be made of the information contained in this document. Guidance for identification and naming of substances under REACH and CLP Reference: ECHA-16-B-37.1-EN Cat. Number: ED-07-18-147-EN-N ISBN: 978-92-9495-711-5 DOI: 10.2823/538683 Publ.date: May 2017 Language: EN © European Chemicals Agency, 2017 If you have any comments in relation to this document please send them (indicating the document reference, issue date, chapter and/or page of the document to which your comment refers) using the Guidance feedback form. The feedback form can be accessed via the EVHA Guidance website or directly via the following link: https://comments.echa.europa.eu/comments_cms/FeedbackGuidance.aspx European Chemicals Agency Mailing address: P.O. Box 400, FI-00121 Helsinki, Finland Visiting address: Annankatu 18, Helsinki, Finland Guidance for identification and naming of substances under 3 REACH and CLP Version 2.1 - May 2017 PREFACE This document describes how to name and identify a substance under REACH and CLP. -
Six New Induced Sesquiterpenes from the Cultures of Ascomycete Daldinia Concentrica Xiang-Dong Qin, Hong-Jun Shao, Ze-Jun Dong, Ji-Kai Liu
J. Antibiot. 61(9): 556–562, 2008 THE JOURNAL OF ORIGINAL ARTICLE ANTIBIOTICS Six New Induced Sesquiterpenes from the Cultures of Ascomycete Daldinia concentrica Xiang-Dong Qin, Hong-Jun Shao, Ze-Jun Dong, Ji-Kai Liu Received: April 23, 2008 / Accepted: August 19, 2008 © Japan Antibiotics Research Association Abstract Six new sesquiterpenes having the botryane production titers of desired compounds. This approach was carbon skeleton (1ϳ6), together with known compounds successfully used as a valuable tool to exploit natural (7ϳ10) were induced and isolated from the ascomycete products diversity in the past, for example, actinomycetes Daldinia concentrica (strain S 0318). Structures (Streptomyces sp.) and fungi (Aspergillus sp., elucidation was accomplished by NMR spectroscopic and Sphaeropsidales sp.) produce additional compounds after X-ray crystallographic studies. variation of the culture conditions [3ϳ5]. Previous investigation reported the isolation of induced Keywords Sesquiterpenes, Daldinia concentrica, daldinins A, B, and C with a new skeleton and four known ascomycete, induction, botryane compounds from the cultures of ascomycete Daldinia concentrica [6]. Following the OSMAC approach, the strain S 0318 (Daldinia concentrica) has been cultivated Introduction and further investigated. In the culture broth extract from Erlenmeyer flasks (color, transparent; size, 500 ml; media, Fungi or bacteria that produce secondary metabolites often 300 ml) instead of reagent bottles under same cultivation have the potential to produce various compounds from a conditions we detected additional metabolites by TLC and single strain. Variation of cultivation parameters to induce HPLC. Careful investigation on the culture of D. the production of formerly unknown compounds is one of concentrica strain (S 0318) led to the isolation of new the approach to increase the number of secondary compounds methyl-7a-acetoxydeacetylbotryoloate (1), 7a- metabolites from one single organism. -
Studies on the Chemistry of Paclitaxel
STUDIES ON THE CHEMISTRY OF PACLITAXEL Haiqing Yuan Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in the partial fulfillment of the requirement for the degree of Doctor of Philosophy in Chemistry Dr. David G. I. Kingston, Chair Dr. Michael Calter Dr. Neal Castagnoli, Jr. Dr. Richard Gandour Dr. Larry Taylor August 11, 1998 Blacksburg, Virginia Keywords: Paclitaxel, Taxol®, synthesis, analog, SAR Copyright 1998, Haiqing Yuan STUDIES ON THE CHEMISTRY OF PACLITAXEL HAIQING YUAN (ABSTRACT) Paclitaxel is a natural occurring diterpene alkaloid originally isolated from the bark of Taxus brevifolia. It is now one of the most important chemotherapeutic agents for clinical treatment of ovarian and breast cancers. Recent clinical trials have also shown paclitaxel’s potential for the treatment of non-small-cell lung cancer, head and neck cancer, and other types of cancers. While tremendous chemical research efforts have been made in the past years, which established the fundamental structure-activity relationships of the paclitaxel molecule, and provided analogs for biochemical studies to elucidate the precise mechanism of action and for the development of second-generation agents, many areas remain to be explored. In continuation of our efforts in the structure-activity relationships study of A- norpaclitaxel, five new analogs modified at the C-1 substituent and analogs with expanded B-ring or contracted C-ring have now been prepared. Preliminary biological studies indicated that the volume rather than functionality at the C-1 position plays a role in determining the anticancer activity by controlling the relative position of the tetracyclic ring system, which in turn controls the positions of the most critical functionalities such as the C-2 benzoyl, the C-4 acetate, and the C-13 side chain. -
Acetoxy Drug: Protein Transacetylase: a Novel Enzyme-Mediating Protein Acetylation by Polyphenolic Peracetates*
Pure Appl. Chem., Vol. 77, No. 1, pp. 245–250, 2005. DOI: 10.1351/pac200577010245 © 2005 IUPAC Acetoxy drug: protein transacetylase: A novel enzyme-mediating protein acetylation by polyphenolic peracetates* Hanumantharao G. Raj1,‡, Brajendra K. Singh2, Ekta Kohli1, B. S. Dwarkanath3, Subhash C. Jain2, Ramesh C. Rastogi2, Ajit Kumar1, J. S. Adhikari3, Arthur C. Watterson4, Carl E. Olsen5, and Virinder S. Parmar2 1Biochemistry Department, V. P. Chest Institute, University of Delhi, Delhi 110 007, India; 2Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India; 3Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Delhi 110 054, India; 4INSET, Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA; 5Department of Chemistry, Royal Veterinary and Agricultural University, DK-1871 Frederiksburg C, Copenhagen, Denmark Abstract: The acetylation of proteins in biological systems is largely catalyzed by specific acetyl transferases utilizing acetyl CoA as the acetyl donor. The enzymatic acetylation of pro- teins independent of acetyl CoA was unknown until we discovered a unique membrane- bound enzyme in mammalian cells catalyzing the transfer of acetyl groups from polypheno- lic peracetates (PAs) to certain enzyme proteins, resulting in the modulation of their catalytic activities. Since for the enzyme, acetyl derivatives of several classes of polyphenols such as coumarins, flavones, chromones, and xanthones were found to be acetyl donors, the enzyme was termed as acetoxy drug: protein transacetylase (TAase). TAase was found to be ubiqui- tously present in tissues of several animal species and a variety of animal cells. Liver micro- somal cytochrome P-450 (CYP), NADPH-cytochrome c reductase and cytosolic glutathione S-transferase (GST) were found to be the targets for TAase-catalyzed acetylation by the model acetoxy drug 7,8-diacetoxy-4-methylcoumarin (DAMC). -
Study of the System Cao-Sio2-H2O at 30 C and of the Reaction of Water On
U.S. Department of Commerce Bureau of Standards RESEARCH PAPER RP687 Part of Bureau of Standards Journal of Research, vol. 12, June 1934 STUDY OF THE SYSTEM CaO-Si02-H2 AT 30 C AND OF THE REACTION OF WATER ON THE ANHYDROUS CALCIUM SILICATES By E. P. Flint and Lansing S. Wells abstract A graph has been prepared representing the solubility of silica at 30 C in solu- tions containing increasing concentrations of lime up to saturation, the solutions being in "equilibrium" with solid phases composed of hydrated combinations of lime and silica. An electrometric and analytical study of both supersaturated and unsaturated solutions of silica at definite concentrations of lime, when corre- lated with these equilibrium solubility relationships, indicates the existence of definite compounds in the system CaO-Si0 2-H 2 which may be the hydrated calcium salts of orthosilicic acid. Experimental values were obtained for the hydrolysis constants of these salts from which ionization constants for the four steps in the dissociation of orthosilicic acid were calculated. A study of the reaction of water upon the anhydrous calcium silicates (CaO Si02 , 3CaO- 2Si0 2 , 7-2CaO-Si0 ,3-2CaO Si0 , ) showed that the products formed depend 2 , 2 3CaOSi0 2 upon the equilibrium relationships of the system CaO-Si02-H 2 0. Of these compounds all but monocalcium silicate (CaO-Si02 ) form solutions which pre- cipitate hydrated calcium silicate on standing. Application of the same methods to a study of the reaction of water upon a portland cement indicated that hydrated calcium orthosilicate is formed during the hydration of portland cement. -
United States Patent (19) 11 4,169,930 Blount 45) Oct
United States Patent (19) 11 4,169,930 Blount 45) Oct. 2, 1979 (54) PROCESS FOR THE PRODUCTION OF 58 Field of Search ................. 260/448.2 N, 448.2 E; AMNO SILICATE COMPOUNDS AND 528/38 THER CONDENSATION PRODUCTS 76 Inventor: David H. Blount, 5450 Lea St., San 56) References Cited Diego, Calif. 92105 U.S. PATENT DOCUMENTS 21 Appl. No.: 786,617 4,011,253 3/1977 Blount ........................... 260/448.2 E 4,089,883 5/1978 Blount ....................... 260/448.2 E X (22) Filed: Apr. 8, 1977 Primary Examiner-Paul F. Shaver Related U.S. Application Data 57 ABSTRACT 60) Division of Ser. No. 652,338, Jan. 26, 1976, Pat. No. 4,033,935, which is a continuation-in-part of Ser. No. Silicic-amino compounds are formed by the chemical 559,313, Mar. 17, 1975, Pat. No. 3,979,362, which is a reaction of silicic acid with amino compounds in the continuation-in-part of Ser. No. 71,628, Sep. 11, 1970, presence of a suitable alkali at a suitably elevated tem abandoned. perature, and then by reacting the resultant compounds 51 Int. Cl’.............................................. C08G 77/04 with an aldehyde, a condensation product is formed. (52) U.S. C. .............................. 528/38; 260/448.2 N; 260/448.2 E 4 Claims, No Drawings 4,169,930 1. 2 PROCESS FOR THE PRODUCTION OF AMINO Reactions with other amino compounds are expected SILICATE COMPOUNDS AND THER to be similar to these, so that the mol ratios of the reac CONDENSATION PRODUCTS tants should be selected accordingly. Amino silicate compounds are theorized to react with CROSS-REFERENCE TO RELATED an aldehyde to form condensation products as follows: APPLICATIONS Urea silicate is theorized to react with formaldehyde This application is a division of U.S. -
"Point" of the Twist Danones.'4, 15 the Very Large Amplitudes
OPTICAL ROTATORY DISPERSION AND THE TWIST CONFORMATION OF CYCLOHEXANONES* BY CARL DJERASSI AND W. KLYNE CHEMISTRY DEPARTMENT, STANFORD UNIVERSITY, STANFORD, CALIFORNIA AND WESTFIELD COLLEGE. UNIVERSITY OF LONDON, LONDON, N.W. 3, ENGLAND Communicated April 25, 1962 The Octant Rule1 provides a theoretical basis for the study of optical rotatory dispersion curves of ketones. The application of this rule to extensive collections of data for cyclohexanone types from our two laboratories has been described else- where.2 3 Among the hundreds of curves recorded, a few stand out by reason of their unusually large amplitudes (positive or negative), which cannot be rationlized even in a roughly quantitative fashion by the usual octant treatment as applied to an all-chair conformation. Recently,4-8 there has been much interest in the existence of boat and modified boat conformations of cylohexane rings. Several authors9-11 have discussed forms intermediate between chairs and boats but the discussion has often been in rather general terms. However, Johnson et al.11 have recently provided thermodynamic evidence for the existence of an intermediate "twist" form in a lactone derived from trans-decalin. It is now suggested that this twist conformation provides a possible explanation of some of the grossly abnormal amplitudes found in decalone derivatives; the concept has also been used in dealing with some monocylic compounds.12 The twist conformation consists of two sets of contiguous coplanar C-atoms, 2, 1, 2' and 3, 4, 3'; C-1 and C4 are on the line of intersection of the two planes and may be called the "points" of the twist form. -
University Rawdah Q
University Intramolecular Reactions of 3-Acetoxy- aminoquinazolin-4(3//)-ones with Aromatic Rings A thesis submitted to the Faculty of Science in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry at the University of Leicester by Rawdah Q. Lam NOVEMBER 2002 UMI Number: U168014 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U168014 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Intramolecular Reactions of 3-AcetoxyaminoquinazoIin-4(3//)-ones with Aromatic Rings Rawdah Q. Lamphon ABSTRACT The intramolecular reactions of 3-acetoxyaminoquinazolin-4(3//)-ones (QNHOAc) with aromatic rings linked to the 2-position of the quinazolinone (Q) ring have been studied. It has been shown previously that the reactivity of QNHOAc compounds as aziridinating agents for less reactive double bonds is increased in the presence of trifluoracetic acid (TFA). Similarly (Chapter 2), reaction of the tethered aromatic ring with the acetoxyamino nitrogen occurred only in the presence of TFA in QNHOAc compounds with 4-methoxy- phenyl-ethyl or -propyl and phenoxy-methyl or -ethyl as the (Q)2-substituent. -
A Bound Form of Silicon in Glycosaminoglycans And
Proc. Nat. Acad. Sci. USA Vol. 70, No. 5, pp. 1608-1612, May 1973 A Bound Form of Silicon in Glycosaminoglycans and Polyuronides (polysaccharide matrix/connective tissue) KLAUS SCHWARZ Laboratory of Experimental Metabolic Diseases, Veterans Administration Hospital, Long Beach, California 90801; and Department of Biological Chemistry, School of Medicine, University of California at Los Angeles, Calif. 90024 Communicated by P. D. Boyer, March 19, 1973 ABSTRACT Silicon was found to be a constituent of notably hyaluronic acid, chondroitin 4-sulfate, dermatan certain glycosaminoglycans and polyuronides, where it sulfate, and heparan sulfate, contain relatively large amounts occurs firmly bound to the polysaccharide matrix. 330-554 ppm of bound Si were detected in purified hyaluronic acid of the element, not as free silicate ions or silicic acid but as a from umbilical cord, chondroitin 4-sulfate, dermatan firmly bound component of the polysaccharide matrix. High sulfate, and heparan sulfate. These amounts correspond to amounts of bound Si were also detected in two polyuronides, 1 atom of Si per 50,000-85,000 molecular weight or 130-280 pectin and alginic acid. Stability tests and enzymatic studies repeating units. 57-191 ppm occur in chondroitin 6-sulfate, evidence for the assumption that the Si is linked heparin, and keratan sulfate-2 from cartilage, while provide hyaluronic acids from vitreous humor and keratan sulfate- covalently to the polysaccharides in question, possibly as an 1 from cornea were Si-free. Large amounts of bound Si are ether (or ester-like) derivative of silicic acid, i.e., a silanolate. also present in pectin (2580 ppm) and alginic acid (451 ppm). -
Water at Molecular Interfaces: Structure and Dynamics Near Biomolecules and Amorphous Silica
WATER AT MOLECULAR INTERFACES: STRUCTURE AND DYNAMICS NEAR BIOMOLECULES AND AMORPHOUS SILICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ali A. Hassanali, M.S. Biophysics Graduate Program The Ohio State University 2010 Dissertation Committee: Professor Sherwin J. Singer, Adviser Professor Dongping Zhong Professor Terrence Conlisk Professor Justin Wu ABSTRACT Water, the fundamental constituent of life, has been found to have a critical role at both organic and inorganic surfaces. The properties of water near surfaces, is known to be different from water far away from the interface. This dissertation explores the degree to which inorganic materials such as amorphous silica (glass) and biomolecular surfaces change the properties of water. Of particular interest is the interplay between biological molecules - proteins and nucleic acids - and their aqueous environment, and how this determines biological function. The mobility of water near protein surfaces has been of considerable recent in- terest. There have been many reports in the literature postulating that interfacial water is incapable of undergoing rapid rotational motions due to strong electrostatic forces from the protein surface. This has led to confusing and conflicting interpre- tations on the molecular origin of the slow features observed in certain experiments that probe protein surfaces. Our theoretical studies resolve the conflicts and show that the slow dynamics observed, originates from the protein and water jostling in a concerted fashion. Our studies support a change in the paradigm for the function of proteins to include both the protein and the surrounding water as active participants in biological function. -
[Beta]-Keto Sulfoxides Leo Arthur Ochrymowycz Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 Chemistry of [beta]-keto sulfoxides Leo Arthur Ochrymowycz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Ochrymowycz, Leo Arthur, "Chemistry of [beta]-keto sulfoxides " (1969). Retrospective Theses and Dissertations. 3766. https://lib.dr.iastate.edu/rtd/3766 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received 70-7726 OCHRYMOWYCZ, Leo Arthur, 1943- CHEMISTRY OF p -KETO SULFOXIDES. Iowa State University, Ph.D., 1969 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan CHEMISTRY OF jg-KETO SULFOXIDES by Leo Arthur Ochrymowycz A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject ; Organic Chemistry Approved : Signature was redacted for privacy. f Major Work Signature was redacted for privacy. d of Maj Department Signature was redacted for privacy. Graduate College Iowa State University Of Science and Technology Ames, Iowa 1969 il TABLE OP CONTENTS Page