High-Resolution Analysis of the Initiation of Deep Convection Forced by Boundary-Layer Processes

Total Page:16

File Type:pdf, Size:1020Kb

High-Resolution Analysis of the Initiation of Deep Convection Forced by Boundary-Layer Processes High-resolution analysis of the initiation of deep convection forced by boundary-layer processes Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN der Fakult¨at f¨ur Physik der Universit¨at (TH) Karlsruhe genehmigte DISSERTATION von Dipl.-Phys. Samiro Khodayar Pardo aus Valencia (Spanien) Tag der m¨undlichen Pr¨ufung: 12.06.2009 Referent: Prof. Dr. Christoph Kottmeier Korreferent: Prof. Dr. Sarah Jones Zusammenfassung Unter Nutzung der Synergie verschiedener Instrumente wird die Ausl¨osung atmo- sph¨arischer Konvektion untersucht. Der Einfluss einer h¨oheren r¨aumlichen Datenaufl¨osung auf die Erfassung der Ausl¨osung hochreichender Konvektion wird analysiert und es wird eine Methodik zur Bestimmung der Wahrscheinlichkeit f¨ur das Auftreten hochreichen- der Konvektion ¨uber ebenem und komplexem Gel¨ande entwickelt und angewendet. Hi- erzu werden Intensivmessphasen (IOPs Intensive Observation Periods) des in S¨udengland durchgef¨uhrten CSIP (Convective Storm Initiation Project) und der in S¨udwestdeutschland und im Osten Frankreichs durchgef¨uhrten Messkampagne COPS (Convective and Orogra- phically-Induced Precipitation Study) herangezogen. Die atmosph¨arische Grenzschicht spielt eine entscheidende Rolle bei der Ausl¨osung kon- vektiver Systeme, denn Konvektion ist h¨aufig mit Prozessen verbunden, die durch Gren- zschichtinhomogenit¨aten verursacht werden. Zum besseren Verst¨andnis der Grenzschicht- prozesse werden deshalb einige Wetterlagen ausgew¨ahlt, die durch nicht vorhandenen oder geringen synoptischen Antrieb gekennzeichnet sind. Die Wahrscheinlichkeit von Konvek- tion wird mit Hilfe von Konvektionsindizes, die die atmosph¨arische Stabilit¨at und die verf¨ugbare konvektiven Energie beschreiben, sowie von Mechanismen, die die Entstehung von Konvektion f¨ordern oder hemmen, analysiert. Hochaufl¨osende Flugzeugmessungen geben Hinweise auf die Empfindlichkeit der Konvektionsindizes gegen¨uber Variabilit¨aten der Grenzschichttemperatur- und feuchte. Es wird gezeigt, dass bei Verwendung der entlang einer Flugbahn von ca. 36 km L¨ange gemessenen maximalen und minimalen Temperatur- und Feuchtewerte ein Unterschied von 680 J kg−1 in der Labilit¨atsenergie (CAPE - Convective Available Potential Energy) bzw. -150 J kg−1 in der Konvektionshem- mung (CIN - Convective Inhibition) besteht. D.h., die Wahrscheinlichkeit f¨ur Konvektion variiert innerhalb von 36 km deutlich. Daraus folgt, dass die f¨ur Konvektion relevante r¨aumliche Variabilit¨at des Temperatur- und insbesondere des Wasserdampffeldes in der Grenzschicht w¨ahrend der CSIP- und COPS-Kampagnen trotz des dichten Netzwerks von Radiosondenstationen im Abstand von 25 bis 50 km nicht ausreichend genug erfasst wurde. Die r¨aumliche Aufl¨osung konnte durch Nutzung des synergetischen Effekts von Daten des Radiosondenmessnetzes, der automatischen Wetterstationen (AWS), der synoptischen Stationen (SYNOP) und insbesondere der GPS-Systeme erh¨oht werden. Da die GPS- Messungen den S¨aulenwasserdampfgehalt bestimmen, wird ein neuartiges Verfahren (Ad- justment Method) vorgestellt, mit Hilfe dessen der integrierte Wasserdampf (IWV Inte- grated Water Vapour) aus den GPS-Messungen mit den Radiosondenprofilen verkn¨upft werden kann. Die auf diese Weise kombinierten Datens¨atze erlauben die Berechnung der Konvektionsindizes mit einer f¨ur die Konvektionsanalyse notwendigen r¨aumlichen und zeitlichen Aufl¨osung. Durch die erh¨ohte r¨aumliche Aufl¨osung und die Kombination der Konvektionsindizes basierend auf Daten von verschiedenen Wetterlagen und sowohl ¨uber ebenem (CSIP) als auch ¨uber komplexes Gel¨ande (COPS) - konnten die Bedingungen erfolgreich ermittelt werden, bei denen eine hohe Wahrscheinlichkeit f¨ur hochreichende Konvektion besteht. Des Weiteren wird die r¨aumliche und zeitliche Entwicklung stabiler Schichten oder Lids in der unteren oder mittleren Atmosph¨are und deren Rolle bei der Unterdr¨uckung von Konvektion untersucht. H¨ohe, St¨arke und Fortdauer dieser stabilen Schichten zeigen sich dabei als f¨ur die Ausl¨osung von Konvektion bedeutende Faktoren. Stabile Schichten beeinflussen die Feuchtkonvektion auf zweierlei Weise: Sie fungieren in erster Linie als Barrieren, die die Ausl¨osung von Konvektion unterdr¨ucken oder die Entwicklung zu hochreichender Konvektion verhindern. Ihre zeitliche Fortdauer kann zu- dem zu einer Anreicherung von Feuchte in der Grenzschicht f¨uhren. Haben sich die Lids aufgel¨ost oder ¨uben sie ihren konvektionsunterdr¨uckenden Einfluss nicht mehr aus, so kann sich, bedingt durch die akkumulierte Feuchte, hochreichende Konvektion ausbilden. Hochaufgel¨oste bodennahe Beobachtungsdaten erm¨oglichen eine genaue Lokalisierung der Konvergenzzonen, deren Rolle sich in Bezug auf die Ausl¨osung von hochreichender Konvek- tion in allen untersuchten F¨allen und selbst bei geringer atmosph¨arischer Unterdr¨uckung als bedeutend erweist. Insgesamt konnte gezeigt werden, dass die Grenzschichtbedingun- gen die Ausl¨osung von Konvektion stark beeinflussen: die H¨ohe der Konvektionsindizes wird durch den Grenzschichtzustand mit bestimmt und Konvektion wird in vielen F¨allen durch Oberfl¨achen- und Grenzschichtprozesse ausgel¨ost. Es wird dar¨uber hinaus ersichtlich, dass die Ausl¨osung von hochreichender Konvek- tion st¨arker auf Konvergenz und eine niedrige CIN als auf eine besondere hohe CAPE angewiesen ist. Dagegen zeigt sich, dass f¨ur die Intensivierung konvektiver Systeme hohe CAPE-Werte und eine hohe Feuchte in der mittleren Troposph¨are notwendig sind. Auf der Grundlage der Gesamtbewertung aller untersuchten CSIP-Intensivmessphasen wur- den einige Schwellenwerte f¨ur das CSIP-Gebiet erstellt. Hochreichende Konvektion wird in Bereichen mit CAPE-Werten ¨uber 500 J kg−1, absoluten CIN-Werten unter 50 J kg−1, einer CAP-St¨arke unter 2 ◦C (kennzeichnend f¨ur Lids in der Grenzschicht), einem Lid- Effect von ca. 0 ◦C (kennzeichnend f¨ur mitteltroposph¨arische Lids) und bei vorhan- dener bodennaher Konvergenz beobachtet. Diese Schwellenwerte belegen, dass die kon- vektive Instabilit¨at und die konvektionshemmenden Inversionen (CAP) w¨ahrend konvek- tiver Ereignisse in diesem Gebiet oft ziemlich schwach sind und dass die Ausl¨osung ¨uber Grenzschichtkonvergenz erfolgt. Aufgrund der Unsicherheiten in den Berechnungen und der begrenzten Anzahl der untersuchten IOPs muss darauf hingewiesen werden, dass die Schwellenwerte eher als erster Hinweis denn als feste Richtwerte zu betrachten sind. Das abschlieend vorgestellte 2-D-Diagramm zur Vorhersage der Wahrscheinlichkeit von hochre- ichender Konvektion fasst die f¨ur das Auftreten von hochreichender Konvektion erforder- lichen Bedingungen noch mal zusammen. Abstract The initiation of atmospheric convection is investigated using the synergy of different instruments. The impact of increased spatial data resolution on the detection of the ini- tiation of deep convection is analyzed, and a methodology is developed and applied to determine the likelihood of deep convection over flat and complex terrains. With this pur- pose, Intensive Observation Periods (IOPs) are used from the Convective Storm Initiation Project (CSIP), which took place in southern United Kingdom (UK), and from the Con- vective and Orographically-Induced Precipitation Study (COPS), which was performed in southwestern Germany and eastern France. Events with nonexistent or weak synoptic scale forcing were chosen to better under- stand the Planetary Boundary Layer (PBL) processes which play a critical role in the initiation of convective storms because it is along its discontinuities that convection often breaks out. To describe the likelihood of convection, convection-related indices are used representing atmospheric stability, convective available energy, inhibition and triggering mechanisms. The sensitivity of convection indices to the temperature and moisture vari- ability observed in the PBL is investigated using high-resolution aircraft measurements. It is shown that using the maximum and minimum temperature and moisture observed along a flight track of approximately 36 km a difference of 680 J kg−1 in convective avail- able potential energy (CAPE), and -150 J kg−1 in convective inhibition (CIN) is found. Thus, the representation of atmospheric conditions varied from low to high probability for deep convection. These measurements demonstrated that despite the dense radiosonde network deployed during the CSIP and COPS campaigns, the high spatial variability of the temperature and especially of the water vapour field in the boundary-layer cannot be resolved only with radionsonde data. An increase of the spatial data resolution was obtained using the synergetic effect of data from the networks of radiosondes, Automatic Weather Stations (AWSs), synoptic stations (SYNOPs), and especially Global Positioning Systems (GPSs). Since the GPS measurements are retrievals of column-integrated water vapour mixing ratio, a new algo- rithm ”adjustment method” is introduced to combine the IWV data from the GPS with the radiosonde profiles. This combined data set is used to calculate the spatio-temporal evolution of convection-related indices. The gained spatial resolution and the combination of convection-related indices presented successfully represented the areas where the likeli- hood of deep convection was high for several events with different dominant processes and for both, flat (CSIP) and complex terrains (COPS). Special emphasis is put on the inves- tigation of the spatio-temporal evolution of low-level and mid-tropospheric stable layers or lids and their role
Recommended publications
  • Lecture 7. More on BL Wind Profiles and Turbulent Eddy Structures in This
    Atm S 547 Boundary Layer Meteorology Bretherton Lecture 7. More on BL wind profiles and turbulent eddy structures In this lecture… • Stability and baroclinicity effects on PBL wind and temperature profiles • Large-eddy structures and entrainment in shear-driven and convective BLs. Stability effects on overall boundary layer structure Above the surface layer, the wind profile is also affected by stability. As we mentioned previously, unstable BLs tend to have much more well-mixed wind profiles than stable BLs. Fig. 1 shows observations from the Wangara experiment on how the velocity defects and temperature profile are altered by BL stability (as measured by H/L). Within stability classes, the velocity profiles collapse when scaled with a velocity scale u* and the observed BL depth H, but there is a large difference between the stability classes. Baroclinicity We would expect baroclinicity (vertical shear of geostrophic wind) to also affect the observed wind profile. This is most easily seen for a laminar steady-state Ekman layer in a geostrophic wind with constant vertical shear ug(z) = (G + Mz, Nz), where M = -(g/fT0)∂T/∂y, N = (g/fT0)∂T/∂x. The momentum equations and BCs are: -f(v - Nz) = ν d2u/dz2 f(u - G - Mz) = ν d2v/dz2 u(0) = 0, u(z) ~ G + Mz as z → ∞. v(0) = 0, v(z) ~ Nz as z → ∞. The resultant BL velocity profile is the classical Ekman layer with the thermal wind added onto it. u(z) = G(1 - e-ζ cos ζ) + Mz, (7.1) 1/2 v(z) = G e- ζ sin ζ + Nz.
    [Show full text]
  • Impacts of Anthropogenic Aerosols on Fog in North China Plain
    BNL-209645-2018-JAAM Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Impacts of Anthropogenic Aerosols on Fog in North China Plain 10.1029/2018JD029437 Xingcan Jia1,2,3 , Jiannong Quan1 , Ziyan Zheng4, Xiange Liu5,6, Quan Liu5,6, Hui He5,6, 2 Key Points: and Yangang Liu • Aerosols strengthen and prolong fog 1 2 events in polluted environment Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing, China, Brookhaven National Laboratory, • Aerosol effects are stronger on Upton, NY, USA, 3Key Laboratory of Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University microphysical properties than of Information Science and Technology, Nanjing, China, 4Institute of Atmospheric Physics, Chinese Academy of Sciences, macrophysical properties Beijing, China, 5Beijing Weather Modification Office, Beijing, China, 6Beijing Key Laboratory of Cloud, Precipitation and • Turbulence is enhanced by aerosols during fog formation and growth but Atmospheric Water Resources, Beijing, China suppressed during fog dissipation Abstract Fog poses a severe environmental problem in the North China Plain, China, which has been Supporting Information: witnessing increases in anthropogenic emission since the early 1980s. This work first uses the WRF/Chem • Supporting Information S1 model coupled with the local anthropogenic emissions to simulate and evaluate a severe fog event occurring Correspondence to: in North China Plain. Comparison of the simulations against observations shows that WRF/Chem well X. Jia and Y. Liu, reproduces the general features of temporal evolution of PM2.5 mass concentration, fog spatial distribution, [email protected]; visibility, and vertical profiles of temperature, water vapor content, and relative humidity in the planetary [email protected] boundary layer throughout the whole period of the fog event.
    [Show full text]
  • Comparison Between Observed Convective Cloud-Base Heights and Lifting Condensation Level for Two Different Lifted Parcels
    AUGUST 2002 NOTES AND CORRESPONDENCE 885 Comparison between Observed Convective Cloud-Base Heights and Lifting Condensation Level for Two Different Lifted Parcels JEFFREY P. C RAVEN AND RYAN E. JEWELL NOAA/NWS/Storm Prediction Center, Norman, Oklahoma HAROLD E. BROOKS NOAA/National Severe Storms Laboratory, Norman, Oklahoma 6 January 2002 and 16 April 2002 ABSTRACT Approximately 400 Automated Surface Observing System (ASOS) observations of convective cloud-base heights at 2300 UTC were collected from April through August of 2001. These observations were compared with lifting condensation level (LCL) heights above ground level determined by 0000 UTC rawinsonde soundings from collocated upper-air sites. The LCL heights were calculated using both surface-based parcels (SBLCL) and mean-layer parcels (MLLCLÐusing mean temperature and dewpoint in lowest 100 hPa). The results show that the mean error for the MLLCL heights was substantially less than for SBLCL heights, with SBLCL heights consistently lower than observed cloud bases. These ®ndings suggest that the mean-layer parcel is likely more representative of the actual parcel associated with convective cloud development, which has implications for calculations of thermodynamic parameters such as convective available potential energy (CAPE) and convective inhibition. In addition, the median value of surface-based CAPE (SBCAPE) was more than 2 times that of the mean-layer CAPE (MLCAPE). Thus, caution is advised when considering surface-based thermodynamic indices, despite the assumed presence of a well-mixed afternoon boundary layer. 1. Introduction dry-adiabatic temperature pro®le (constant potential The lifting condensation level (LCL) has long been temperature in the mixed layer) and a moisture pro®le used to estimate boundary layer cloud heights (e.g., described by a constant mixing ratio.
    [Show full text]
  • GEOGRAPHY OPTIONAL by SHAMIM ANWER
    GEOGRAPHY OPTIONAL by SHAMIM ANWER LEARNING GEOGRAPHY - A NEVER BEFORE EXPERIENCE PREP SUPPLEMENT CLIMA T OLOGY NOT FOR SALE | Off : 57/17 1st Floor, Old Rajender Nagar 8026506054, 8826506099 | Above Dr, Batra’s Delhi - 110060 Also visit us on www.keynoteias.com | www.facebook.com/keynoteias.in KEYNOTE IAS PHYSICAL GEOGRAPHY CLIMATOLOGY INDEX 1. CIRCULATION OF THE ATMOSPHERE ................................................................1-13 Local Winds; Observed Distribution of Pressure and Winds and Idealized Zonal Pressure Belts; Monsoons, Westerlies and Jet Streams; EL Nino and La Nina. 2. MOISTURE AND ATMOSPHERIC STABILITY ..................................................14-24 Atmospheric Stability and Instability 3. FORMS OF CONDENSATION AND PRECIPITATION ........................................25-38 Types and Global Distribution of Precipitation 4. AIR MASSES...........................................................................................................39-53 Polar-Front Theory; Fronts; Cyclone Formation; Cyclonic and Anticyclonic Circulation PREP-SUPPLEMENT: CLIMATOLOGY 1 1. CIRCULATION OF THE ATMOSPHERE Atmospheric circulation and wind Macroscale Winds: The largest wind patterns, called macroscale winds, are exemplified by the Winds are generated by pressure differences that westerlies and trade winds. These planetary-scale arise because of unequal heating of Earth's surface. flow patterns extend around the entire globe and Global winds are generated because the tropics can remain essentially unchanged for weeks at
    [Show full text]
  • Evidence of Fire in the Pliocene Arctic in Response to Elevated CO2 and Temperature
    1 Evidence of fire in the Pliocene Arctic in response to elevated CO2 and temperature 2 Tamara Fletcher1*, Lisa Warden2*, Jaap S. Sinninghe Damsté2,3, Kendrick J. Brown4,5, Natalia 3 Rybczynski6,7, John Gosse8, and Ashley P Ballantyne1 4 1 College of Forestry and Conservation, University of Montana, Missoula, 59812, USA 5 2 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den 6 Berg, 1790, Netherlands 7 3 Department of Earth Sciences, University of Utrecht, Utrecht, 3508, Netherlands 8 4 Natural Resources Canada, Canadian Forest Service, Victoria, V8Z 1M, Canada 9 5 Department of Earth, Environmental and Geographic Science, University of British Columbia Okanagan, Kelowna, 10 V1V 1V7, Canada 11 6 Department of Palaeobiology, Canadian Museum of Nature, Ottawa, K1P 6P4, Canada 12 7 Department of Biology & Department of Earth Sciences, Carleton University, Ottawa, K1S 5B6, Canada 13 8 Department of Earth Sciences, Dalhousie University, Halifax, B3H 4R2, Canada 14 *Authors contributed equally to this work 15 Correspondence to: Tamara Fletcher ([email protected]) 16 Abstract. The mid-Pliocene is a valuable time interval for understanding the mechanisms that determine equilibrium 17 climate at current atmospheric CO2 concentrations. One intriguing, but not fully understood, feature of the early to 18 mid-Pliocene climate is the amplified arctic temperature response. Current models underestimate the degree of 19 warming in the Pliocene Arctic and validation of proposed feedbacks is limited by scarce terrestrial records of climate 20 and environment, as well as discrepancies in current CO2 proxy reconstructions. Here we reconstruct the CO2, summer 21 temperature and fire regime from a sub-fossil fen-peat deposit on west-central Ellesmere Island, Canada, that has been 22 chronologically constrained using radionuclide dating to 3.9 +1.5/-0.5 Ma.
    [Show full text]
  • How Appropriate They Are/Will Be Using Future Satellite Data Sources?
    Different Convective Indices - - - How appropriate they are/will be using future satellite data sources? Ralph A. Petersen1 1 Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin – Madison, Madison, Wisconsin, USA Will additional input from Steve Weiss, NOAA/NWS/Storm Prediction Center ✓ Increasing the Utility / Value of real-time Satellite Sounder Products to fill gaps in their short-range forecasting processes Creating Temperature/Moisture Soundings from Infra-Red (IR) Satellite Observations A Conceptual Tutorial All level of the atmosphere is continually emit radiation toward space. Satellites observe the net amount reaching space. • Conceptually, we can think about the atmosphere being made up of many thin layers Start from the bottom and work up. 1 – The greatest amount of radiation is emitted from the earth’s surface 4 - Remember, Stefan’s Law: Emission ~ σTSfc 2 – Molecules of various gases in the lowest layer of the atmosphere absorb some of the radiation and then reemit it upward to space and back downward to the earth’s surface - Major absorbers are CO2 and H2O 4 - Emission again ~ σT , but TAtmosphere<TSfc - Amount of radiation decreases with altitude Creating Temperature/Moisture Soundings from Infra-Red (IR) Satellite Observations A Conceptual Tutorial All level of the atmosphere is continually emit radiation toward space. Satellites observe the net amount reaching space. • Conceptually, we can think about the atmosphere being made up of many thin layers Start from the bottom and work
    [Show full text]
  • Effect of Deep Convection on the TTL Composition Over the Southwest Indian Ocean During Austral Summer
    https://doi.org/10.5194/acp-2019-1072 Preprint. Discussion started: 22 January 2020 c Author(s) 2020. CC BY 4.0 License. Effect of deep convection on the TTL composition over the Southwest Indian Ocean during austral summer. Stephanie Evan1, Jerome Brioude1, Karen Rosenlof2, Sean. M. Davis2, Hölger Vömel3, Damien Héron1, Françoise Posny1, Jean-Marc Metzger4, Valentin Duflot1,4, Guillaume Payen4, Hélène Vérèmes1, 5 Philippe Keckhut5, and Jean-Pierre Cammas1,4 1LACy, Laboratoire de l’Atmosphère et des Cyclones, UMR8105 (CNRS, Université de La Réunion, Météo-France), Saint- Denis de la Réunion, 97490, France 2Chemical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, 80305, CO, USA 3National Center for Atmospheric Research, Boulder, 80301, CO, USA 10 4Observatoire des Sciences de l’Univers de La Réunion, UMS3365 (CNRS, Université de La Réunion, Météo-France), Saint- Denis de la Réunion, 97490, France 5LATMOS, Laboratoire ATmosphères, Milieux, Observations Spatiales-IPSL UMR8190 (UVSQ Université Paris-Saclay, Sorbonne Université, CNRS), Guyancourt, 78280, France Correspondence to: Stephanie Evan ([email protected]) 15 Abstract. Balloon-borne measurements of CFH water vapor, ozone and temperature and water vapor lidar measurements from the Maïdo Observatory at Réunion Island in the Southwest Indian Ocean (SWIO) were used to study tropical cyclones' influence on TTL composition. The balloon launches were specifically planned using a Lagrangian model and METEOSAT 7 infrared images to sample the convective outflow from Tropical Storm (TS) Corentin on 25 January 2016 and Tropical Cyclone (TC) Enawo on 3 March 2017. 20 Comparing CFH profile to MLS monthly climatologies, water vapor anomalies were identified. Positive anomalies of water vapor and temperature, and negative anomalies of ozone between 12 and 15 km in altitude (247 to 121hPa) originated from convectively active regions of TS Corentin and TC Enawo, one day before the planned balloon launches, according to the Lagrangian trajectories.
    [Show full text]
  • Atmospheric Stability Atmospheric Lapse Rate
    ATMOSPHERIC STABILITY ATMOSPHERIC LAPSE RATE The atmospheric lapse rate ( ) refers to the change of an atmospheric variable with a change of altitude, the variable being temperature unless specified otherwise (such as pressure, density or humidity). While usually applied to Earth's atmosphere, the concept of lapse rate can be extended to atmospheres (if any) that exist on other planets. Lapse rates are usually expressed as the amount of temperature change associated with a specified amount of altitude change, such as 9.8 °Kelvin (K) per kilometer, 0.0098 °K per meter or the equivalent 5.4 °F per 1000 feet. If the atmospheric air cools with increasing altitude, the lapse rate may be expressed as a negative number. If the air heats with increasing altitude, the lapse rate may be expressed as a positive number. Understanding of lapse rates is important in micro-scale air pollution dispersion analysis, as well as urban noise pollution modeling, forest fire-fighting and certain aviation applications. The lapse rate is most often denoted by the Greek capital letter Gamma ( or Γ ) but not always. For example, the U.S. Standard Atmosphere uses L to denote lapse rates. A few others use the Greek lower case letter gamma ( ). Types of lapse rates There are three types of lapse rates that are used to express the rate of temperature change with a change in altitude, namely the dry adiabatic lapse rate, the wet adiabatic lapse rate and the environmental lapse rate. Dry adiabatic lapse rate Since the atmospheric pressure decreases with altitude, the volume of an air parcel expands as it rises.
    [Show full text]
  • Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau
    atmosphere Article Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau Yonglan Tang 1, Guirong Xu 1,*, Rong Wan 1, Xiaofang Wang 1, Junchao Wang 1 and Ping Li 2 1 Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China; [email protected] (Y.T.); [email protected] (R.W.); [email protected] (X.W.); [email protected] (J.W.) 2 Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, China; [email protected] * Correspondence: [email protected]; Tel.: +86-27-8180-4913 Abstract: It is an important to study atmospheric thermal and dynamic vertical structures over the Tibetan Plateau (TP) and their impact on precipitation by using long-term observation at represen- tative stations. This study exhibits the observational facts of summer precipitation variation on subdiurnal scale and its atmospheric thermal and dynamic vertical structures over the TP with hourly precipitation and intensive soundings in Jiulong during 2013–2020. It is found that precipitation amount and frequency are low in the daytime and high in the nighttime, and hourly precipitation greater than 1 mm mostly occurs at nighttime. Weak precipitation during the daytime may be caused by air advection, and strong precipitation at nighttime may be closely related with air convection. Both humidity and wind speed profiles show obvious fluctuation when precipitation occurs, and the greater the precipitation intensity, the larger the fluctuation. Moreover, the fluctuation of wind speed Citation: Tang, Y.; Xu, G.; Wan, R.; Wang, X.; Wang, J.; Li, P.
    [Show full text]
  • Atmospheric Instability Parameters Derived from Msg Seviri Observations
    P3.33 ATMOSPHERIC INSTABILITY PARAMETERS DERIVED FROM MSG SEVIRI OBSERVATIONS Marianne König*, Stephen Tjemkes, Jochen Kerkmann EUMETSAT, Darmstadt, Germany 1. INTRODUCTION K-Index: Convective systems can develop in a thermo- (Tobs(850)–Tobs(500)) + TDobs(850) – (Tobs(700)–TDobs(700)) dynamically unstable atmosphere. Such systems may quickly reach high altitudes and can cause severe Lifted Index: storms. Meteorologists are thus especially interested to Tobs - Tlifted from surface at 500 hPa identify such storm potentials when the respective system is still in a preconvective state. A number of Maximum buoyancy: obs(max betw. surface and 850) obs(min betw. 700 and 300) instability indices have been defined to describe such Qe - Qe situations. Traditionally, these indices are taken from temperature and humidity soundings by radiosondes. As (T is temperature, TD is dewpoint temperature, and Qe radiosondes are only of very limited temporal and is equivalent potential temperature, numbers 850, 700, spatial resolution there is a demand for satellite-derived 300 indicate respective hPa level in the atmosphere) indices. The Meteorological Product Extraction Facility (MPEF) for the new European Meteosat Second and the precipitable water content as additionally Generation (MSG) satellite envisages the operational derived parameter. derivation of a number of instability indices from the brightness temperatures measured by certain SEVIRI 3. DESCRIPTION OF ALGORITHMS channels (Spinning Enhanced Visible and Infrared Imager, the radiometer onboard MSG). The traditional 3.1 The Physical Retrieval physical approach to this kind of retrieval problem is to infer the atmospheric profile via a constrained inversion An iterative solution to the inversion equation (e.g. and compute the indices then directly from the obtained Ma et al.
    [Show full text]
  • A Strategy for Representing the Effects of Convective Momentum Transport
    PUBLICATIONS Journal of Advances in Modeling Earth Systems RESEARCH ARTICLE A strategy for representing the effects of convective 10.1002/2014MS000417 momentum transport in multiscale models: Evaluation using a Key Points: new superparameterized version of the Weather Research and The proposed formulation is general enough to allow up or down- Forecast model (SP-WRF) gradient CMT The net effect of the formulation is to S. N. Tulich1,2 produce large-scale circulation A novel superparameterized version 1CIRES, University of Colorado, Boulder, Colorado, USA, 2Physical Sciences Division, NOAA Earth System Research of the WRF model is described and Laboratory, Boulder, Colorado, USA evaluated Correspondence to: Abstract This paper describes a general method for the treatment of convective momentum transport S. N. Tulich, (CMT) in large-scale dynamical solvers that use a cyclic, two-dimensional (2-D) cloud-resolving model (CRM) [email protected] as a ‘‘superparameterization’’ of convective-system-scale processes. The approach is similar in concept to traditional parameterizations of CMT, but with the distinction that both the scalar transport and diagnostic Citation: Tulich, S. N. (2015), A strategy for pressure gradient force are calculated using information provided by the 2-D CRM. No assumptions are representing the effects of convective therefore made concerning the role of convection-induced pressure gradient forces in producing up or momentum transport in multiscale down-gradient CMT. The proposed method is evaluated using a new superparameterized version of the models: Evaluation using a new superparameterized version of the Weather Research and Forecast model (SP-WRF) that is described herein for the first time.
    [Show full text]
  • Basic Features on a Skew-T Chart
    Skew-T Analysis and Stability Indices to Diagnose Severe Thunderstorm Potential Mteor 417 – Iowa State University – Week 6 Bill Gallus Basic features on a skew-T chart Moist adiabat isotherm Mixing ratio line isobar Dry adiabat Parameters that can be determined on a skew-T chart • Mixing ratio (w)– read from dew point curve • Saturation mixing ratio (ws) – read from Temp curve • Rel. Humidity = w/ws More parameters • Vapor pressure (e) – go from dew point up an isotherm to 622mb and read off the mixing ratio (but treat it as mb instead of g/kg) • Saturation vapor pressure (es)– same as above but start at temperature instead of dew point • Wet Bulb Temperature (Tw)– lift air to saturation (take temperature up dry adiabat and dew point up mixing ratio line until they meet). Then go down a moist adiabat to the starting level • Wet Bulb Potential Temperature (θw) – same as Wet Bulb Temperature but keep descending moist adiabat to 1000 mb More parameters • Potential Temperature (θ) – go down dry adiabat from temperature to 1000 mb • Equivalent Temperature (TE) – lift air to saturation and keep lifting to upper troposphere where dry adiabats and moist adiabats become parallel. Then descend a dry adiabat to the starting level. • Equivalent Potential Temperature (θE) – same as above but descend to 1000 mb. Meaning of some parameters • Wet bulb temperature is the temperature air would be cooled to if if water was evaporated into it. Can be useful for forecasting rain/snow changeover if air is dry when precipitation starts as rain. Can also give
    [Show full text]