Biodiversity Studies of Insect Fauna Order Coleoptera of Ajmer

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity Studies of Insect Fauna Order Coleoptera of Ajmer IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 11, Issue 5 Ver. II (Sep. - Oct.2016), PP 08-14 www.iosrjournals.org Biodiversity Studies of Insect Fauna Order Coleoptera of Ajmer Dr Rashmi Sharma Dept. Of Zoology Spc Gca Ajmer Rajasthan India Abstract: Ajmer is located in the center of Rajasthan (INDIA) between 25 0 38 “ and 26 0 58 “ north 75 0 22” east longitude covering a geographical area of about 8481sq km hemmed in all sides by Aravalli hills . About 7 miles from the city is Pushkar lake created by the touch of lord Brahma. The Dargah of khawaja Moinuddin chisti is holiest shrine next to Mecca in the world. Ajmer is abode of certain flora and fauna that are particularly endemic to semi-arid and are specially adapted to survive in the dry waterless region of the state. Coleoptera. Availability of beetles were more during the night hours and population seemed to be Confined to the light areas.Beetles mean sheathed wings means two pairs of wings are present. Beetles have been Studied for centuries. Following Beetles are recorded in AJMER. Key words: Ajmer, Faunal diversity, Coleoptera, Aravalis. I. Introduction Ajmer is located in the center of Rajasthan (INDIA) between 25 0 38 “ and 26 0 58 “ north Latitude and 73 0 54 “ and 75 0 22” east longitude covering a geographical area of about 8481sq km hemmed in all sides by Aravalli hills . About 7 miles from the city is Pushkar lake created by the touch of lord Brahma. The Dargah of khawaja Moinuddin chisti is holiest shrine next toMecca in the world. Ajmer is abode of certain flora and fauna that are particularly endemic to semi-arid and are specially adapted to survive in the dry waterless region of the state. Coleoptera Beetles means sheathed wings means two pairs of wings are present. Availability of beetles were more during the night hours and population seemed to be Confined to the light areas. The order contains more species than any other order, constituting almost 25% of all known animal life-forms. About 40% of all described insect species are beetles (about 400,000 species), and new species are discovered frequently. The largest taxonomic family, the Curculionidae the weevils or snout beetles), also belongs to this order. The diversity of beetles is very wide-ranging. They are found in almost all types of habitats, but are not known to occur in the sea or in the polar region They interact with their ecosystem in several ways. They often feed on plants and fungi , break down animal and plant debris, and eat other invertebrates . Some species are prey of various animals including birds and mammals. Certain species are agricultural pests, such as the Colorado potato beetle Leptinotarsa decemlineata, the boll weevil Anthonomus grandis, the Red flour beetle Tribolium castaneum, and the mungbean or cowpea beetle Collosobruchus maculates while other species of beetles are important controls of agricultural pests. For example, beetles in the family Coccinellidae ("ladybirds" or "ladybugs") consumeaphids, scale insects, thrips, and other plant-sucking insects that damage crops. II. Methodology Field observations were made during March to April and September to November in different areas of Ajmer East, West, North and South AJMER with varied habitats like gardens, hilly areas parks mountains, vegetable areas , open fields, agricultural areas and other cultivated areas. III. Observations and Results During the course of present field investigations 180 families have been reported. The detail of Family, name of species and common name are given below . Tenebrionoidea was found to be most dominant Super family , followed by Super family Cucujoidea , followed by Elateroidea and then Scarabaeoidea followed by Adephaga. DOI: 10.9790/3008-1105020814 www.iosrjournals.org 8 | Page Biodiversity Studies of Insect Fauna Order Coleoptera of Ajmer Some species were found in all months except extreme winters i e December and January February and extreme summer May June. Some species were quick fliers others were shy in nature. The present study reveals that Carabidae and Dytiscidae Were the first to emerge (March) and Curculionidae was the most late arrival emerging in the month emerging in the month of April. The peak Beetle activity was observed in the month of July to October. Order Coleoptera Suborder Adephaga (Schellenberg 1806). Amphizoidae ( Aquatic beetle Trout stream beetle Amphizoa striata.) Aspidytidae (Cliff water beetles Aspidytes niobe.). Carabidae (ground beetles ). Dytiscidae (Water diving beetles). Gyrinidae (Whirling beetles). Haliplidae(Water beetles crawling ). Hygrobiidae ( Aquatic beetles native to Europe, N. Africa, China and Australia ). Meruidae (Aquatic beetles Meru phyllisae). Noteridae (Burrowing water beetle). Rhysodidae (Wrinkled bark beetle). Trachypachidae ( False ground beetle leaf litter conifer). Suborder Archostemata Kolbe, 1908. Crowsoniellidae (Monotypic sp ) Italy calcareous soil base of chestnut tree. Cupedidae Tenomerga mucida . Jurodidae (East Russia). Micromalthidae (Telephone pole beetle). Ommatidae (Australia and South America). Suborder Myxophaga Hydroscaphidae(Water b Skiff Hydroscapha natans ). LepiceridaeMyxophagan beetles. Sphaeriusidae (Sphaerius acaroids). Torridincolidae (Torrent beetle) SubOrder Polyphaga Infra order a. Bostrichiformia a 1 Super family Bostrichoidea Anobiidae Bostrichidae Dermestidae (Skin beetle). Jacobsoniidae Nosodendridae a 2 Superfamily Derodontoidea Derodontidae b Infra order Cucujiformia b 1 Super family Chrycomeloidea Cerambycidae (long horn beetle) Chrysomelidae (Leaf beetle) Bruchidae and Cassidae Megalopodidae Orsodacnidae Superfamily cleroidea Acanthocnemidae Chaetosomatidae Cleridae Melyridae Phloiophilidae Phycosecidae DOI: 10.9790/3008-1105020814 www.iosrjournals.org 9 | Page Biodiversity Studies of Insect Fauna Order Coleoptera of Ajmer Prionoceridae Trogossitidae Super family cucujoidea Alexiidae Biphyllidae Boganiidae Bothrideridae Byturidae Cavognathidae Cerylonidae Coccinellidae (lady birds) Corylophidae Cryptophagidae Cucujidae Discolomatidae Endomychidae Erotylidae Helotidae Hobartiidae Kateretidae Laemophloeidae Lamingtoniidae Languriidae Latridiidae Monotomidae Nitidulidae Passandridae Phalacridae Phloeostichidae Propalticidae Protocucujidae Silvanidae Smicripidae Sphindidae Super family curculinoidea Anthribidae Attelabidae Belidae Brentidae Caridae Curculionidae (snout beetle true weevil) Scolytinae bark beetle Ithyceridae Nemonychidae Super family Lymexyloidea Lymexylidae Super family Tenebrionoidea Aderidae Anthicidae Archeocrypticidae Boridae Chalcodryidae Ciidae DOI: 10.9790/3008-1105020814 www.iosrjournals.org 10 | Page Biodiversity Studies of Insect Fauna Order Coleoptera of Ajmer Melandryidae Meloidae gyllenhal blister beetle Mordellidae Mycetophagidae Mycteridae Oedemeridae Perimylopidae Prostomidae Pterogeniidae Pyrochroidae Pythidae Ripiphoridae Salpingidae Scraptiidae Stenotrachelidae Synchroidae Tenebrionoidea (Darkling beetle false ground beetle.) Tetratomidae Trachelostenidae Trictenotomidae Ulodidae Zopheridaer Infra order Elateriformia Superfamily Buprestoidea Buprestidae Schizopodidae Super family Byrrhoidea Super family Dascilloidea Superfamily Elateroidea Artematopodidae Brachypsectridae Cantharidae ( Soldier and Sailor beetles) Cerophytidae Drilidae Elateridae (Click beetles) Eucnemidae Lampyridae Lycidae Omalisidae Phengodidae Plastoceridae Podabrocephalidae Rhinorhipiodae Telegeusidae Throscidae Super family Scirtoidea Clambidae Decliniidae Eucinetidae Scirtidae Infra order Scarabaeiformia Superfamily Scarabaeoidea Belohinidae Bolboceratidae Ceratocanthidae DOI: 10.9790/3008-1105020814 www.iosrjournals.org 11 | Page Biodiversity Studies of Insect Fauna Order Coleoptera of Ajmer Diphyllostomatidae Geotrupidae Glaphyridae Glaresidae Hybosoridae Lucanidae (Stag beetle) Ochodaeidae Passalidae Pleocomidae Scarabaeidae Dynastidae(rhinoceros beetle) Trogidae Infraorder Staphyliniformia Superfamily Hydrophiloidea Histeridae Hydrophilidae Sphaeritidae Synteliidae Superfamily Staphylinoidea Agyrtidae Hydraenidae Leiodidae Ptiliidae Scydmaenidae Silphidae Staphylinidae (rove beetle) Scaphidiinae Pselaphinae SubOrder Protocoleoptera Super family Tshekardocoleoidea Tshekardocoleoidae Labradorocoleoidae Oborocoleoidae Superfamily permocupedoidea Permocupedidae Taldycupedidae Superfamily Permosynoidea Ademosyndidae Permosynidae Table 1 Beetles of AJMER S. No. Family/Scientific name M Abundance Habitat 1 Amphizoidae Rs C A 2 Aspidytidae Rs C A 3 Carabidae Rs C A 4 Dytiscidae Rs C A 5 Gyrinidae C A 6 Haliplidae Rs C A 7. Hygrobiidae C A 8 Meruidae Rs C A 9 Noteridae Rs C A 10 Rhysodidae Rs C A 11. Trachypachidae Rs C A 12. Crowsoniellidae Rs C T 13 Cupedidae Rs C T 14 jurodidae Rs F T 15 Micromalthidae Rs C T DOI: 10.9790/3008-1105020814 www.iosrjournals.org 12 | Page Biodiversity Studies of Insect Fauna Order Coleoptera of Ajmer 16 Ommatidae Rs C T 17 Hydroscaphidae Rs C T 18 lepiceridae Rs C T 19 Sphaeriusidae Rs C T 20 Torridincolidae Rs C T 21 Anobiidae C T 22. Bostrichidae Rs C T 23. Dermestidae Rs C T 24 Jacobsoniidae Rs C T 25 Nosodendridae Rs C T 26 Derodontidae Rs C T 27 Cerambycidae Rs C T 28 Chrysomelidae( bruchidae and cassidae) Rs C T 29 Megalopodidae Rs C T 30 Orsodacnidae Rs C T 31 Acanthocnemidae Rs C T 32 Coccinellidae Rs C T 33 Curculionidae Rs C T 34 Meloidae Rs O T 35 Scraptiidae Rs C T 36 Tenebrionidae Rs C T 37 Cantharidae Rs C T 38 Elateridae Rs C T 39 lucanidae Rs C T 40 Scarabaeidae Rs C T 41. Dynastidae
Recommended publications
  • Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E
    Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E. Carlton Louisiana State Arthropod Museum Coleoptera Families Everyone Should Know (Checklist) Suborder Adephaga Suborder Polyphaga, cont. •Carabidae Superfamily Scarabaeoidea •Dytiscidae •Lucanidae •Gyrinidae •Passalidae Suborder Polyphaga •Scarabaeidae Superfamily Staphylinoidea Superfamily Buprestoidea •Ptiliidae •Buprestidae •Silphidae Superfamily Byrroidea •Staphylinidae •Heteroceridae Superfamily Hydrophiloidea •Dryopidae •Hydrophilidae •Elmidae •Histeridae Superfamily Elateroidea •Elateridae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Suborder Polyphaga, cont. Superfamily Cantharoidea Superfamily Cucujoidea •Lycidae •Nitidulidae •Cantharidae •Silvanidae •Lampyridae •Cucujidae Superfamily Bostrichoidea •Erotylidae •Dermestidae •Coccinellidae Bostrichidae Superfamily Tenebrionoidea •Anobiidae •Tenebrionidae Superfamily Cleroidea •Mordellidae •Cleridae •Meloidae •Anthicidae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Superfamily Chrysomeloidea •Chrysomelidae •Cerambycidae Superfamily Curculionoidea •Brentidae •Curculionidae Total: 35 families of 131 in the U.S. Suborder Adephaga Family Carabidae “Ground and Tiger Beetles” Terrestrial predators or herbivores (few). 2600 N. A. spp. Suborder Adephaga Family Dytiscidae “Predacious diving beetles” Adults and larvae aquatic predators. 500 N. A. spp. Suborder Adephaga Family Gyrindae “Whirligig beetles” Aquatic, on water
    [Show full text]
  • Flanged Bombardier Beetles from Laos (Carabidae, Paussinae)
    Entomologica Basiliensia et Collectionis Frey 31 101–113 2009 ISSN 1661–8041 Flanged Bombardier Beetles from Laos (Carabidae, Paussinae) by Peter Nagel Abstract. The Paussinae of Laos were recently studied based on new material collected by the Natural History Museum Basel. Two species are described as being new to science, Lebioderus brancuccii sp.nov., and Paussus lanxangensis sp.nov., and two species are new records for Laos. All species are shown in drawings. To date nine species are known from Laos, four of which have been added by the NHMB collecting trips, and a fifth new record is based on other museum collections. Key words. Laos – Paussinae – Lebioderus – Paussus – taxonomy– new species – myrmecophiles – distribution records Introduction Within the Oriental Region, Indochina is less well explored concerning the insect fauna than the Indian Subcontinent. Within Indochina, Laos is the least explored country, especially when compared to the insect fauna of the adjacent regions of Thailand. In contrast to neighboring countries, Laos still harbour large areas of forest, with relatively little disturbance and the presence of pristine habitats. However, demographic increases combined with forest burning, clearing for cultivation, and logging are major current threats to the Laotian environment. Therefore there are strong concerns for the survival of the high and unique biodiversity of this country which is situated in the centre of the Indo-Burma Hotspot (MITTERMEIER et al. 2004). In order to contribute to the documentation of the Laotian insect fauna as a basis for furthering our understanding and consequentially the conservation efforts, Dr. Michel Brancucci, Natural History Museum Basel, has conducted collecting trips to Laos in 2003, 2004, 2007 and 2009.
    [Show full text]
  • An Annotated Checklist of Wisconsin Scarabaeoidea (Coleoptera)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2002 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine A. Kriska University of Wisconsin-Madison, Madison, WI Daniel K. Young University of Wisconsin-Madison, Madison, WI Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Kriska, Nadine A. and Young, Daniel K., "An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera)" (2002). Insecta Mundi. 537. https://digitalcommons.unl.edu/insectamundi/537 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 16, No. 1-3, March-September, 2002 3 1 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine L. Kriska and Daniel K. Young Department of Entomology 445 Russell Labs University of Wisconsin-Madison Madison, WI 53706 Abstract. A survey of Wisconsin Scarabaeoidea (Coleoptera) conducted from literature searches, collection inventories, and three years of field work (1997-1999), yielded 177 species representing nine families, two of which, Ochodaeidae and Ceratocanthidae, represent new state family records. Fifty-six species (32% of the Wisconsin fauna) represent new state species records, having not previously been recorded from the state. Literature and collection distributional records suggest the potential for at least 33 additional species to occur in Wisconsin. Introduction however, most of Wisconsin's scarabaeoid species diversity, life histories, and distributions were vir- The superfamily Scarabaeoidea is a large, di- tually unknown.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • A03v24n3.Pdf
    Revista peruana de biología 24(3): 243 - 248 (2017) ISSN-L 1561-0837 A New Species of DODECACIUS (Coleoptera: Elateridae) from Madre de Dios, Peru doi: http://dx.doi.org/10.15381/rpb.v24i3.13903 Facultad de Ciencias Biológicas UNMSM TRABAJOS ORIGINALES A New Species of Dodecacius Schwarz (Coleoptera: Elateridae) from Madre de Dios, Peru Una nueva especie de Dodecacius Schwarz (Coleoptera: Elateridae) de Madre de Dios, Perú Paul J. Johnson Insect Biodiversity Lab, Box 2207A, South Dakota State University, Brookings, South Dakota 57007, U.S.A. Email: [email protected] Abstract Dodecacius Schwarz is reviewed, it includes two species known only from the eastern lower slopes of the Andes and adjacent Amazonia in southeastern Peru. Dodecacius paititi new species is described. Dodecacius testaceus Schwarz is treated as a new synonym of D. nigricollis Schwarz. Keywords: taxonomy; endemic; Andes; Amazonia; species discovery. Resumen El género Dodecacius Schwarz es revisado, incluye dos especies conocidas solamente de las laderas orientales bajas de los Andes y la Amazonia adyacente en el sureste de Perú. Se describe la nueva especie Dodecacius paititi y Dodecacius testaceus Schwarz es considerado como un nuevo sinónimo de D. nigricollis Schwarz. Palabras clave: taxonomía; endemismo; Andes; Amazonia; descubrimiento de especies. Publicación registrada en Zoobank/ZooBank article registered: urn:lsid:zoobank.org:pub:CF42CC9C-F496-4B4F-9C1A-FBB413A43E02 Acto nomenclatural/nomenclatural act: urn:lsid:zoobank.org:act:84A545F1-FAF8-42C1-83DA-C9D90CA0CA39 Citation: Johnson P.J. 2017. A New Species of Dodecacius Schwarz (Coleoptera: Elateridae) from Madre de Dios, Peru. Revista peruana de biología 24(3): 243 - 248 (octubre 2017).
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
    BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12.
    [Show full text]
  • The Earliest Record of Fossil Solid-Wood-Borer Larvae—Immature Beetles in 99 Million-Year-Old Myanmar Amber
    Palaeoentomology 004 (4): 390–404 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY Copyright © 2021 Magnolia Press Article ISSN 2624-2834 (online edition) PE https://doi.org/10.11646/palaeoentomology.4.4.14 http://zoobank.org/urn:lsid:zoobank.org:pub:9F96DA9A-E2F3-466A-A623-0D1D6689D345 The earliest record of fossil solid-wood-borer larvae—immature beetles in 99 million-year-old Myanmar amber CAROLIN HAUG1, 2, *, GIDEON T. HAUG1, ANA ZIPPEL1, SERITA VAN DER WAL1 & JOACHIM T. HAUG1, 2 1Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany 2GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany �[email protected]; https://orcid.org/0000-0001-9208-4229 �[email protected]; https://orcid.org/0000-0002-6963-5982 �[email protected]; https://orcid.org/0000-0002-6509-4445 �[email protected] https://orcid.org/0000-0002-7426-8777 �[email protected]; https://orcid.org/0000-0001-8254-8472 *Corresponding author Abstract different plants, including agriculturally important ones (e.g., Potts et al., 2010; Powney et al., 2019). On the Interactions between animals and plants represent an other hand, many representatives exploit different parts of important driver of evolution. Especially the group Insecta plants, often causing severe damage up to the loss of entire has an enormous impact on plants, e.g., by consuming them. crops (e.g., Metcalf, 1996; Evans et al., 2007; Oliveira et Among beetles, the larvae of different groups (Buprestidae, Cerambycidae, partly Eucnemidae) bore into wood and are al., 2014).
    [Show full text]
  • Sri Lanka Freshwater Namely the Cyclopoija Tfree Living and Parasite, Calanoida and Harpa::Ticoida
    C. H. FERNANDO 53 Fig. 171 (contd: from page 52) Sphaericus for which an Ontario specimen was used. I have illustrated some of the head shields of Chydoridae. The study of Clackceran remains so commonly found in samples emLbles indonti:fication ,,f species which have been in the habita'~ besides those act_ive stages when the samples was collected. Males of Cladocera are rare but they are of considerable value in reaching accurate diagnoses of species. I have illustrated the few males I have .found in the samples. A more careful study of all the specimens will certainly give males of most s1)ecies sin00 ·bhe collections were made throughout the year. REFERRENCES APSTEIN, C. (1907)-Das plancton in Colombo see auf Ceylon. Zool. Jb. (Syst.) 25 :201-244. l\,J>STEJN, C. (1910)-Das plancton des Gregory see auf Ceylon. Zool. Jb. (Syst.) 29 : 661-680. BAIRD, W. (1849)-Thenaturalhistory oftheBritishEntomostraca. Ray Soc. Lond. 364pp. BAR, G.(1924)-UberCiadoceren von derlnsel Ceylon (Fauna etAnatomia Ceylonica No.14) Jena. Z.Naturw. 60: 83-125. BEHNING, A. L. (1941)-(Kladotsera Kavkasa) Cladocera of the Caucasus (In Rusian) Tbilisi, Gzushedgiz. 383 pp. BIRABEN, M. (1939)-Los Cladoceros d'Lafamilie "Chydoridae". Physis. (Rev. Soc. Argentina Cien. Natur.) 17, 651-671 BRADY, G. S. (1886)-Notes on Entomostraca collected by Mr. A. Haly in Ceylon. Linn. Soc. Jour. Lond. (Zool.) 10: 293-317. BRANDLOVA, J., BRANDL. Z., and FERNANDO, C. H. (1972)-The Cladoceraof Ontariowithremarksonsomespecie distribution. Can. J. Zool. 50 : 1373-1403. BREHM, V. (1909)-Uber die microfauna chinesicher and sudasiatischer susswassbickers. Arch. Hydrobiol. 4, 207-224.
    [Show full text]
  • Volume 42, Number 2 June 2015
    Wisconsin Entomological Society N e w s I e t t e r Volume 42, Number 2 June 2015 Monitoring and Management - A That is, until volunteer moth surveyor, Steve Sensible Pairing Bransky, came onto the scene. Steve had By Beth Goeppinger, Wisconsin Department done a few moth and butterfly surveys here ofN atural Resources and there on the property. But that changed in 2013. Armed with mercury vapor lights, Richard Bong State Recreation Area is a bait and a Wisconsin scientific collector's heavily used 4,515 acre property in the permit, along with our permission, he began Wisconsin State Park system. It is located in surveying in earnest. western Kenosha County. The area is oak woodland, savanna, wetland, sedge meadow, He chose five sites in woodland, prairie and old field and restored and remnant prairie. savanna habitats. He came out many nights Surveys of many kinds and for many species in the months moths might be flying. After are done on the property-frog and toad, finding that moth populations seemed to drift fence, phenology, plants, ephemeral cycle every 3-5 days, he came out more ponds, upland sandpiper, black tern, frequently. His enthusiasm, dedication and grassland and marsh birds, butterfly, small never-ending energy have wielded some mammal, waterfowl, muskrat and wood surprising results. Those results, in turn, ducks to name a few. Moths, except for the have guided us in our habitat management showy and easy-to-identify species, have practices. been ignored. Of the 4,500 moth species found in the state, Steve has confirmed close to 1,200 on the property, and he isn't done yet! He found one of the biggest populations of the endangered Papaipema silphii moths (Silphium borer) in the state as well as 36 species of Catocola moths (underwings), them.
    [Show full text]
  • Dartington Report on Beetles 2015
    Report on beetles (Coleoptera) collected from the Dartington Hall Estate, 2015 by Dr Martin Luff 1. Introduction and Methods The majority of beetle recording in 2015 was concentrated on three sites and habitats: 1. Further sampling of moss on the Deer Park wall (SX794635), as mentioned in my 2014 report. This was done on two dates in March by MLL and again in October, aided by Messrs Tony Allen and Clive Turner, both experienced coleopterists. 2. Beetles associated with the decomposing body of a dead deer. The recently (accidentally) killed deer was acquired on 12th May by Mike Newby who pegged it out under wire netting in the small wood adjacent to 'Flushing Meadow', here referred to as 'Flushing Copse' (SX802625). The body was lifted regularly and beaten over a collecting tray, initially every week, then fortnightly and then monthly until early October. In addition, two pitfall traps were installed just beside the corpse, with a small amount of preservative in each. These were emptied each time the site was visited. 3. Water beetles sampled on 28th October, together with Tony Allen and Clive Turner, from the ponds and wheel-rut puddles on Berryman's Marsh (SX799615). Other work again included the contents of the nest boxes from Dartington Hills and Berrymans Marsh at the end of October, thanks to Mike Newby and his volunteer helpers. 2. Results In all, 203 beetle species were recorded in 2015, of which 85 (41.8%) were additions to the Dartington list. This increase over the 32% new in 2014 (Luff, 2015) results partly from sampling habitats (carrion, fresh-water) not previously examined.
    [Show full text]
  • Aquatic Ecosystems and Invertebrates of the Grand Staircase-Escalante National Monument Cooperative Agreement Number JSA990024 Annual Report of Activities for 2000
    Aquatic Ecosystems and Invertebrates of the Grand Staircase-Escalante National Monument Cooperative Agreement Number JSA990024 Annual Report of Activities for 2000 Mark Vinson National Aquatic Monitoring Center Department of Fisheries and Wildlife Utah State University Logan, Utah 84322-5210 www.usu.edu/buglab 1 April 2001 i Table of contents Page Foreword ........................................................................... i Introduction ........................................................................ 1 Study area ......................................................................... 1 Long-term repeat sampling sites ........................................................ 2 Methods Locations and physical habitat ................................................... 3 Aquatic invertebrates Qualitative samples...................................................... 3 Quantitative samples ..................................................... 4 Laboratory methods ........................................................... 4 Results Sampling locations............................................................ 5 Habitat types................................................................. 6 Water temperatures ........................................................... 8 Aquatic invertebrates .......................................................... 8 Literature cited..................................................................... 13 Appendices 1. Aquatic invertebrates collected in the major habitats A. Alcove pools ......................................................
    [Show full text]