Petrography and Geochemistry of the Holocene Monogenetic Bayuda Volcanic Field, Sudan: Insights Into the Magma Plumbing System
Total Page:16
File Type:pdf, Size:1020Kb
Petrography and geochemistry of the Holocene monogenetic Bayuda Volcanic Field, Sudan: Insights into the magma plumbing system Faculty of Natural and Agricultural Sciences University of Pretoria Research project submitted in partial fulfilment of the requirements for the degree of: MSc (Masters) In Geology Francois Jacobus Petrus Lötter Supervisor: Dr Nils Lenhardt Co-Supervisors: Prof. Lothar Viereck (Friedrich-Schiller-University Jena, Germany) Dr Mohammed Altigani (Al Neelain University Khartoum, Sudan) 16 March 2020 i © University of Pretoria DECLARATION OF ORIGINALITY UNIVERSITY OF PRETORIA Full names of student: Francois Jacobus Petrus Lötter Topic of work: The Bayuda Monogenetic Volcanic Field Declaration 1. I understand what plagiarism is and am aware of the University’s policy in this regard. 2. I declare that this thesis is my own original work. Where other people’s work has been used (either from a printed source, Internet or any other source), this has been properly acknowledged and referenced in accordance with departmental requirements. 3. I have not used work previously produced by another student or any other person to hand in as my own. 4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as his or her own work. SIGNATURE FJP Lötter ii © University of Pretoria Abstract The Bayuda monogenetic volcanic field (BMVF) is an active, understudied Holocene volcanic field located in the great bend of the Nile, Sudan. The BMVF’s location provides an excellent opportunity to study monogenetic volcanism in an African context. Recent studies have shown that monogenetic volcanoes can have more intricate plumbing systems than initially thought. The project sets out to provide a general description and genesis of the BMVF emphasising the plumbing system. Petrography reveals olivine and clinopyroxene as the main phenocryst phases in a groundmass of predominantly plagioclase and subordinate pyroxene and olivine microcrysts. A significant amount of crystals display pronounced disequilibrium textures alongside sector and oscillatory zoning. Major and trace elements indicate that the BMVF is sodic-alkaline, resembling an OIB signature. Melting models that use partitioning coefficients of Zr, Hf and Nb in phenocrysts estimate 2-4% melting of a metasomatised garnet pyroxenite at a depth of ~2.8GPa as the source melt for the BMVF. The isotopic signature suggests mixing of an enriched mantle component (HIMU) and a depleted mantle component (DMM). Textural evidence alongside KD (Fe-Mg) of olivine indicate open system dynamics by revealing separate magma batches with differing times and depths of emplacement. Ni, Ca and Mn content of olivine, furthers the idea of open system dynamics by revealing processes of 1) ‘failed eruptions’, 2) magma mixing and 3) deep-seated fractionation. This project forms part of a growing number of studies that suggest complex plumbing system for monogenetic volcanic fields. Keywords: African volcanism; Cenozoic volcanism; monogenetic volcanism; complex plumbing system; open system dynamics. iii © University of Pretoria Acknowledgements I would first like to thank my main supervisor, Dr Nils Lenhardt, for all the support, guidance and opportunities throughout this project. The project (and the “legendary, fictional Chapter 5”) would have been dead in the water if it weren’t for his excellent knowledge on volcanology and openness to ideas and debates. Thanks to Dr Mohammed Altegani for sending all samples and helpful guidance in understanding the overall geology of Sudan. I would also like to thank Prof Lothar Viereck for his in-depth contributions (and patience) and greatly furthering my understanding of the geochemical aspects of the project. I would like to thank Prof Carstens Münker of the University of Cologne who graciously granted me access to their clean lab facilities and showed me the ropes of isotope geochemistry. A special thanks to Chris S. Marien for taking the time to help with all the chemistry, using the ICP-MS and showing me around Cologne. Alongside Chris, I would like to thank Sepp (Sebastian) and Erik for making my time in Cologne very enjoyable. I owe gratitude to my University of Pretoria colleagues, Kyle Lusted, Nicholas Fraser and Salazzle, for all the shenanigans and high jinks. If it weren’t for them, I probably would have finished a year earlier. I would also like to thank my parents, Casper- and Sunette Lötter, for their financial and moral support, which without I would not have been able complete this project and pursue my dreams. Lastly, I would like to thank Alice who supported me through it all. iv © University of Pretoria 'n Handvol gruis uit die Hantam - My liewe, lekker Hantam-wyk! 'n Handvol gruis en gedroogde blare, Waboom-blare, ghnarrabos-blare! Arm was ek gister, en nou is ek ryk. Arm in herinnering, arm in verbeelding, Arm in onthou van die vroeër jare Deurgebring in die Hantam-wyk. 'n Handvol gras en gedroogde blare Maak my, wat arm was, koning-ryk - Ryk in herinnering, ryk in verbeelding, Ryk in onthou van die vroeër tyd Toe die Hantam-wêreld al die wêreld Vir my was in die vroeër tyd. 'n Handvol gruis en gedroogde blare Vertel so veel van die wonderjare In my liewe lekker Hantam-wyk - Waboom-blare, ghnarrabos-blare - Arm eergister en nou skatryk! C. Louis Leipoldt v © University of Pretoria Table of Contents 1 Introduction ........................................................................................................................ 1 2 Geological Background ..................................................................................................... 5 2.1 Geology of North East Africa ..................................................................................... 5 2.1.1 The assemblage of the North African and Arabian crust ..................................... 5 2.1.2 The Bayuda desert basement ............................................................................... 8 2.2 Cenozoic Volcanism in Africa and Arabia ................................................................. 9 2.2.1 The Bayuda Monogenetic volcanic field ............................................................. 9 2.2.2 The Darfur Volcanic complex ........................................................................... 11 2.2.3 The Harrat Rahat ................................................................................................ 12 3 Materials and Methods ..................................................................................................... 13 3.1 Thin Sections ............................................................................................................. 15 3.2 X-ray Florescence (XRF) .......................................................................................... 15 3.3 X-ray Diffraction (XRD) ........................................................................................... 15 3.4 Inductively Coupled Plasma Mass Spectrometry (ICP-MS)..................................... 16 3.5 Electron Microprobe Analyser (EMPA) ................................................................... 16 3.6 Isotopes...................................................................................................................... 16 3.7 Maps and Images ....................................................................................................... 17 3.8 Dataset used for comparison ..................................................................................... 17 4 Results .............................................................................................................................. 18 4.1 Petrography of the BMVF ......................................................................................... 18 4.1.1 Volcano CC6 ...................................................................................................... 18 4.1.2 Volcano CC7 ...................................................................................................... 20 4.1.3 Volcano CC9 ...................................................................................................... 20 4.1.4 Volcano CC10 .................................................................................................... 23 4.1.5 Volcano CC44 .................................................................................................... 23 4.1.6 Volcano CC48 .................................................................................................... 26 4.1.7 Volcano CC53 .................................................................................................... 29 4.1.8 Lava flow: DX1 ................................................................................................. 29 4.1.9 Lava flow: DX2 ................................................................................................. 31 vi © University of Pretoria 4.1.10 Lava flow: DX3 ................................................................................................. 33 4.1.11 Volcano M3 ....................................................................................................... 33 4.1.12 Volcano M5 ....................................................................................................... 35 4.1.13 Volcano M6 ....................................................................................................... 36 4.1.14 Volcano M7 ....................................................................................................... 39 4.1.15