Evolution of the Insertion-Deletion Mutation Rate Across the Tree of Life
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DNA Insertion Mutations Can Be Predicted by a Periodic Probability
Research article DNA insertion mutations can be predicted by a periodic probability function Tatsuaki Tsuruyama1 1Department of Pathology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Running title: Probability prediction of mutation Correspondence to: Tatsuaki Tsuruyama Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Tel.: +81-75-751-3488; Fax: +81-75-761-9591 E-mail: [email protected] 1 Abstract It is generally difficult to predict the positions of mutations in genomic DNA at the nucleotide level. Retroviral DNA insertion is one mode of mutation, resulting in host infections that are difficult to treat. This mutation process involves the integration of retroviral DNA into the host-infected cellular genomic DNA following the interaction between host DNA and a pre-integration complex consisting of retroviral DNA and integrase. Here, we report that retroviral insertion sites around a hotspot within the Zfp521 and N-myc genes can be predicted by a periodic function that is deduced using the diffraction lattice model. In conclusion, the mutagenesis process is described by a biophysical model for DNA–DNA interactions. Keywords: Insertion, mutagenesis, palindromic sequence, retroviral DNA 2 Text Introduction Extensive research has examined retroviral insertions to further our understanding of DNA mutations. Retrovirus-related diseases, including leukemia/lymphoma and AIDS, develop after retroviral genome insertion into the genomic DNA of the infected host cell. Retroviral DNA insertion is one of the modes of insertional mutation. After reverse-transcription of the retroviral genomic RNA into DNA, the retroviral DNA forms a pre-insertion complex (PIC) with the integrase enzyme, which catalyzes the insertion reaction. -
Random Mutation and Natural Selection in Competitive and Non-Competitive Environments
ISSN: 2574-1241 Volume 5- Issue 4: 2018 DOI: 10.26717/BJSTR.2018.09.001751 Alan Kleinman. Biomed J Sci & Tech Res Mini Review Open Access Random Mutation and Natural Selection In Competitive and Non-Competitive Environments Alan Kleinman* Department of Medicine, USA Received: : September 10, 2018; Published: September 18, 2018 *Corresponding author: Alan Kleinman, PO BOX 1240, Coarsegold, CA 93614, USA Abstract Random mutation and natural selection occur in a variety of different environments. Three of the most important factors which govern the rate at which this phenomenon occurs is whether there is competition between the different variants for the resources of the environment or not whether the replicator can do recombination and whether the intensity of selection has an impact on the evolutionary trajectory. Two different experimental models of random mutation and natural selection are analyzed to determine the impact of competition on random mutation and natural selection. One experiment places the different variants in competition for the resources of the environment while the lineages are attempting to evolve to the selection pressure while the other experiment allows the lineages to grow without intense competition for the resources of the environment while the different lineages are attempting to evolve to the selection pressure. The mathematics which governs either experiment is discussed, and the results correlated to the medical problem of the evolution of drug resistance. Introduction important experiments testing the RMNS phenomenon. And how Random mutation and natural selection (RMNS) are a does recombination alter the evolutionary trajectory to a given phenomenon which works to defeat the treatments physicians use selection pressure? for infectious diseases and cancers. -
DNA Sequence Insertion and Evolutionary Variation in Gene Regulation (Mobile Elements/Long Terminal Repeats/Alu Sequences/Factor-Binding Sites) Roy J
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 9374-9377, September 1996 Colloquium Paper This paper was presented at a colloquium entitled "Biology of Developmental Transcription Control, " organized by Eric H. Davidson, Roy J. Britten, and Gary Felsenfeld, held October 26-28, 1995, at the National Academy of Sciences in Irvine, CA. DNA sequence insertion and evolutionary variation in gene regulation (mobile elements/long terminal repeats/Alu sequences/factor-binding sites) RoY J. BRITrEN Division of Biology, California Institute of Technology, 101 Dahlia Avenue, Corona del Mar, CA 92625 ABSTRACT Current evidence on the long-term evolution- 3 and 4). Sequence change, obscuring the original structure, ary effect of insertion of sequence elements into gene regions has occurred in the long history, and the underlying rate of is reviewed, restricted to cases where a sequence derived from base substitution that is responsible is known (5). a past insertion participates in the regulation of expression of The requirements for a convincing example are: (i) that a useful gene. Ten such examples in eukaryotes demonstrate there be a trace of a known class of elements present in gene that segments of repetitive DNA or mobile elements have been region; (ii) that there is evidence that it has been there long inserted in the past in gene regions, have been preserved, enough to not just be a transient mutation; (iii) that some sometimes modified by selection, and now affect control of sequence residue of the mobile element or repeat participates transcription ofthe adjacent gene. Included are only examples in regulation of expression of the gene; (iv) that the gene have in which transcription control was modified by the insert. -
Plant Evolution an Introduction to the History of Life
Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular. -
Insertion Element (IS1 Insertion Sequence/Chloramphenicol Resistance Transposon Tn9/Integrative Recombination) L
Proc. Nati. Acad. Sci. USA Vol. 75, No. 3, pp. 1490-1494, March 1978 Genetics Chromosomal integration of phage X by means of a DNA insertion element (IS1 insertion sequence/chloramphenicol resistance transposon Tn9/integrative recombination) L. A. MACHATTIE AND J. A. SHAPIRO Department of Microbiology, University of Chicago, Chicago, Illinois 60637 Communicated by Albert Dorfman, January 10, 1978 ABSTRACT Phage Xcamll2, which contains the chlor- carries a deletion of the gal-attB-bio region of the Escherichia amphenicol resistance transposon Tn9 and has a deletion of attP coil chromosome. MGBO is a gal+bio+ transductant of and the int gene, will lysogenize Escherichia coli K-12. Pro- phage integration occurs at different chromosomal sites, in- MADO. MS6 is a galE indicator for detection of XgalE + T- cluding lacYand maiB, but not at attB. All Xcamll2 prophages transducing particles and S1653 is a gal deletion strain for de- are excised from the chromosome after induction but with tection of Xgal + particles (3). Strain 200PS is a thi lacY strain various efficiencies for different locations. Heteroduplex from the Pasteur collection. Strain QL carries a complete lac analysis of XplacZ transducing phages isolated from a lacY:: deletion, strain X9003 carries the nonpolar M15 lacZ deletion, Xcamll2 prophage reveals an insertion sequence 1 (IS1) element and either will serve as indicator for XplacZ phage in a blue at theloint of viral and chromosomal DNA. Two lines of evi- dencekdicate that Xcamll2 encodes an excision activity that plaque assay (8). recognizes the ISI element: (i) prophage derepression increases Media. Our basic minimal medium and complete TYE the frequency of excision from IacYto yield lac+ revertants, and medium have been described (9). -
Gene Therapy Glossary of Terms
GENE THERAPY GLOSSARY OF TERMS A • Phase 3: A phase of research to describe clinical trials • Allele: one of two or more alternative forms of a gene that that gather more information about a drug’s safety and arise by mutation and are found at the same place on a effectiveness by studying different populations and chromosome. different dosages and by using the drug in combination • Adeno-Associated Virus: A single stranded DNA virus that has with other drugs. These studies typically involve more not been found to cause disease in humans. This type of virus participants.7 is the most frequently used in gene therapy.1 • Phase 4: A phase of research to describe clinical trials • Adenovirus: A member of a family of viruses that can cause occurring after FDA has approved a drug for marketing. infections in the respiratory tract, eye, and gastrointestinal They include post market requirement and commitment tract. studies that are required of or agreed to by the study • Adeno-Associated Virus Vector: Adeno viruses used as sponsor. These trials gather additional information about a vehicles for genes, whose core genetic material has been drug’s safety, efficacy, or optimal use.8 removed and replaced by the FVIII- or FIX-gene • Codon: a sequence of three nucleotides in DNA or RNA • Amino Acids: building block of a protein that gives instructions to add a specific amino acid to an • Antibody: a protein produced by immune cells called B-cells elongating protein in response to a foreign molecule; acts by binding to the • CRISPR: a family of DNA sequences that can be cleaved by molecule and often making it inactive or targeting it for specific enzymes, and therefore serve as a guide to cut out destruction and insert genes. -
Local Drift Load and the Heterosis of Interconnected Populations
Heredity 84 (2000) 452±457 Received 5 November 1999, accepted 9 December 1999 Local drift load and the heterosis of interconnected populations MICHAEL C. WHITLOCK*, PAÈ R K. INGVARSSON & TODD HATFIELD Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 We use Wright's distribution of equilibrium allele frequency to demonstrate that hybrids between populations interconnected by low to moderate levels of migration can have large positive heterosis, especially if the populations are small in size. Bene®cial alleles neither ®x in all populations nor equilibrate at the same frequency. Instead, populations reach a mutation±selection±drift±migration balance with sucient among-population variance that some partially recessive, deleterious mutations can be masked upon crossbreeding. This heterosis is greatest with intermediate mutation rates, intermediate selection coecients, low migration rates and recessive alleles. Hybrid vigour should not be taken as evidence for the complete isolation of populations. Moreover, we show that heterosis in crosses between populations has a dierent genetic basis than inbreeding depression within populations and is much more likely to result from alleles of intermediate eect. Keywords: deleterious mutations, heterosis, hybrid ®tness, inbreeding depression, migration, population structure. Introduction genetic drift, producing ospring with higher ®tness than the parents (see recent reviews on inbreeding in Crow (1948) listed several reasons why crosses between Thornhill, 1993). Decades of work in agricultural individuals from dierent lines or populations might genetics con®rms this pattern: when divergent lines are have increased ®tness relative to more `pure-bred' crossed their F1 ospring often perform substantially 1individuals, so-called `hybrid vigour'. Crow commented better than the average of the parents (Falconer, 1981; on many possible mechanisms behind hybrid vigour, Mather & Jinks, 1982). -
Adaptive Tuning of Mutation Rates Allows Fast Response to Lethal Stress In
Manuscript 1 Adaptive tuning of mutation rates allows fast response to lethal stress in 2 Escherichia coli 3 4 a a a a a,b 5 Toon Swings , Bram Van den Bergh , Sander Wuyts , Eline Oeyen , Karin Voordeckers , Kevin J. a,b a,c a a,* 6 Verstrepen , Maarten Fauvart , Natalie Verstraeten , Jan Michiels 7 8 a 9 Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Kasteelpark Arenberg 20, 10 3001 Leuven, Belgium b 11 VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie (VIB) Bioincubator 12 Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium c 13 Smart Systems and Emerging Technologies Unit, imec, Kapeldreef 75, 3001 Leuven, Belgium * 14 To whom correspondence should be addressed: Jan Michiels, Department of Microbial and 2 15 Molecular Systems (M S), Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 16 2460, 3001 Leuven, Belgium, [email protected], Tel: +32 16 32 96 84 1 Manuscript 17 Abstract 18 19 While specific mutations allow organisms to adapt to stressful environments, most changes in an 20 organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often 21 considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in 22 cellular mutation rates as a response to changes in selective pressure. We show that hypermutation 23 independently evolves when different Escherichia coli cultures adapt to high ethanol stress. 24 Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation 25 rate. Specifically, population mutation rates rise when cells experience higher stress and decline again 26 once cells are adapted. -
Microevolution and the Genetics of Populations Microevolution Refers to Varieties Within a Given Type
Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift. -
•How Does Microevolution Add up to Macroevolution? •What Are Species
Microevolution and Macroevolution • How does Microevolution add up to macroevolution? • What are species? • How are species created? • What are anagenesis and cladogenesis? 1 Sunday, March 6, 2011 Species Concepts • Biological species concept: Defines species as interbreeding populations reproductively isolated from other such populations. • Evolutionary species concept: Defines species as evolutionary lineages with their own unique identity. • Ecological species concept: Defines species based on the uniqueness of their ecological niche. • Recognition species concept: Defines species based on unique traits or behaviors that allow members of one species to identify each other for mating. 2 Sunday, March 6, 2011 Reproductive Isolating Mechanisms • Premating RIMs Habitat isolation Temporal isolation Behavioral isolation Mechanical incompatibility • Postmating RIMs Sperm-egg incompatibility Zygote inviability Embryonic or fetal inviability 3 Sunday, March 6, 2011 Modes of Evolutionary Change 4 Sunday, March 6, 2011 Cladogenesis 5 Sunday, March 6, 2011 6 Sunday, March 6, 2011 7 Sunday, March 6, 2011 Evolution is “the simple way by which species (populations) become exquisitely adapted to various ends” 8 Sunday, March 6, 2011 All characteristics are due to the four forces • Mutation creates new alleles - new variation • Genetic drift moves these around by chance • Gene flow moves these from one population to the next creating clines • Natural selection increases and decreases them in frequency through adaptation 9 Sunday, March 6, 2011 Clines -
The Origin, Evolution, and Functional Impact of Short Insertion–Deletion Variants Identified in 179 Human Genomes
Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Research The origin, evolution, and functional impact of short insertion–deletion variants identified in 179 human genomes Stephen B. Montgomery,1,2,3,14,16 David L. Goode,3,14,15 Erika Kvikstad,4,13,14 Cornelis A. Albers,5,6 Zhengdong D. Zhang,7 Xinmeng Jasmine Mu,8 Guruprasad Ananda,9 Bryan Howie,10 Konrad J. Karczewski,3 Kevin S. Smith,2 Vanessa Anaya,2 Rhea Richardson,2 Joe Davis,3 The 1000 Genomes Pilot Project Consortium, Daniel G. MacArthur,5,11 Arend Sidow,2,3 Laurent Duret,4 Mark Gerstein,8 Kateryna D. Makova,9 Jonathan Marchini,12 Gil McVean,12,13 and Gerton Lunter13,16 1–13[Author affiliations appear at the end of the paper.] Short insertions and deletions (indels) are the second most abundant form of human genetic variation, but our un- derstanding of their origins and functional effects lags behind that of other types of variants. Using population-scale sequencing, we have identified a high-quality set of 1.6 million indels from 179 individuals representing three diverse human populations. We show that rates of indel mutagenesis are highly heterogeneous, with 43%–48% of indels occurring in 4.03% of the genome, whereas in the remaining 96% their prevalence is 16 times lower than SNPs. Polymerase slippage can explain upwards of three-fourths of all indels, with the remainder being mostly simple de- letions in complex sequence. However, insertions do occur and are significantly associated with pseudo-palindromic sequence features compatible with the fork stalling and template switching (FoSTeS) mechanism more commonly as- sociated with large structural variations. -
Mutation Versus Variant?
GUEST EDITORIAL Garry Cutting What’s in a Name: Mutation versus Variant? Effective communication between scientists and the public requires word (Condit et al., 2002). The problem of inferring delete- the use of words that have well-understood meanings. Similarly, rious consequences when using the term “mutation” is that some use of a word that means one thing to scientists but something changes in DNA are advantageous from an evolutionary point Downloaded from http://online.ucpress.edu/abt/article-pdf/77/3/160/58360/abt_2015_77_3_1.pdf by guest on 02 October 2021 else to the lay public can lead to confusion. This situation can arise of view. On the other hand, “variant” is usually defined in terms when words change in their meaning over time in scientific cir- of an organism that differs in some way from an accepted stan- cles but not among the public, and vice versa. On occasion, disso- dard. “Variant” can also be used for phenotypic differences that nance between scientific and societal definitions can cause terms to are not genetic (King & Stansfield, 2002). The application of the acquire a stigma. This issue is particularly important when scientific term “variant” to changes in DNA structure was popularized by terms are used in medical situations. Certain words may invoke genome-wide association studies of common disorders. “Variant” a very different impression for a patient than was intended by a as opposed to “mutation” is preferred because most of the DNA medical professional. For example, the term “mental retardation” alterations that contribute risk to complex genetic conditions are is defined scientifically on the basis of the population distribution of unknown effect and are frequent in the population.