Under the Direction of Dr

Total Page:16

File Type:pdf, Size:1020Kb

Under the Direction of Dr ABSTRACT COPE, WILLIAM ROBERT. Status, Trends, Habitat, and Genetics of the Endemic Carolina Madtom. (Under the direction of Dr. Thomas J. Kwak) Nongame fishes contribute to diversity and important ecological functions in freshwater ecosystems, but many are imperiled, and their status and ecology are poorly understood. Instream habitat loss and degradation are major threats among nongame species as degraded and fragmented habitat affects fish directly, but also divides species into multiple small populations, which may be at greater risk for loss of genetic variation or extirpation. One such imperiled, nongame species is the Carolina Madtom (Noturus furiosus), a small catfish endemic to the Tar and Neuse river basins of North Carolina. Systematic surveying has shown declines in Carolina Madtom populations, and as such, the species is listed as State Threatened. Although populations are declining, the Carolina Madtom has been sparsely studied, with only three major surveying events describing and assessing extant population status, and no genetic research has been conducted on the remaining populations. The objectives of this research were to assess the population status, microhabitat use, and genetic structure of the Carolina Madtom to inform protective listing and management decisions for this understudied species. We snorkel surveyed for Carolina Madtoms at 75 sites in the Tar and Neuse river basins during 2016 and 2017. Microhabitat data were collected at all surveyed sites and at points-of-capture for all Carolina Madtoms. Additionally, artificial cover units were constructed and deployed at 8 sites to determine if they could be an effective passive sampling technique for Carolina Madtoms. All captured Carolina Madtoms were fin-clipped for genetic structure and diversity analyses. We collected 59 Carolina Madtoms during snorkel surveys in the Tar River basin, whereas no fish were collected from the Neuse River basin. Occupancy modeling estimated Carolina Madtom occupancy probability at 0.35 and detection probability at 0.81, with dominant substrate particle size affecting occupancy and mean-column water velocity affecting detection probability. Analysis of microhabitat use and available microhabitat among sites found that Carolina Madtoms nonrandomly select microhabitat. Habitat suitability functions were developed, and we determined the most suitable ranges of microhabitat parameters for Carolina Madtom occupancy. Comparison of available suitable habitat in the Tar and Neuse river basins determined that adequate suitable habitat was available in the Neuse River basin. Thirty Carolina Madtoms were collected from artificial cover units at 2 sites in the Tar River basin. Occupancy modeling estimated Carolina Madtom detection probability using artificial cover units at 0.92. Compared to other standardized survey methods, artificial cover units were found to be an efficient, passive sampling technique for detecting Carolina Madtoms. Observations also revealed that artificial cover units were used in reproduction by Carolina Madtoms. Using 10 microsatellite primers developed for the related Yellowfin Madtom (Noturus flavipinnis), we successfully identified genetic structure of the Carolina Madtom. Resulting analyses quantified low genetic diversity in the species. Mean M-ratios for the Tar and Neuse river basin populations indicated that both populations have experienced demographic bottlenecks, and effective population size (Ne) estimates for the respective populations were small, indicating low genetic diversity within populations. However, multilocus population differentiation metrics G’EST and DEST were significantly different from zero indicating significant genetic variation between the Tar and Neuse river basin populations. The application of these results may inform natural resource managers on the status of the extant populations, habitat use, and genetic structure of the Carolina Madtom and guide planning toward informed protective listing and management decisions to maintain the viability of this important endemic species. © Copyright 2018 by William Robert Cope All Rights Reserved Status, Trends, Habitat, and Genetics of the Endemic Carolina Madtom by William Robert Cope A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Master of Science Fisheries, Wildlife, and Conservation Biology Raleigh, North Carolina 2018 APPROVED BY: _____________________________ _____________________________ Dr. Thomas J. Kwak Dr. Tyler R. Black Chair of Advisory Committee _____________________________ Dr. Krishna Pacifici DEDICATION To my parents and family. Thank you for the support, encouragement, and love — I wouldn’t be where I am without you. ii BIOGRAPHY I was born in La Crosse, Wisconsin, in 1993, but I moved to North Carolina at the age of four and have lived here ever since. My interests in aquatic fauna began long ago, as I grew up fishing with my family all over the place, in ponds, lakes, and rivers. As I grew older, my love for fish and other aquatic life only became stronger. With the aid of my father, I had numerous opportunities to explore the field. At the age of 14, I was already working with freshwater mollusks as part of a North Carolina Wildlife Resource Commission research project. From there, my experience only grew. I participated in summer research internships with Dr. Damian Shea and Dr. Tom Kwak at North Carolina State University, assisting graduate students and fellow researchers on a variety of freshwater fish and mollusk ecology and toxicology projects while attending Apex High School. I graduated from Apex High School in 2011 and was accepted into the Honors College at East Carolina University. I already knew fisheries science was my passion, but my time at East Carolina was invaluable in furthering my knowledge of aquatic systems and helping prepare me for a future in fisheries. A requirement of the Honors College was the completion of an undergraduate thesis, and with the help of Dr. Joe Luczkovich, I researched and wrote a report on the diet composition of two co-occurring, closely-related Silverside species in the Pamlico and Albemarle sounds of North Carolina. This project also gave me a chance to get a glimpse into the professional fisheries world, as I was able to present this research at an annual Tidewater Chapter of the American Fisheries Society meeting. I graduated from East Carolina in 2015 with a B.S. in Biology, and I accepted this M.S. position with Dr. Kwak at NC State. My time here has been an amazing experience. I have spent the past three years learning much about fisheries science and how to achieve as a fisheries iii professional through taking classes, conducting research, and presenting research at multiple American Fisheries Society meetings, as well as serving as President of the NC State Student Fisheries Society. I hope to continue my education after completing this degree and am positive my experiences at NC State have helped me become a better researcher and scientist so that I may pursue a professional career in aquatic sciences after I finish my academic career. iv ACKNOWLEDGEMENTS First, I would like to thank my advisor, Dr. Tom Kwak, for his continuous guidance and support. I have grown as a person and a biologist as a result of your teachings and encouragement over the many years of working and researching with you. I would also like to thank Dr. Krishna Pacifici and Dr. Tyler Black who have been fantastic mentors and committee members. Thank you both for the guidance and assistance in the background research, long field work hours, methodology, and analyses to ensure we completed the most accurate research possible. All your mentorship and advice has been invaluable and has helped me become a better fisheries researcher. I would also like to acknowledge numerous individuals who provided immense support on this project. Thanks to Dr. Eric Hallerman and his students, Shelia Harris and Caitlin Miller, at Virginia Tech University for their support with the genetic analyses and guiding me through the murky waters of conservation genetics. Thanks also to the North Carolina Wildlife Resources Commission biologists who assisted in making this project successful. I am grateful to Chris Wood for the insight and prior knowledge on the Carolina Madtom, ensuring I had all the necessary information to successfully survey the species and to Tom Fox and his field technicians who spent many long hours on the river with me searching for a seemingly invisible fish. Thank you to my two awesome field technicians, Will Wood and Joseph McIver, for putting up with my nonsense for months on end and keeping a positive attitude and hardworking mentality even with the long hours, uncooperative weather, and a lack of fish that would drive anybody insane. Thanks to Ruby Valeton for the support and for keeping things moving smoothly on the administrative front, and also to Spencer Gardner, Tiffany Penland, Gus Engman, Sean Buczek, Jennifer Archambault, and the rest of the NC State University professors, staff, graduate, and undergraduate students that helped and supported me throughout my time here at NC State. A v special thanks to Stephen Parker and Emilee Briggs for being the best friends and colleagues a person could want and for supporting and challenging me to be the best researcher possible, while keeping me sane during the arduous process of writing a thesis — you two are the best. I would like to thank my family for being a constant source of support, encouragement, and love. Having a support group just a short drive away has been a blessing during the trying times during research and writing and I would not be the person I am today without your guidance. I thank you all for always pushing me to do my best, be the best person possible, and encouraging me to take risks and shoot for the stars. Finally, I would like to acknowledge the various agencies that made this project possible. I would like to thank the North Carolina Wildlife Resources Commission for funding the project under the State Wildlife Grants program and specifically Todd Ewing for grant administration.
Recommended publications
  • Docket No. FWS–HQ–ES–2019–0009; FF09E21000 FXES11190900000 167]
    This document is scheduled to be published in the Federal Register on 10/10/2019 and available online at https://federalregister.gov/d/2019-21478, and on govinfo.gov DEPARTMENT OF THE INTERIOR Fish and Wildlife Service 50 CFR Part 17 [Docket No. FWS–HQ–ES–2019–0009; FF09E21000 FXES11190900000 167] Endangered and Threatened Wildlife and Plants; Review of Domestic and Foreign Species That Are Candidates for Listing as Endangered or Threatened; Annual Notification of Findings on Resubmitted Petitions; Annual Description of Progress on Listing Actions AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of review. SUMMARY: In this candidate notice of review (CNOR), we, the U.S. Fish and Wildlife Service (Service), present an updated list of plant and animal species that we regard as candidates for or have proposed for addition to the Lists of Endangered and Threatened Wildlife and Plants under the Endangered Species Act of 1973, as amended. Identification of candidate species can assist environmental planning efforts by providing advance notice of potential listings, and by allowing landowners and resource managers to alleviate threats and thereby possibly remove the need to list species as endangered or threatened. Even if we subsequently list a candidate species, the early notice provided here could result in more options for species management and recovery by prompting earlier candidate conservation measures to alleviate threats to the species. This document also includes our findings on resubmitted petitions and describes our 1 progress in revising the Lists of Endangered and Threatened Wildlife and Plants (Lists) during the period October 1, 2016, through September 30, 2018.
    [Show full text]
  • Indiana Species April 2007
    Fishes of Indiana April 2007 The Wildlife Diversity Section (WDS) is responsible for the conservation and management of over 750 species of nongame and endangered wildlife. The list of Indiana's species was compiled by WDS biologists based on accepted taxonomic standards. The list will be periodically reviewed and updated. References used for scientific names are included at the bottom of this list. ORDER FAMILY GENUS SPECIES COMMON NAME STATUS* CLASS CEPHALASPIDOMORPHI Petromyzontiformes Petromyzontidae Ichthyomyzon bdellium Ohio lamprey lampreys Ichthyomyzon castaneus chestnut lamprey Ichthyomyzon fossor northern brook lamprey SE Ichthyomyzon unicuspis silver lamprey Lampetra aepyptera least brook lamprey Lampetra appendix American brook lamprey Petromyzon marinus sea lamprey X CLASS ACTINOPTERYGII Acipenseriformes Acipenseridae Acipenser fulvescens lake sturgeon SE sturgeons Scaphirhynchus platorynchus shovelnose sturgeon Polyodontidae Polyodon spathula paddlefish paddlefishes Lepisosteiformes Lepisosteidae Lepisosteus oculatus spotted gar gars Lepisosteus osseus longnose gar Lepisosteus platostomus shortnose gar Amiiformes Amiidae Amia calva bowfin bowfins Hiodonotiformes Hiodontidae Hiodon alosoides goldeye mooneyes Hiodon tergisus mooneye Anguilliformes Anguillidae Anguilla rostrata American eel freshwater eels Clupeiformes Clupeidae Alosa chrysochloris skipjack herring herrings Alosa pseudoharengus alewife X Dorosoma cepedianum gizzard shad Dorosoma petenense threadfin shad Cypriniformes Cyprinidae Campostoma anomalum central stoneroller
    [Show full text]
  • United States National Museum Bulletin 282
    Cl>lAat;i<,<:>';i^;}Oit3Cl <a f^.S^ iVi^ 5' i ''*«0£Mi»«33'**^ SMITHSONIAN INSTITUTION MUSEUM O F NATURAL HISTORY I NotUTus albater, new species, a female paratype, 63 mm. in standard length; UMMZ 102781, Missouri. (Courtesy Museum of Zoology, University of Michigan.) UNITED STATES NATIONAL MUSEUM BULLETIN 282 A Revision of the Catfish Genus Noturus Rafinesque^ With an Analysis of Higher Groups in the Ictaluridae WILLIAM RALPH TAYLOR Associate Curator, Division of Fishes SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1969 IV Publications of the United States National Museum The scientific publications of the United States National Museum include two series, Proceedings of the United States National Museum and United States National Museum Bulletin. In these series are published original articles and monographs dealing with the collections and work of the Museum and setting forth newly acquired facts in the fields of anthropology, biology, geology, history, and technology. Copies of each publication are distributed to libraries and scientific organizations and to specialists and others interested in the various subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, octavo in size, with the publication date of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902, papers relating to the botanical collections of the Museum have been published in the Bulletin series under the heading Contributions from the United States National Herbarium.
    [Show full text]
  • Status Review and Surveys for Frecklebelly Madtom, Noturus Munitus
    Noturus munitus, Buttahatchee R., Lowndes Co., AL Final Report: Status review and surveys for Frecklebelly Madtom, Noturus munitus. David A. Neely, Ph. D. Tennessee Aquarium Conservation Institute 175 Baylor School Rd Chattanooga, TN 37405 Background: The frecklebelly madtom, Noturus munitus, was described by Suttkus & Taylor (1965) based largely on specimens from the Pearl River in Louisiana and Mississippi. At that time, the only other known populations occupied the Cahaba and Upper Tombigbee rivers in Alabama and Mississippi. Populations were subsequently discovered in the Alabama, Etowah, and Conasauga rivers (Bryant et. al., 1979). The disjunct distribution displayed by the species prompted an examination of morphological and genetic differentiation between populations of frecklebelly madtom. Between 1997-2001 I gathered morphological, meristic, and mtDNA sequence data on frecklebelly madtoms from across their range. Preliminary morphological data suggested that while there was considerable morphological variation across the range, the populations in the Coosa River drainage above the Fall Line were the most distinctive population and were diagnosable as a distinct form. I presented a talk on this at the Association of Southeastern Biologists meeting in 1998, and despite the lack of a formal description, the published abstract referring to a "Coosa Madtom" made it into the public 1 eye (Neely et al 1998, Boschung and Mayden 2004). This has resulted in substantial confusion over conservation priorities and the status of this form. The subsequent (and also unpublished) mitochondrial DNA data set, however, suggested that populations were moderately differentiated, shared no haplotypes and were related to one another in the following pattern: Pearl[Tombigbee[Cahaba+Coosa]].
    [Show full text]
  • Environmental Sensitivity Index Guidelines Version 2.0
    NOAA Technical Memorandum NOS ORCA 115 Environmental Sensitivity Index Guidelines Version 2.0 October 1997 Seattle, Washington noaa NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service Office of Ocean Resources Conservation and Assessment National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce The Office of Ocean Resources Conservation and Assessment (ORCA) provides decisionmakers comprehensive, scientific information on characteristics of the oceans, coastal areas, and estuaries of the United States of America. The information ranges from strategic, national assessments of coastal and estuarine environmental quality to real-time information for navigation or hazardous materials spill response. Through its National Status and Trends (NS&T) Program, ORCA uses uniform techniques to monitor toxic chemical contamination of bottom-feeding fish, mussels and oysters, and sediments at about 300 locations throughout the United States. A related NS&T Program of directed research examines the relationships between contaminant exposure and indicators of biological responses in fish and shellfish. Through the Hazardous Materials Response and Assessment Division (HAZMAT) Scientific Support Coordination program, ORCA provides critical scientific support for planning and responding to spills of oil or hazardous materials into coastal environments. Technical guidance includes spill trajectory predictions, chemical hazard analyses, and assessments of the sensitivity of marine and estuarine environments to spills. To fulfill the responsibilities of the Secretary of Commerce as a trustee for living marine resources, HAZMAT’s Coastal Resource Coordination program provides technical support to the U.S. Environmental Protection Agency during all phases of the remedial process to protect the environment and restore natural resources at hundreds of waste sites each year.
    [Show full text]
  • Arkansas Species Listed Under the Endangered Species Act and Pending Evaluations of Other Species
    U.S. Fish & Wildlife Service December 2012 Arkansas Species listed under the Endangered Species Act and Pending Evaluations of Other Species Taxonomic Species in Multi- Species Other Listed Group District Litigation in Mega- Petitioned Species and Other Candidates Petition Species Mammals - - 4 4 Birds 1 1 1 5 Fishes 1 9 1 5 Amphibians - 1 3 1 Plants - 4 - 5 Reptiles - 1 1 - Mussels/ Snails 2 8 - 14 Ouachita Madtom, by Brian Wagner/ Arkansas Game and Fish Commission Crayfish - 9 - 2 Insects - 2 2 1 Total 4 35 12 37 Note: All numbers are subject to change based on new petitions, litigation and findings. Legal actions brought under the deadlines have been set for those final Endangered Species Act have listing decisions. dramatically increased the workload of the Southeast Region of the U.S. Fish Mega-Petition Caddo Mountain Salamander, by Stan and Wildlife Service. Under the 1973 Act, The Mega-Petition is a large petition Trauth, Arkansas State University any citizen may petition the Service to list filed in 2010 by several advocacy groups species as threatened or endangered. In that requested the Service to list 404 addition, the Service’s decisions may be aquatic and aquatic-dependent species challenged in a court of law. found mostly in the Southeast. In 2011, the Service determined 374 of those Multi-District Litigation species need to be further evaluated. No and Other Candidates deadlines have been set. In 2009 and 2010, two advocacy groups filed lawsuits related to the Service’s Other Petitions missed deadlines under the Act, and The Service continues to receive other the national backlog of 251 species petitions to list species as threatened or categorized as candidates for the Federal endangered under the Act.
    [Show full text]
  • Information on the NCWRC's Scientific Council of Fishes Rare
    A Summary of the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina Submitted by Bryn H. Tracy North Carolina Division of Water Resources North Carolina Department of Environment and Natural Resources Raleigh, NC On behalf of the NCWRC’s Scientific Council of Fishes November 01, 2014 Bigeye Jumprock, Scartomyzon (Moxostoma) ariommum, State Threatened Photograph by Noel Burkhead and Robert Jenkins, courtesy of the Virginia Division of Game and Inland Fisheries and the Southeastern Fishes Council (http://www.sefishescouncil.org/). Table of Contents Page Introduction......................................................................................................................................... 3 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes In North Carolina ........... 4 Summaries from the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina .......................................................................................................................... 12 Recent Activities of NCWRC’s Scientific Council of Fishes .................................................. 13 North Carolina’s Imperiled Fish Fauna, Part I, Ohio Lamprey .............................................. 14 North Carolina’s Imperiled Fish Fauna, Part II, “Atlantic” Highfin Carpsucker ...................... 17 North Carolina’s Imperiled Fish Fauna, Part III, Tennessee Darter ...................................... 20 North Carolina’s Imperiled Fish Fauna, Part
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Aquatic Fish Report
    Aquatic Fish Report Acipenser fulvescens Lake St urgeon Class: Actinopterygii Order: Acipenseriformes Family: Acipenseridae Priority Score: 27 out of 100 Population Trend: Unknown Gobal Rank: G3G4 — Vulnerable (uncertain rank) State Rank: S2 — Imperiled in Arkansas Distribution Occurrence Records Ecoregions where the species occurs: Ozark Highlands Boston Mountains Ouachita Mountains Arkansas Valley South Central Plains Mississippi Alluvial Plain Mississippi Valley Loess Plains Acipenser fulvescens Lake Sturgeon 362 Aquatic Fish Report Ecobasins Mississippi River Alluvial Plain - Arkansas River Mississippi River Alluvial Plain - St. Francis River Mississippi River Alluvial Plain - White River Mississippi River Alluvial Plain (Lake Chicot) - Mississippi River Habitats Weight Natural Littoral: - Large Suitable Natural Pool: - Medium - Large Optimal Natural Shoal: - Medium - Large Obligate Problems Faced Threat: Biological alteration Source: Commercial harvest Threat: Biological alteration Source: Exotic species Threat: Biological alteration Source: Incidental take Threat: Habitat destruction Source: Channel alteration Threat: Hydrological alteration Source: Dam Data Gaps/Research Needs Continue to track incidental catches. Conservation Actions Importance Category Restore fish passage in dammed rivers. High Habitat Restoration/Improvement Restrict commercial harvest (Mississippi River High Population Management closed to harvest). Monitoring Strategies Monitor population distribution and abundance in large river faunal surveys in cooperation
    [Show full text]
  • Bryan Et Al. 2004
    Environmental Biology of Fishes 70: 80, 2004. © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Threatened fishes of the world: Noturus placidus Taylor, 1969 (Ictaluridae) Janice L. Bryana, Mark L. Wildhaberb & Douglas B. Noltiea aDepartment of Fisheries and Wildlife Sciences, 302 ABNR, University of Missouri-Columbia, Columbia, MO 65211, U.S.A (e-mail: [email protected]) bU.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, MO 65201, U.S.A Common names: Neosho madtom (T). Conservation status: Listed federally as threatened 22 May 1990 (USFWS 1991). Identification: One of 25 madtom species, distinguished from four madtoms in its range by two distinct crescent-shaped bands of pig- ment on caudal fin and lack of dark pigment extending to edge of adipose fin (Taylor 1969). Pectoral spines have poorly developed saw-like teeth on front margin. Fin ray counts: anal rays 13–16 (14.72); pelvic rays 8–12 (9.06), soft pelvic rays 7–9 (7.99); caudal rays 49–59 (54.32); vertebrae: 32–36 (33.62). Adults typically greater than 50 mm TL (Bulger & Edds 2001). Males in spawning condition exhibit swollen cephalic epaxial muscles and elongated genital papil- lae; both sexes exhibit reddened tooth patches during spawning season. Photograph by Janice L. Bryan. Distribution: Endemic to Neosho River basin in Kansas, Missouri, and Oklahoma (Taylor 1969). Species’ range historically extended south to Illinois River in Oklahoma; currently restricted by reservoirs to approximately two-thirds of original range (Moss 1981). Abundance: Large population fluctuations occur seasonally and annually (Moss 1981). In 1 year, Wilkinson et al.
    [Show full text]
  • DISTRIBUTION, ECOLOGY, and REPRODUCTIVE BIOLOGY of the ORANGEFIN MADTOM (NOTURUS GILBERTI) by Timothy Dale Simonson
    DISTRIBUTION, ECOLOGY, AND REPRODUCTIVE BIOLOGY OF THE ORANGEFIN MADTOM (NOTURUS GILBERTI) by Timothy Dale Simonson Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Fisheries and Wildlife Sciences APPROVED: Richard J. Neves, Chair Dona:;[d J. Orth Johm J. Ney Louis A. Hel:frich April 1987 Blacksburg, Virginia DISTRIBUTION, ECOLOGY, AND REPRODUCTIVE BIOLOGY OF THE ORANGEFIN MADTOM (NOTURUS GILBERTI) by Timothy Dale Simonson Richard J. Neves, Chair Fisheries and Wildlife Sciences (ABSTRACT) Distribution of the orangefin madtom (Noturus gilberti) was determined from 347 sites sampled in Virginia and North Carolina. This species inhabited 264 stream kilometers, over twice the reported range, in the following systems: Craig Creek, Roanoke River, Dan River, Big Chestnut Creek, South Mayo River, Pigg River, and Smith River. The orangefin madtom was somewhat common; 33% (Dan River) to 70% (Craig Creek) of the sites sampled were occupied. Negative interspecific associates of orangefin madtoms included chubs, mountain redbelly dace, rosyside dace, crescent shiners, and crayfish; only Roanoke darters were considered positive associates. Sand and silt levels were significantly lower at sites with !L. gilberti, while per- centage of small cobble, local gradient, and depth were sig- nificantly higher. Discriminant function analysis identified large gravel, local gradient, silt, and occurrence of rosyside dace and crayfish, as significant predictors of the occurrence of the orangefin madtom. Seasonal samples from Craig Creek consisted of three age groups. The smallest individual captured was 33 mm total length (TL) and the largest was 111 mm TL.
    [Show full text]
  • Kansas Stream Fishes
    A POCKET GUIDE TO Kansas Stream Fishes ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ By Jessica Mounts Illustrations © Joseph Tomelleri Sponsored by Chickadee Checkoff, Westar Energy Green Team, Kansas Department of Wildlife, Parks and Tourism, Kansas Alliance for Wetlands & Streams, and Kansas Chapter of the American Fisheries Society Published by the Friends of the Great Plains Nature Center Table of Contents • Introduction • 2 • Fish Anatomy • 3 • Species Accounts: Sturgeons (Family Acipenseridae) • 4 ■ Shovelnose Sturgeon • 5 ■ Pallid Sturgeon • 6 Minnows (Family Cyprinidae) • 7 ■ Southern Redbelly Dace • 8 ■ Western Blacknose Dace • 9 ©Ryan Waters ■ Bluntface Shiner • 10 ■ Red Shiner • 10 ■ Spotfin Shiner • 11 ■ Central Stoneroller • 12 ■ Creek Chub • 12 ■ Peppered Chub / Shoal Chub • 13 Plains Minnow ■ Silver Chub • 14 ■ Hornyhead Chub / Redspot Chub • 15 ■ Gravel Chub • 16 ■ Brassy Minnow • 17 ■ Plains Minnow / Western Silvery Minnow • 18 ■ Cardinal Shiner • 19 ■ Common Shiner • 20 ■ Bigmouth Shiner • 21 ■ • 21 Redfin Shiner Cover Photo: Photo by Ryan ■ Carmine Shiner • 22 Waters. KDWPT Stream ■ Golden Shiner • 22 Survey and Assessment ■ Program collected these Topeka Shiner • 23 male Orangespotted Sunfish ■ Bluntnose Minnow • 24 from Buckner Creek in Hodgeman County, Kansas. ■ Bigeye Shiner • 25 The fish were catalogued ■ Emerald Shiner • 26 and returned to the stream ■ Sand Shiner • 26 after the photograph. ■ Bullhead Minnow • 27 ■ Fathead Minnow • 27 ■ Slim Minnow • 28 ■ Suckermouth Minnow • 28 Suckers (Family Catostomidae) • 29 ■ River Carpsucker •
    [Show full text]