Cellulolytic Potential of Thermophilic Species from Four Fungal Orders Peter Kamp Busk* and Lene Lange

Total Page:16

File Type:pdf, Size:1020Kb

Cellulolytic Potential of Thermophilic Species from Four Fungal Orders Peter Kamp Busk* and Lene Lange Busk and Lange AMB Express 2013, 3:47 http://www.amb-express.com/content/3/1/47 ORIGINAL ARTICLE Open Access Cellulolytic potential of thermophilic species from four fungal orders Peter Kamp Busk* and Lene Lange Abstract Elucidation of fungal biomass degradation is important for understanding the turnover of biological materials in nature and has important implications for industrial biomass conversion. In recent years there has been an increasing interest in elucidating the biological role of thermophilic fungi and in characterization of their industrially useful enzymes. In the present study we investigated the cellulolytic potential of 16 thermophilic fungi from the three ascomycete orders Sordariales, Eurotiales and Onygenales and from the zygomycete order Mucorales thus covering all fungal orders that include thermophiles. Thermophilic fungi are the only described eukaryotes that can grow at temperatures above 45°C. All 16 fungi were able to grow on crystalline cellulose but their secreted enzymes showed widely different cellulolytic activities, pH optima and thermostabilities. Interestingly, in contrast to previous reports, we found that some fungi such as Melanocarpus albomyces readily grew on crystalline cellulose and produced cellulases. These results indicate that there are large differences in the cellulolytic potential of different isolates of the same species. Furthermore, all the selected species were able to degrade cellulose but the differences in cellulolytic potential and thermostability of the secretome did not correlate to the taxonomic position. PCR amplification and sequencing of 22 cellulase genes from the fungi showed that the level of thermostability of the cellulose-degrading activity could not be inferred from the phylogenetic relationship of the cellulases. Keywords: Thermophilic fungi; Endoglucanase; Cellobiohydrolase; Cellulolytic potential Introduction respectively from the reducing and from the non-reducing Fungi are important organisms for degradation of plant end of the polymer (Banerjee et al 2010). Additional material in nature. They achieve this by means of secreted industrially used cellulose-degrading enzymes are β- enzymes that are stable even under harsh environmental glucosidases, which degrade β-D-glucose oligomers to conditions. These same properties make the fungal glucose and the GH61 proteins, which boost cellulose enzymes suitable for industrial use. One example is decomposition by oxidative degradation of the glucose fungal cellulases that are deployed in biorefineries for polymer (Harris et al. 2010; Langston et al. 2011; Quinlan conversion of biomass to fermentable sugars and in the et al. 2011; Westereng et al. 2011). paper, textile and detergent industries (Karmakar and Biomass decomposition by mesophilic fungi has been Ray 2011; Kuhad et al. 2011). extensively studied (Dashtban et al. 2009). Whereas The cellulases are classified in the glycoside hydrolase enzymes from mesophilic fungi are typically effective (GH) families (www.cazy.org) (Henrissat and Davies at 50°C several thermophilic fungi produce more 1997). Several different strategies involving many enzyme thermostable enzymes that can be used at temperatures classes are used in natural degradation of recalcitrant up to 70°C (Murray et al. 2004; Parry et al. 2002; Venturi biomass (Dashtban et al. 2009). However, industrial use et al. 2002; Voutilainen et al. 2008; Wojtczak et al. 1987). of cellulases has mainly been focused on endo-1,4-β-D- This high temperature stability is an important asset glucanase and two types of cellobiohydrolases acting for industrial use. For example, it has been shown that a mixture of thermostable cellulases exhibits high * Correspondence: [email protected] lignocellulose degrading capacity with a temperature Department of Biotechnology Chemistry and Environmental Engineering, optimum of 65°C (Viikari et al. 2007). Aalborg University, A.C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark © 2013 Busk and Lange; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Busk and Lange AMB Express 2013, 3:47 Page 2 of 10 http://www.amb-express.com/content/3/1/47 The known thermophilic fungi are either ascomycetes to amplify and sequence gene fragments of 22 new belonging to the orders Sordariales, Eurotiales, and cellulases from these fungi. The phylogenetic relationship Onygenales or zygomycetes of the order Mucorales (Berka of the enzymes showed a better correlation to the fungal et al. 2011; Morgenstern et al. 2012). These organisms are order than to the thermostability of the fungal cellulose- the only described eukaryotes that can grow at tempera- degrading activity. tures above 45°C. In nature, thermophilic fungi are typically found in compost, wood chip piles, stored grains, animal Materials and methods dung and other environments that are self-heating due to Fungi and growth conditions degradation of plant materials (Johri et al. 1999). Although Fungi were purchased from Centraalbureau voor Schim- such material often contains high concentrations of cellu- melcultures, Utrecht, The Netherlands (Table 1). Unless lose some thermophilic fungi are poor cellulose-degraders otherwise indicated, growth experiments on different and seem to utilize sugars released by cellulolytic species carbon sources were done essentially as described (Herr in the biotope (Maheshwari et al. 2000). Therefore, 1979). Briefly, the fungi were grown on minimal medium thermophilic fungi can differ greatly in their cellulolytic with 1% glucose for 3 days. Next, 500 μl of this culture was potential. transferred to 5 ml of basal medium supplemented with The thermophilic fungus Thermoascus aurantiacus of the indicated carbon source with or without 0.5% yeast order Eurotiales has been studied intensively. It grows extract. The cultures were incubated with shaking (250 readily on cellulose (Romanelli et al. 1975) and produces rpm) for the time indicated. The growth temperature was thermostable cellulases and other enzymes (Gomes et al. 45°C except for T. emersonii and Scytalidium thermo- 2000; Hong et al. 2003; Hong et al. 2007; Khandke et al. philum that were incubated at 37°C. 1989; Parry et al. 2001; Parry et al. 2002). One of the For DNA purification the fungi were grown on 6% interesting enzymes produced by T. aurantiacus is a wheat bran (Finax, Esbjerg, Denmark), 1.5 % agar (Sigma- copper-dependent monooxygenase of the GH61 family Aldrich, Cambridge, UK) plates at the recommended (Harris et al. 2010). Several GH61 proteins degrade temperature. cellulose by an oxidative mechanism thereby boosting the action of cellulases (Langston et al. 2011; Quinlan Endoglucanase assay et al. 2011; Westereng et al. 2011). The GH61 from T. Endoglucanase activity was measured with Azo-CM-Cellu- aurantiacus exhibits high activity in a boosting assay lose (cat. S-ACMC, Megazyme, Bray, Ireland) as substrate (Harris et al. 2010). The high cellulolytic potential of this in an assay modified from the manufacturer’s protocol. A fungus is underpinned by the report that extracellular culture broth sample of 20 μlwasmixedwith20μlof2% enzymes from T. aurantiacus release the same amount Azo-CM-Cellulose in 2× McIlvaine Buffer (McIlvaine of sugars from pretreated switchgrass as the commercial 1921) at the desired pH. The culture broth sample was cellulase blend Cellic Ctec2 (Novozymes, Bagsvaerd, incubated at the indicated time and temperature before Denmark) at the same protein load (McClendon et al. mixing with 100 μl of precipitant (300 mM Na acetate, 18 2012). In addition to the high activity, the T. aurantiacus mM Zn acetate, 76% EtOH (pH 5)). The stopped reactions enzymes have higher thermostability than Cellic Ctec2, were centrifuged 16,000 g for 1 minute and 100 μlofthe which probably consists mostly of enzymes from mesophilic supernatant was dried down at 80°C and resuspended in fungi although the precise composition has not been 5 μl of water. Finally, the absorption at 600 nm was disclosed by the manufacturer. measured and enzyme activity was calculated as described Other thermophilic fungi that produce thermostable (Megazyme, Bray, Ireland). cellulases are Talaromyces emersonii (Murray et al. 2004; Voutilainen et al. 2010), Myceliophthora thermophila Filter paper assay (Roy et al. 1990), Chaetomium thermophilum and Degradation of filter paper was measured by first cutting Acremonium thermophilum (Voutilainen et al. 2008). a 5 × 5 mm piece of filter paper #1 (Whatman, Kent, UK) In the present study we investigated the cellulolytic with a pair of sharp scissors whereafter it was submerged potential of isolates of 16 thermophilic fungi. The fungi in 80 μl of 1.25x McIlvaine Buffer (McIlvaine 1921) at the were selected from the three ascomycete orders Sordariales, desired pH. Next, 20 μl of sample was added and the assay Eurotiales and Onygenales and from zygomycete order was incubated at the indicated time and temperature. The Mucorales thus covering all orders which harbor thermo- filter paper was removed and 0.3 μl of Novozym 188 philic fungal species. (Novozymes, Bagsvaerd, Denmark) was added and the All 16 fungi were able to grow on crystalline cellulose sample incubated for 30 minutes at 50°C to convert any but their extracellular enzymes showed widely different cellobiose to glucose. The reactions were
Recommended publications
  • Parallel Molecular Evolution of Catalases and Superoxide Dismutases—Focus on Thermophilic Fungal Genomes
    antioxidants Article Parallel Molecular Evolution of Catalases and Superoxide Dismutases—Focus on Thermophilic Fungal Genomes Katarína Chovanová 1, Miroslav Böhmer 2 , Andrej Poljovka 1, Jaroslav Budiš 2, Jana Harichová 1, Tomáš Szemeš 2 and Marcel Zámocký 1,3,* 1 Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravska cesta 21, SK-84551 Bratislava, Slovakia; [email protected] (K.C.); [email protected] (A.P.); [email protected] (J.H.) 2 Department of Molecular Biology, Faculty of Nat. Sciences, Science Park of Comenius University, Comenius University, Ilkoviˇcova8, SK-84104 Bratislava, Slovakia; [email protected] (M.B.); [email protected] (J.B.); [email protected] (T.S.) 3 Department of Chemistry, Institute of Biochemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria * Correspondence: [email protected] Received: 24 September 2020; Accepted: 22 October 2020; Published: 27 October 2020 Abstract: Catalases (CAT) and superoxide dismutases (SOD) represent two main groups of enzymatic antioxidants that are present in almost all aerobic organisms and even in certain anaerobes. They are closely interconnected in the catabolism of reactive oxygen species because one product of SOD reaction (hydrogen peroxide) is the main substrate of CAT reaction finally leading to harmless products (i.e., molecular oxygen and water). It is therefore interesting to compare the molecular evolution of corresponding gene families. We have used a phylogenomic approach to elucidate the evolutionary relationships among these two main enzymatic antioxidants with a focus on the genomes of thermophilic fungi. Distinct gene families coding for CuZnSODs, FeMnSODs, and heme catalases are very abundant in thermophilic Ascomycota.
    [Show full text]
  • Thermophilic Fungi: Taxonomy and Biogeography
    Journal of Agricultural Technology Thermophilic Fungi: Taxonomy and Biogeography Raj Kumar Salar1* and K.R. Aneja2 1Department of Biotechnology, Chaudhary Devi Lal University, Sirsa – 125 055, India 2Department of Microbiology, Kurukshetra University, Kurukshetra – 136 119, India Salar, R. K. and Aneja, K.R. (2007) Thermophilic Fungi: Taxonomy and Biogeography. Journal of Agricultural Technology 3(1): 77-107. A critical reappraisal of taxonomic status of known thermophilic fungi indicating their natural occurrence and methods of isolation and culture was undertaken. Altogether forty-two species of thermophilic fungi viz., five belonging to Zygomycetes, twenty-three to Ascomycetes and fourteen to Deuteromycetes (Anamorphic Fungi) are described. The taxa delt with are those most commonly cited in the literature of fundamental and applied work. Latest legal valid names for all the taxa have been used. A key for the identification of thermophilic fungi is given. Data on geographical distribution and habitat for each isolate is also provided. The specimens deposited at IMI bear IMI number/s. The document is a sound footing for future work of indentification and nomenclatural interests. To solve residual problems related to nomenclatural status, further taxonomic work is however needed. Key Words: Biodiversity, ecology, identification key, taxonomic description, status, thermophile Introduction Thermophilic fungi are a small assemblage in eukaryota that have a unique mechanism of growing at elevated temperature extending up to 60 to 62°C. During the last four decades many species of thermophilic fungi sporulating at 45oC have been reported. The species included in this account are only those which are thermophilic in the sense of Cooney and Emerson (1964).
    [Show full text]
  • A Novel Application Potential of GH6 Cellobiohydrolase Ctcel6 From
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 16–768/2017/19–2–355–362 DOI: 10.17957/IJAB/15.0290 http://www.fspublishers.org Full Length Article A Novel Application Potential of GH6 Cellobiohydrolase CtCel6 from Thermophilic Chaetomium thermophilum for Gene Cloning, Heterologous Expression and Biological Characterization Qinzheng Zhou, Jianchao Jia, Peng Ji and Chao Han* Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018, China *For correspondence: [email protected] Abstract Chaetomium thermophilum is a thermophilic fungus expressed a series of glycoside hydrolases. Genome sequence analysis of C. thermophilium revealed that ctcel6 gene encoded a putative cellobiohydrolase which composed of 397 amino acid residues including a predicted signal peptide sequence. Ctcel6 gene was cloned, heterologously expressed in Pichia pastoris and purified by Ni2+ affinity chromatography. Sequence alignment indicated that CtCel6 enzyme belonged to glycoside hydrolase family 6 (GH6) and the molecular mass of purified recombinant enzyme CtCel6 was 42 kDa by SDS-PAGE analysis. Characterization of recombinant CtCel6 exhibited high hydrolysis activity and excellent thermostability. The optimum reaction temperature and pH was 70oC and pH 5, respectively. The bivalent metallic cations Mg2+ and Ca2+ significantly enhanced the activity of CtCel6. The specific activity of CtCel6 enzyme was 1.27 U/mg and Km value was 0.38 mM on β-D- glucan. The substrate specificity and hydrolysis products insisted that CtCel6 was an exo-/endo-type cellobiohydrolase. The biochemical properties of recombinant CtCel6 made it potentially effective for bioconversion of biomass and had tremendous potential in industrial applications such as enzyme preparation industry and feed processing industry.
    [Show full text]
  • On a New Species of Chaetomidium, C. Vicugnae, with a Cephalothecoid
    On a new species of Chaetomidium, C. vicugnae, with a cepha- lothecoid peridium and its relationships with Chaetomiaceae (Sordariales) Francesco DOVERI Abstract: a sample of vicuña dung from a Chilean coastal desert was submitted to the attention of the au- thor, who at first sight noticed the presence of different pyrenomycetes. several hairy cleistothecia particu- larly caught his attention and were subjected to a morphological study that proved them to belong to a new species of Chaetomidium. after mentioning the main features of Sordariales and Chaetomiaceae, the author describes in detail the macro-and microscopic characters of the new species Chaetomidium vicugnae Ascomycete.org, 10 (2) : 86–96 and compares it with all the other Chaetomidium spp. with a cephalothecoid peridium. The extensive dis- Mise en ligne le 22/04/2018 cussion focuses on the characterization and relationships of the genus Chaetomidium and Chaetomidium 10.25664/ART-0231 vicugnae within the complex family Chaetomiaceae. all collections of the related species are recorded and dung is regarded as the preferential substrate. Keys are provided to sexual morph genera of Chaetomiaceae and to Chaetomidium species with a cephalothecoid peridium. Keywords: ascomycota, coprophily, germination, homoplasy, morphology, peridial frame, systematics. Introduction zing the importance of a future systematic study of vicuña dung for a better knowledge of the generic relationships in this family. My studies on coprophilous ascomycetes (Doveri, 2004, 2011) al- lowed me to meet with several representatives of Sordariales Cha- Materials and methods def. ex D. Hawksw. & o.e. erikss., an order identifiable with the so called “pyrenomycetes” s.str., i.e.
    [Show full text]
  • Thermophiles and Thermozymes
    Thermophiles and Thermozymes Edited by María-Isabel González-Siso Printed Edition of the Special Issue Published in Microorganisms www.mdpi.com/journal/microorganisms Thermophiles and Thermozymes Thermophiles and Thermozymes Special Issue Editor Mar´ıa-Isabel Gonz´alez-Siso MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Mar´ıa-Isabel Gonzalez-Siso´ Universidade da Coruna˜ Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Microorganisms (ISSN 2076-2607) from 2018 to 2019 (available at: https://www.mdpi.com/journal/ microorganisms/special issues/thermophiles) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-816-9 (Pbk) ISBN 978-3-03897-817-6 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Mar´ıa-Isabel Gonz´alez-Siso Editorial for the Special Issue: Thermophiles and Thermozymes Reprinted from: Microorganisms 2019, 7, 62, doi:10.3390/microorganisms7030062 ........
    [Show full text]
  • AR TICLE Recommendations for Competing Sexual-Asexually Typified
    IMA FUNGUS · 7(1): 131–153 (2016) doi:10.5598/imafungus.2016.07.01.08 Recommendations for competing sexual-asexually typified generic names in ARTICLE Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales) Martina Réblová1, Andrew N. Miller2, Amy Y. Rossman3*, Keith A. Seifert4, Pedro W. Crous5, David L. Hawksworth6,7,8, Mohamed A. Abdel-Wahab9, Paul F. Cannon8, Dinushani A. Daranagama10, Z. Wilhelm De Beer11, Shi-Ke Huang10, Kevin D. Hyde10, Ruvvishika Jayawardena10, Walter Jaklitsch12,13, E. B. Gareth Jones14, Yu-Ming Ju15, Caroline Judith16, Sajeewa S. N. Maharachchikumbura17, Ka-Lai Pang18, Liliane E. Petrini19, Huzefa A. Raja20, Andrea I Romero21, Carol Shearer2, Indunil C. Senanayake10, Hermann Voglmayr13, Bevan S. Weir22, and Nalin N. Wijayawarden10 1Department of Taxonomy, Institute of Botany of the Academy of Sciences of the Czech Republic, Průhonice 252 43, Czech Republic 2Illinois Natural History Survey, University of Illinois, Champaign, Illinois 61820, USA 3Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; *corresponding author e-mail: amydianer@ yahoo.com 4Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada 5CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 6Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Madrid 28040, Spain 7Department of Life Sciences,
    [Show full text]
  • Deep Transcriptome-Sequencing and Proteome Analysis of the Hydrothermal Vent Annelid Alvinella Pompejana Identifies the Cvp-Bias
    Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability Thomas Holder, Claire Basquin, Judith Ebert, Nadine Randel, Didier Jollivet, Elena Conti, Gáspár Jékely, Fulvia Bono To cite this version: Thomas Holder, Claire Basquin, Judith Ebert, Nadine Randel, Didier Jollivet, et al.. Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pom- pejana identifies the CvP-bias as a robust measure of eukaryotic thermostability. Biology Direct, BioMed Central, 2013, 8, pp.2. 10.1186/1745-6150-8-2. hal-01250913 HAL Id: hal-01250913 https://hal.archives-ouvertes.fr/hal-01250913 Submitted on 11 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Holder et al. Biology Direct 2013, 8:2 http://www.biology-direct.com/content/8/1/2 RESEARCH Open Access Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability Thomas Holder1, Claire Basquin3, Judith Ebert3, Nadine Randel1, Didier Jollivet2, Elena Conti3, Gáspár Jékely1* and Fulvia Bono1* Abstract Background: Alvinella pompejana is an annelid worm that inhabits deep-sea hydrothermal vent sites in the Pacific Ocean.
    [Show full text]
  • Sunday 1 April Parallel Session 5: Mitochondria
    PS4.8 How do mobile pathogenicity chromosomes collaborate with the core genome? Charlotte van der Does, Martijn Rep University of Amsterdam In the tomato pathogen F. oxysporum f. sp. lycopersici, most known effector genes reside on a pathogenicity chromosome that can be exchanged between strains through horizontal transfer. As a result, this fungus has sub‐ genomes with different evolutionary histories: the conserved core genome and the mobile ‘extra’ genome. Interestingly, expression of the effectors on the mobile genome requires Sge1, a conserved transcription factor encoded in the core genome. Also, a transcription factor on the mobile chromosome, Ftf1, is associated with pathogenicity (de Vega‐Bartol et al. 2011). Random insertion of an effector‐promoter GFP reporter construct revealed that the position in the genome has a strong influence on the level of expression. Furthermore, in all transformants tested, expression could no longer be induced, but was constitutive. To discover how Sge1 and Ftf1 control gene expression from the core genome and the mobile chromosome(s), their targets will be identified using ChIPseq: sequencing of DNA fragments to which Sge1 binds and RNAseq: in depth‐sequencing of transcripts, comparing standard culture conditions to in planta‐mimicing conditions. Additional components necessary to express effector genes on mobile chromosomes will be identified via insertional mutagenesis. Sunday 1 April Parallel session 5: Mitochondria PS5.1 Functional analysis of ERMES and TOB (SAM) complex components in Neurospora crassa. Frank E. Nargang, Sebastian W.K. Lackey, Jeremy G. Wideman Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9 The Neurospora crassa TOB complex (topogenesis of beta‐barrel proteins), also known as the SAM complex (sorting and assembly machinery), inserts a subset of mitochondrial outer membrane proteins into the membrane—including all beta‐barrel proteins.
    [Show full text]
  • New Scientific Discoveries: Plants and Fungi
    Received: 26 April 2020 | Revised: 4 June 2020 | Accepted: 5 June 2020 DOI: 10.1002/ppp3.10148 REVIEW New scientific discoveries: Plants and fungi Martin Cheek1 | Eimear Nic Lughadha2 | Paul Kirk3 | Heather Lindon3 | Julia Carretero3 | Brian Looney4 | Brian Douglas1 | Danny Haelewaters5,6,7 | Ester Gaya8 | Theo Llewellyn8,9 | A. Martyn Ainsworth1 | Yusufjon Gafforov10 | Kevin Hyde11 | Pedro Crous12 | Mark Hughes13 | Barnaby E. Walker2 | Rafaela Campostrini Forzza14 | Khoon Meng Wong15 | Tuula Niskanen1 1Identification and Naming, Royal Botanic Gardens, Kew, UK 2Conservation Science, Royal Botanic Gardens, Kew, UK 3Biodiversity Informatics and Spatial Analysis, Royal Botanic Gardens, Kew, UK 4Vilgalys Mycology Laboratory, Department of Biology, Duke University, Durham, NC, USA 5Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA 6Herbario UCH, Universidad Autónoma de Chiriquí, David, Panama 7Department of Biology, Research Group Mycology, Ghent University, Gent, Belgium 8Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, UK 9Department of Life Sciences, Imperial College London, London, UK 10Laboratory of Mycology, Institute of Botany, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan 11Center of Excellence in Fungal Research, Mae Fah Luang University, Thailand 12Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands 13Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom 14Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brasil 15Singapore Botanic Gardens, National Parks Board, Singapore, Singapore Correspondence Martin Cheek, Identification and Naming Societal Impact Statement Department, Royal Botanic Gardens, Kew, Research and publication of the planet's remaining plant and fungal species as yet Richmond TW9 3AE, UK. Email: [email protected] unknown to science is essential if we are to address the United Nations Sustainable Development Goal (SDG) 15 “Life on Land” which includes the protection of ter- restrial ecosystems and halting of biodiversity loss.
    [Show full text]
  • The Impacts of Climate Change on Communities of Fungi in Boreal Peatlands
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 12-9-2016 12:00 AM The Impacts of Climate Change on Communities of Fungi in Boreal Peatlands Asma Asemaninejad Hassankiadeh The University of Western Ontario Supervisor Dr. R Greg Thorn The University of Western Ontario Joint Supervisor Dr. Zoë Lindo The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Asma Asemaninejad Hassankiadeh 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biodiversity Commons Recommended Citation Asemaninejad Hassankiadeh, Asma, "The Impacts of Climate Change on Communities of Fungi in Boreal Peatlands" (2016). Electronic Thesis and Dissertation Repository. 4273. https://ir.lib.uwo.ca/etd/4273 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Peatlands have an important role in global climate change through sequestration of atmospheric CO2. However, climate change is already affecting these ecosystems, including both above- and below- ground communities and their functions, such as decomposition. Fungi have a greater biomass than other soil organisms and play a central role in these communities. As a result, there is concern that altered fungal
    [Show full text]
  • Trichoderma Reesei Strains for Production of Cellulases for the Textile Industry
    ESPOO 2004 VTT PUBLICATIONS 550 VTT PUBLICATIONS VTT PUBLICATIONS 550 529 Aikio, Janne K. Extremely short external cavity (ESEC) laser devices. Wavelength tuning and related optical characteristics. 2004. 162 p. 530 FUSION Yearbook. Association Euratom-Tekes. Annual Report 2003. Ed. by Seppo Karttunen & Karin Rantamäki. 2004. 127 p. + app. 10 p. 12345678901234567890123456789012123456789012345678901234567890121234567890123456 12345678901234567890123456789012123456789012345678901234567890121234567890123456 12345678901234567890123456789012123456789012345678901234567890121234567890123456 531 Toivonen, Aki. Stress corrosion crack growth rate measurement in high temperature water 12345678901234567890123456789012123456789012345678901234567890121234567890123456 12345678901234567890123456789012123456789012345678901234567890121234567890123456 using small precracked bend specimens. 2004. 206 p. + app. 9 p. 12345678901234567890123456789012123456789012345678901234567890121234567890123456 12345678901234567890123456789012123456789012345678901234567890121234567890123456 12345678901234567890123456789012123456789012345678901234567890121234567890123456 12345678901234567890123456789012123456789012345678901234567890121234567890123456 532 Moilanen, Pekka. Pneumatic servo-controlled material testing device capable of operating 12345678901234567890123456789012123456789012345678901234567890121234567890123456 12345678901234567890123456789012123456789012345678901234567890121234567890123456 12345678901234567890123456789012123456789012345678901234567890121234567890123456
    [Show full text]
  • Mycology Praha
    r ^ m—y I— I I VOLUME 55 I / I— I l— l DECEMBER 2003 M y c o l o g y 3-4 CZECH SCIENTIFIC SOCIETY FOR MYCOLOGY PRAHA n I . n §r%ov J < M r^/\Y0 ISSN 0009-0476 NI .O o v J < ¡TI Vol. 55, No. 3-4, December 2003 CZECH MYCOLOGY formerly Česká mykologie published quarterly by the Czech Scientific Society for Mycology http://www.natur.cuni.cz/cvsm/ EDITORIAL BOARD Editor-in-Chief ZDENĚK POUZAR (Praha) Managing editor JAN HOLEC (Praha) VLADIMÍR ANTONÍN (Brno) LUDMILA MARVANOVÁ (Brno) ROSTISLAV FELLNER (Praha) PETR PIKÁLEK (Praha) ALEŠ LEBEDA (Olomouc) MIRKO SVRČEK (Praha) JAROSLAV KLÁN (Praha) PAVEL LIZOŇ (Bratislava) ALENA KUBÁTOVÁ (Praha) HANS PETER MOLITORIS (Regensburg) JIŘÍ KUNERT (Olomouc) Czech Mycology is an international scientific journal publishing papers in all aspects of mycology. Publication in the journal is open to members of the Czech Scientific Society for Mycology and non-members. Contributions to: Czech Mycology, National Museum, Mycological Department, Václavské nám. 68, 115 79 P raha 1, Czech Republic. SUBSCRIPTION. Annual subscription is Kč 650,- (including postage). The annual sub­ scription for abroad is US $86,- or EUR 83,- (including postage). The annual member­ ship fee of the Czech Scientific Society for Mycology (Kč 450,- or US $ 60,- for foreigners) includes the journal without any other additional payment. For subscriptions, address changes, payment and further information please contact The Czech Scientific Society for Mycology, P.O. Box 106, 11121 Praha 1, Czech Republic, http://www.natur.cuni.cz/cvsm/ This journal is indexed or abstracted in: Biological Abstracts, Abstracts of Mycology, Chemical Abstracts, Excerpta Medica, Bib­ liography of Systematic Mycology, Index of Fungi, Review of Plant Pathology, Veterinary Bulletin, CAB Abstracts, Rewiew of Medical and Veterinary Mycology.
    [Show full text]