SELECTED PROBLEMS OF ACAROLOGICAL RESEARCH IN FORESTS

Edited by Dariusz J. Gwiazdowicz

Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu Przewodniczący Komitetu Redakcyjnego prof. dr hab. Waldemar Uchman

Redaktor Działu prof. dr hab. Konrad Magnuski

Rada Naukowa dr hab. Roman Jaszczak – Uniwersytet Przyrodniczy Pozna´n, prof. dr hab. Lesław Łabudzki – Uniwersytet Przyrodniczy Pozna´n, prof. dr hab. Konrad Magnuski – Uniwer- sytet Przyrodniczy Pozna´n, prof. dr hab. Krystyna Przybylska – Uniwersytet Rolniczy Kraków, prof. dr hab. Henryk Żybura – SGGW Warszawa

c Copyright by Polskie Towarzystwo Leśne, Oddział Wielkopolski Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu Pozna´n2008, Poland

Utwór w całości ani we fragmentach nie może być powielany ani rozpowszechniany za pomocą urządze´nelektronicznych, kopiujących, nagrywających i innych bez pisemnej zgody posiadacza praw autorskich.

ISBN 978-83-7160-505-5

Opracowanie redakcyjne Anna Zieli´nska-Krybus

Projekt okładki Exemplum

Opracowanie komputerowe Donata Latusek

Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu ul. Witosa 45, 60-693 Pozna´n tel./faks (061) 848 78 08, e-mail: [email protected] www.au.poznan.pl/wydawnictwo

Wydanie I. Nakład 150 egz. Ark. wyd. 13,1. Ark. druk. 7,7.

Druk w Zakładzie Graficznym Uniwersytetu Przyrodniczego w Poznaniu, ul. Wojska Polskiego 69, 60-625 Pozna´n CONTENTS

Preface ...... 5

Grażyna Madej Ecological succession of mites (Acari) with particular reference to the predatory mites Gamasina (Mesostigmata) ...... 7

Piotr Skubała Dead wood as the richest habitat in a healthy forest and mite (Acari) fauna living in it 23

Anna Seniczak, Stanisław Seniczak Oribatid mites (Acari, Oribatida) as bioindicators of forest habitats ...... 41

Dariusz J. Gwiazdowicz Mesostigmatid mites (Acari) associated with Scolytidae in Poland ...... 59

Dariusz J. Gwiazdowicz Mesostigmatid mites (Acari) associated in nests of Formicidae in Poland .... 97

Ryszard Haitlinger Mites associated with in Poland ...... 113

PREFACE

The Polish Forestry Society (PTL) has put forward an initiative to foster var- ious branches of science and the research conducted in forest areas. Acarological research is the focus of the present issue. The history of acarological research dates back to the 20s of the previous cen- tury. Many years have passed since then and acarology has developed many fields including , biology, ecology, faunistics and zoogeography and also practi- cal aspects such as restraining harmful mites or using them in biological struggle. The current issue also focuses on the succession of mites into forest areas and the role of rotting wood in maintaining the diversity of the acarofauna. The pos- sibility of using mites as bioindicators also plays an important role, especially in forest areas exposed to the heavy impact of industrial plants, which was empha- sized in one of the chapters. An attempt has been made in the present study to summarize some of the research topics that have prevailed in Polish acarology in recent years. The main focus is on mites found on insects and those accompanying and bark beetles. I would like to extend thanks to all those kind people who contributed to the preparation of this study.

Dariusz J. Gwiazdowicz

ECOLOGICAL SUCCESSION OF MITES (ACARI) WITH PARTICULAR REFERENCE TO THE PREDATORY MITES GAMASINA (MESOSTIGMATA)

Grażyna Madej

University of Silesia, Department of Ecology ul. Bankowa 9, 40-007 Katowice, Poland; e-mail: [email protected]

Introduction

Ecological succession is one of the most important processes that take place in ecosystems. It has been fascinating ecologists for many years. It applies both to the plant world and to . The succession theory was first formulated for plants by Clements (1916) (Connell and Slatyer 1977). Since its formulation, it has been supplemented with numerous new concepts and amendments, mostly concerned with plant succession (Rajski 1965, Fali´nska 2004). So far, however, scientists have failed to present a commonly accepted succession theory that could satisfy both botanists and zoologists. Changes in vegetation during succession are relatively well studied. It is as- sumed that plants are of greater importance in succession, although animals also contribute to this process (Majer 1989 b). In earlier studies, animals were treated only as passive elements of this process, and did not have any influence on creation of the succession theory (Connell and Slatyer 1977). They are more difficult sub- jects for description of this process. The difficulty results from the mobility and dispersal of animals, as well as from methodological problems with recording all individuals and species. Moreover, the pattern of interspecific interactions among animals is different from those among animals. As a result of these limitations, little is known about the process of ecological succession in communities, and its theoretical assumptions in faunistic studies are based chiefly on Odum’s concept (Trojan et al. 1994). His classic theory assumes that species diversity at all trophic levels increases with the progress of succession. Holistic approach to this process presumes that during ecosystem development, plant communities are 8 gradually transformed and finally become stable climax communities, which is determined by changes in the abiotic environment (Odum 1969). Recently it has been suggested that animals can actively affect succession through transportation of propagules, herbivory, or decomposition of organic mat- ter (Kaufmann 2001). Transformation of arable soils into soils of the more advanced successional stages, such as meadow or forest, includes changes in the composition of not only vegetation, but also of microbial communities and soil fauna (Gormsen et al. 2006). Soil properties change in the course of succession. This is associated with the development of vegetation and the activity of soil organisms (De Deyn et al. 2003), which play an important role in this process (Rusek 1978). In the soil and on its surface, many important soil processes take place, such as: decom- position of organic matter, as well as transformation, storage and transportation of the substances released in the course of decomposition. Many groups of animals inhabit the soil ecosystem. As one of the components of this system, they enter into numerous, complex interactions (that affect one another) with its abiotic and other biotic components (Fitter et al. 1985). Succession of all those components takes place simultaneously and is an ecosystem process (Koehler 1997). Soil inver- tebrates may be an important driving force causing transformations of vegetation (De Deyn et al. 2003, Kardol et al. 2006). De Deyn et al. (2003) believe that soil fauna supports secondary succession and affects the composition of the natural vegetation of meadows. The influence of soil organisms can depend both on the progress of ecosystem succession and on the stage of plant succession (Kardol et al. 2006). Important differences between plants and soil animals in the process of succes- sion were reported by Parr (1978), Scheu and Schulz (1996), and Dunger (1998). The indirect influence of plants on soil organisms in the course of succession was described by some researchers (e.g. Koehler 1997). This applies mostly to the suc- cession of saprotrophs, which greatly contribute to the process of soil formation. These include oribatid mites (Anderson 1975). In the soil fauna, mites (Acari) are one of the largest and most diverse groups of microarthropods. They live in both natural and anthropogenic habitats. The most abundant soil mites are Oribatida and Mesostigmata (the predatory Gamasina and the saprophagous or mycophagous Uropodina). The density of oribatids at the forest floor in the tem- perate zone ranges from 20 000 to 400 000 individuals/m2, and species number is 60-120 per site (Schneider and Maraun 2005). The predatory Gamasina are im- portant regulators of the soil meso- and microfauna (Ruf and Beck 2005). The mean density of those mites is about 4000 to 10 000 individuals/m2, and species number is about 60 per site (Ruf and Beck 2005). Gamasids form a large part of mite communities in the soil. Mite communities react to changes in biotic and abiotic factors and vary in time. These can be short-term cyclic variations in abundance and species diversity that do not lead to formation of new structures. They are dependent on season, phenological period, life history of species, and many environmental factors. Pop- ulation dynamics of mesostigmatid mites was studied in the temperate zone in various ecosystems, such as beech forest on a calcium-rich soil (Schulz 1989). 9

More long-term, directional changes in mite communities, leading to the for- mation of new structures, characterize the ecological succession of mites. The process of ecological succession, is defined as a nonseasonal, directional and continuous model of colonization and decline of populations of various species. This definition includes the concept of a sequence of successional stages, which occur on a varying time scale as a result of various mechanisms (Begon et al. 1990). Mesostigmatid mite communities are characteristic of individual successional stages (Madej 2004). Knowledge about those mites is also useful for characteriza- tion of developmental stages of the soil system. The simplest definition of succession is: changes in communities, where in the course of time one group of organisms on a site is replaced by another group. Many factors affect the process of exchange of groups of organisms. At first, the initial group of organisms, inhabiting the site, modifies the environment, so that it becomes more favourable for other species. This process is termed the ‘facilitation pathway’ (Connell and Slatyer 1977). Mechanisms of succession, which condition the formation of communities in time sequence, were described by, e.g., Majer (1989 a), Curry (1994), Scheu and Schulz (1996). Depending on substrate type, two kinds of succession are distinguished. Pri- mary succession takes place mainly in pioneer ecosystems, i.e. in areas or sites that have not been colonized by living organisms so far (bare substrate). This is usu- ally due to natural processes, such as a volcanic eruption, mudslide, retreat of an ice sheet, landslide, rock outcrop, rockslide, sand dune formation, and exposure of shallows, which turn into islands. At the beginning of succession, conditions are very difficult, as the pioneer species are often subject to shortages of nutrients and water. Natural primary succession of gamasid mites after a volcanic eruption was studied by Gjelstrup (2000). Succession in cultural landscapes, i.e. in the ecosystems that have been changed under the influence of human activity, is termed anthropogenic succession. On an anthropogenic substrate, primary succession can be observed. For example, this applies to unvegetated, new mine slag heaps, where conditions are extremely unfavourable for mites. The major differences between such sites and natural soils include: lack of stratification and available organic matter, high toxicity, low pH, great variation in moisture and temperature. For practical reasons, natural succession of the soil fauna (including mites) was not as intensively studied as anthropogenic succession. However, understand- ing of the latter can facilitate the management of post-industrial landscapes. Af- forestation of an anthropogenic landscape can also be an ideal model for studies on the development of forest ecosystems, starting from the ‘zero point’ on bare substrate, to the forest stage (H¨uttl and Weber 2001). In research on the process of primary succession of Oribatida and Gamasina in post-industrial wastelands, important progress has been made by Polish scientists (Madej 2004, Skubała 2004). The contribution of gamasid mites to succession on anthropogenic sites was stud- ied by Koehler (1991, 1997, 1998, 1999, 2000), Koehler and Weidemann (1993), Christian (1995), Smrˇz(2000), John et al. (2002), and Madej (2004). Secondary succession includes developmental sequences observed in areas that had been earlier colonized by organisms, where due to ecological disasters or 10 changes in land use, the previous community was destroyed and a new successional sequence is initiated. Secondary succession takes place on a soil, i.e. on a substrate that has been prepared for colonization in some way, partly by the organisms that survived the disturbance. That is why secondary succession is usually faster than primary succession. It is observed in ecosystems that were destroyed by natural factors, e.g. as a result of an ecological disaster (e.g. fire, flood), or by human influ- ence (e.g. due to forest clearcutting). In many cases the destroyed ecosystem is not completely restored in the course of secondary succession (Andrzejewski 1996). Heterotrophic succession (= degradative succession) applies to changes in species composition observed on a short time scale, leading to decomposition of or- ganic matter (Huhta et al. 1979, Lagerl¨of and Andr´en 1985, Streit et al. 1985, H˚agvar, Kjøndal 1981, Osler et al. 2004). It takes place on ephemeral sites, such as merotopes (e.g. faeces, carrion, fruit, fungal fruiting bodies, rotting wood, com- post), or leaf litter. Colonization of freshly fallen leaves initiates an important kind of microsuccession (Schaefer 1991). Successional changes in mite communities on a smaller scale can be also detected in conifer cones (H˚agvar 1991, 1998). Such microhabitats are used by microorganisms and detritivores (Begon et al. 1990). In contrast to autotrophic succession, this does not lead to stabilization of the system, as it disintegrates in the course of gradual utilization of nutrients, so it is impossible to reach a stable state. As a result of this, most of the communities that colonized those microhabitats disappear after the first generation of coloniz- ers. That is why the successional processes in heterotrophic systems are different from those observed in autotrophic systems (Usher and Parr 1977). Relatively little is known about changes in mite fauna during the development of forest ecosystems. The data are far from complete. They are concerned with various forest types (Scheu et al. 2003) and various environmental conditions. Forest, which reaches at the final stage of succession a stable community structure on a large scale, will always be a mosaic of numerous microsuccessions, which start, e.g., on each fallen tree, grass tuft or fallen cone (Begon et al. 1990). There are two types of research on the process of succession: monitoring of changes in a community for a long time, or comparison of plots of various age, which represent various seral stages. Succession is a very slow ecological process, hence it cannot be studied within the life span of a single researcher. That is why the conducted studies are limited to a specified period. Long-term investigations of the progress of succession are rare. In the case of gamasid mites, these include 13-year observations of changes in their abundance during secondary succession on a debris and rubble dump that were subject to recultivation or not (Koehler 1999, 2000); a 23-year study of succession on afforested areas where lignite had been mined (Christian 1995); and 4-year monitoring of reconstruction and development of communities of these predatory mites in a large area destroyed by fire (Michalik and Błaszak 2004). As a result of forest fire, many soil animals are destroyed. Moreover, the ecosys- tem lacks numerous microhabitats after burning of the ground layer of vegetation and humus (O-horizon), characteristic for forest soils. As a result of this, the large species of the families Parasitidae and Veigaiaidae, which inhabit leaf litter and hu- mus, are eliminated (Michalik and Błaszak 2004). The study conducted by Micha- 11 lik and Błaszak (2004) concerned the course of secondary succession of Gamasina in the Noteć Forest (Puszcza Notecka in NW Poland), and was initiated in the third year after forest fire. In the Polish climate, secondary succession in most pine forests lasts 120-150 years (Szujecki 1980). In the burnt area, 21 species were recorded initially. Scots pine forest aged 50-60 years grew there before fire. After such a dramatic disturbance in conditions within the ecosystem, its diversity is greatly diminished, and secondary succession is initiated, which leads to regenera- tion of the ecosystem. In the course of succession, the ecosystem is reconstructed, and its biodiversity increases. The structure of animal communities is gradually restored during succession. However, a return of the ecosystem to its former state is not always possible, so the restored ecosystem may have a different level of biodi- versity. Secondary succession in forest plantations can last many years, and its rate depends on local conditions (Kajak and Wasilewska 1996). The species recorded on the burnt site in the first two years of the study (Zercon zelawaiensis, Lysiga- masus conus, Hypoaspis nolli, Gamasellodes bicolor and G. insignis) are typically associated with forest soils (Michalik and Błaszak 2004). The last two are known from numerous forest microhabitats, e.g. rotting wood or galleries of bark beetles (Gwiazdowicz 2007). Huhta et al. (1986) found large numbers of Gamasellodes bicolor in pine and spruce forests. Skorupski (2001), in the Wielkopolska National Park, found individuals of this species at many sites in leaf litter of mixed forest stands and in rotting stumps, mainly of pine and oak trees. Lysigamasus conus is a forest species found by Schulz (1989) in beech forest, and by Skorupski and Gwiazdowicz (1997) in needle litter and the moss layer of a coniferous forest. A successive increase in contribution of this species after four years of observations of the process of succession on the burnt site, resulted in balancing of the dominance structure of the community (Michalik and Błaszak 2004). In case of secondary succession, initial mite communities are formed from the pool of individuals that survived the disturbance and individuals that have a potential to colonize the disturbed sites (Koehler 1997). The presence of the above-mentioned species at the early stage of succession on burnt sites is associ- ated with the debris and stumps that were left after felling the trees. These were specific ‘islands’, where the forest species of Gamasina could survive. The species are indicators of progressing regeneration of the ecosystem (Michalik and Błaszak 2004). In the 13-year study of succession of Gamasina on a debris and rubble dump, Koehler (1998) distinguished three categories of species: early pioneers, interme- diate, and late colonizers. The first category included Arctoseius cetratus and Rhodacarellus silesiacus. The intermediate category consisted of Paragamasus vagabundus and Hypoaspis angusta. The last category included: Veigaia planicola, Gamasellodes bicolor, Pseudolaelaps doderoi and Rhodacarus reconditus. Interest- ingly, Rhodacarellus silesiacus was observed throughout the 13-year study, but it clearly dominated at an early stage of succession. Koehler (1991) reported on increasing differences between communities of Gamasina on the recultivated (by roto-tilling and sowing of grass) and the control (non-recultivated) site, in spite of decreasing differences in vegetation structure. According to that author, recul- 12 tivation greatly affected the abundance, species composition, and species richness of gamasid mites. The maximum abundance of these mites was nearly 2.5-fold higher on the recultivated site than on the control site (with spontaneous succes- sion). Christian (1995), during 23 years of observations on afforested areas where lignite (brown coal) had been mined, distinguished four seral stages. At the ini- tial stage (two years after afforestation with Populus and Alnus), he found deu- tonymphs of the genus Pergamasus. At the pioneer stage (four years after afforesta- tion), species number increased to 21. Ameroseius corbiculus and Rhodacarus re- conditus were the most abundant at that stage, and more than 50% of the species collected then are typical of meadows and pastures. At the intermediate stage (10 years after afforestation), with woodland-like vegetation and lower variation in temperature and moisture than at the previous stage, forest species accounted for 30% of the total number of species of Gamasina. That stage was characterized by domination of Epicriopsis horridus. In the next, balanced stage, conditions typical of forest were observed. The plot afforested with Populus and Alnus, after 24 years was distinguished by domination of Geholaspis mandibularis; the plot afforested with Robinia, Populus and Alnus, after 33 years was dominated by Rhodacarellus kreuzi and Paragamasus diversus; while that afforested with Pinus, after 33 years was dominated by Paragamasus vagabundus. In each of the communities, forest species accounted for more than 50% of total species number (Christian 1995). More often, studies of succession consist in designation of plots of various age with the same history, which replace the time factor. Such chronosequences offer a possibility of simultaneous analysis of sites that differ in age, through using ‘space for time’, which substitutes for long-term research (Pickett 1989). Unfortunately, few studies on mites were conducted in natural habitats in complete successional sequences, from the initial stage to the climax stage. Schulz (1991) studied changes in mite communities including Cryptostigmata, Gamasina and Uropodina, in the following successional sequence: agroecosystem, 4-year-old fallow field, 11-year-old fallow field, 30-year-old beech forest, 120-year-old beech forest. Veigaia planicola, Pergamasus celticus and P. digitulus (cambriensis) are a characteristic combination of species typical of the open habitats. Zercon triangularis, Rhodacarus agrestis, Arctoseius venustulus reached the highest dominance indices in the 30-year-old beechwood (Schulz 1991). Primary succession of Gamasina on dunes was observed in the following succes- sional sequence: 1-year-old (primary dune), 30-year-old (white dune), 50-year-old (grey dune), 90-240-year-old (brown dune), pasture, meadow, and ley (Koehler and Weidemann 1993). Species from the euedaphic family Rhodacaridae, particularly Rhodacarus an- corae, dominated in primary, white and grey dunes. Ammophila arenaria, typical of sand with a low organic matter content, and Dendrolaealas arenarius, found near roots, as well as Gamasellodes bicolor, resistant to drought, were abundant in sand from white and grey dunes (Koehler and Weidemann 1993, Koehler et al. 1995). In secondary succession of mites, Koehler (1997) distinguished a ‘reconstruction stage’, which includes the initial stage and the pioneer stage, and an ‘organization 13 stage’. The organization stage is characterized by changes within communities. Development of vegetation and more stable microhabitats, which are disturbed by the presence of earthworms (Lumbricidae) on a small scale, result in an increase in species diversity and a decrease in abundance of individual species (Koehler 1997). In the organization stage, the process of succession leads to reaching a bio- diversity level close to that observed in the ecosystem that is typical of the given geographic zone (Dunger and Wanner 1999). Koehler (1997) emphasizes the de- velopment of complex interactions between soil animal communities, and the au- togenic character of the processes that take place at that stage.

Colonization of bare substrates by mites

Early seral stages are characterized by a scarce vegetation cover and low plant diversity. Prostigmatid mites (Dunger 1968, Hutson 1980) of the families: Tar- sonemidae, Pyemotidae and Nanorchestidae (Hutson and Luff 1978) as well as astigmatid mites (Hutson and Luff 1978) are the first mites that colonize post- -industrial wastelands. Smrˇz(2000), at early stages of succession in rehabilitated post-mining wastelands, observed a clear dominance of the ubiquitous Tyropha- gus putrescentiae (Astigmata) and presence of very active, predatory mites of the families Rhodacaridae and Parasitidae. On 2- and 4-year-old leys, the dominant mite species were Tyrophagus longior and Histiosoma sp. (Astigmata) as well as some prostigmatid mites (Whelan 1978). Histiosoma sp. was also one of pioneer species on nickel and copper-mine tailings (John et al. 2002). Tyrophagus lon- gior and Histiosoma feronarium were the most abundant species of Astigmata in the youngest site of grassland on reclaimed cutaway peat (Curry and Momen 1988). Koehler (1998) showed that on a recultivated site (lawn) astigmatid mites and prostigmatid mites of the genus Microtydeus dominated initially. A similar sequence of mite groups was observed in the course of microsuccession on com- post, where Astigmata, followed by Prostigmata and Mesostigmata, were pioneer colonizers at the first and second stage of colonization (Beckmann and Schriefer 1989). Cryptostigmata were absent or infrequent at an early stage of succession (Hutson and Luff 1978, Whelan 1978, Beckmann and Schriefer 1989, Smrˇz2000). This was due mainly to a low organic matter content, extreme microclimatic con- ditions, poor soil structure, a low dispersal potential (passiveness) of those mites, and their low reproductive rate (John et al. 2002). Different results for Oribatida were reported by Dunger et al. (2001), who showed that these mites were abundant at initial stages of succession on recultivated (afforested) areas where lignite had been mined. At an initial stage, the bare substrate is quickly colonized. The predatory gamasid mites (e.g. Rhodacarellus silesiacus) play an important role in this process, because they can colonize bare ground even before plants appear at that stage. Thanks to this and to the deposition of allochthonous organic matter, favourable conditions for colonization by plants are created (facilitation model, see Connell and Slatyer 1977), and consequently new microhabitats appear, patchiness of the habitat is increased, and all this affects the colonization by other mites (Madej 14

2004). Moreover, gamasids (Thinoseius spinosus) were the first mites found on the young island Surtsey (Iceland), which was created as a result of a volcanic eruption (Gjelstrup 2000).

Colonization versus immigration strategies of Gamasina

Kov´aˇcet al. (1999) emphasize that the development of communities of Par- asitiformes depends on a pool of species that are potential colonizers, present in a neighbouring biotope. The process of primary succession of mites on Surtsey was initiated as a result of colonization of the island by these mites by means of phoresy from neighbouring islands. Thinoseius spinosus and Eviphis ostrinus were carried onto the island by insects, while other Gamasina were found near colonies of gulls, which could also serve as a means of transport (Gjelstrup 2000). In research conducted by Madej (2004), an analysis of neighbouring sites did not reveal any influence of mesostigmatid mites found in beech forest on the formation of pioneer communities on the nearby dolomite rubble dump. For some mesostigmatid mites, phoresy can be a means of fast colonization of new sites (Binns 1982, Athias-Binche 1991). The faster settlement of mesostig- matid mites on sites at early successional stages, is interpreted by Schulz (1991) as due to their potential for phoresy. A great phoretic potential is displayed by the pioneer species Arctoseius cetratus (Binns 1982). Dunger (1968) reported that the pioneer stage of a recultivated area, where lignite had been mined, was char- acterized by the following species: Eulaelaps stabularis, Typhlodromus reticulatus and Antennoseius masoviae. Those species were brought to that area probably by rodents or birds (E. stabularis) as well as rodents or carabid beetles (A. maso- viae). T. reticulatus, found mostly on plants, was probably passively dispersed by wind (Sabelis 1992) or with the plants that were used for the recultivation. At the pioneer stage of recultivated sites where lignite had been mined, Chris- tian (1993) recorded individuals of a phoretic species (Poecilochirus carabi) and of species dispersed by rodents and birds (Eulaelaps stabularis, Laelaps hilaris). Another species described by that author at that stage, Amblyseius obtusus, was probably passively dispersed by wind, or with the plants used for recultivation of those sites. Aerial dispersal of small, euedaphic, poorly chitinized mites, very sensitive to drying, is very unlikely. Mostly these mites are pioneer species.

Do gamasid mite communities characterize individual stages of succession?

The model of succession of gamasid mites consists mainly in fast colonization of bare substrate and formation of simple pioneer communities, followed by more complex, larger and more diverse communities (intermediate stage, preforest stage, and forest stage) (Madej 2004) (Fig. 1). 15 stindustrial wastelands Fig. 1. Primary succession of Gamasina species in areas of po 16

Which species dominate in the succession of gamasid mites? Is the presence of species at various stages associated with ecological behaviour of those species? The species that appear earlier are those that have a greater potential for dis- persal, a higher reproductive rate, and are able to colonize new sites very quickly. Pioneer species are adapted to changes in unstable habitats, so they show some adaptive features that enable survival in such conditions. Most of these species are similar functionally and morphologically. They are generally euedaphic, small- -sized, e.g. Rhodacarellus silesiacus (280 ţm), Rhodacarus reconditus (410 ţm), Rhodacarus clavulatus (440 ţm), Protogamasellus mica (240 ţm), Dendroseius reticulatus (280 ţm), Dendrolaelaspis hungaricus (320 ţm), Gamasellodes bicolor (350 ţm), Gamasellodes minor (320 ţm), Arctoseius cetratus (340 ţm), and Asca bicornis (350 ţm) (Madej 2004). Thanks to the small body size and morphological adaptations, they can live in the soil layer with small air spaces. The dissected dorsal plate (indented in Arctoseius cetratus), poor chitinization, as well as elon- gated body and presence of hypertrophic scleronduli for muscle attachment in some species of the families Rhodacaridae and Digamasellidae, enable circular movements within soil air spaces (Walter and Ikonen 1989). This enables those mites, in the case of unfavourable environmental conditions, to move into deeper soil layers. At the pioneer stage, dominant species are typical of open habitats, and feed on nematodes. This is because nematodes are some of the first colonizers of immature soils (Madej 2004). In the case of species with similar ecological requirements, ‘partitioning compe- tition’ was observed, e.g. two species dominated at the pioneer stage of nickel- and copper-mine tailings: Arctoseius cetratus at the lower soil level, and Dendrolaelaps sp. only at the higher level (resource partitioning) (John et al. 2002). Arctoseius cetratus competes also with Rhodacarellus silesiacus. Competition resulting in exclusion of one of them (or a decline in abundance) was described, e.g., by Koehler (1984) and Madej (2004). Also mites of the family Laelapidae dominate at early stages of succession. Parr (1978), in research on succession in a limestone quarry, classified Hypoaspis claviger as an ‘early species’. Hypoaspis vacua and H. praesternalis are the most commonly recorded species of that family at early stages of succession in post- -industrial wastelands (Madej 2004). Changes in flora, as well as an increase in organic matter content, result in im- proved conditions within the soil environment, which determines the species com- position of soil animal communities (Parr 1978). Later on, the mites that are less effective colonizers, can replace the species characteristic of the early successional stages. The preforest stage is dominated by mites of the families Parasitidae and Veigaiaidae, mostly the medium-sized ones. These include, e.g., Paragamasus mis- ellus, P. cambriensis, P. wasmanni, Leptogamasus suecicus, Veigaia exigua, and V. decurtata (Madej 2004). V. exigua is abundant on sites with a large moisture gradient (Karg and Freier 1995). P. cambriensis is characteristic of open habitats (Schulz 1991, P. digitulus). In contrast, L. suecicus is absent from habitats that lack the leaf litter (Karg and Freier 1995). Those species are adapted to living in unfavourable conditions, as they are able to penetrate to the deeper layers of the soil (Schulz 1991). 17

At the forest stage, within those families, species substitution can be observed. Typical forest species appear, which are much larger-sized, present mostly in the upper layers of leaf litter (hemiedaphic), e.g. Veigaia nemorensis, Paragamasus lapponicus, P. runcatellus, P. vagabundus, P. brevipes, Leptogamasus oxygynel- loides, L. cuneoliger, Pergamasus crassipes and species of the suborder Uropodina. At the forest stage, the mite species that feed on are major contributors to the total number of mite species (Madej 2004). The increase in mite size during the development of ecosystems is consistent with the hypotheses put forward by Odum (1969). Parr (1978) classified the following species as typical of the late stage of succession in the limestone quarry: Paragamasus cambriensis, P. clavipes, Veigaia cervus, V. nemorensis, V. exigua, Eviphis ostrinus, Geholaspis mandibu- laris, G. longispinosus, Pachyseius humeralis, Pachylaelaps furcifer, Rhodacarus agrestis, and Hypoaspis aculeifer.

Life strategies of gamasid mites versus ecological succession

Evolutionary ecologists believe that organization and formation of communities during the process of succession is a result of coevolution and coexistence of species with various strategies of utilizing the resources of the environment (Colinvaux 1986). Life strategies of the predatory gamasid mites were used as a tool for bioindi- cation of soil quality and for determination of individual successional stages. Mite families ordered on the r/K scale can be used to calculate the maturity index, whose values increase during succession. The maturity index for Gamasina, cal- culated for stages of old-field succession (recently abandoned field, older fallow field, bush community, beech forest) increased during succession (Ruf 1997). In the course of succession, changes in species traits take place. Mesostigmatid mites with K-selected traits (e.g. slow development, low dispersal potential, longer life), such as Veigaiaidae, Zerconidae, Parasitidae, and Trachytidae, are dominant fami- lies in forests, while the r-selected Ascidae, Digamasellidae, and Laelapidae, typical of agroecosystems, are characteristic of early stages of succession (Madej 2004). This means that immature mite communities are dominated by colonizers in variable, unpredictable habitats, while more mature communities are distinguished by a large contribution of persisters, which are found in stable habitats. However, the maturity index describes successional stages well only in natural ecosystems, in contrast to anthropogenic ecosystems, where it proved to be unreliable (Koehler 1999, Madej 2004). In a study conducted by Whelan (1978), most of the species that dominated on young pastures were r-selected and multivoltine (i.e. produced several genera- tions per year), whereas mites on an old pasture were K-selected and univoltine (i.e. produced one generation per year). Arctoseius cetratus and Alliphis halleri, i.e. the species that dominated at the beginning of succession on those pastures, were r-selected (Ruf 1997). Those species dominated also in the first two months of degradative succession on sewage sludge (Eitminavichute and Umbrasiene 1996). 18

At the pioneer stage of post-industrial wastelands, r-selected, nematophagous species clearly dominated. However, this is not confirmed in the case of mites of the family Rhodacaridae, which were classified by Ruf (1997) as K-selected species. Proportions between r-selected and K-selected species changed at the early stage of succession aided by forest management, where contributions of R-selected and K-selected species to the total number of mite species were similar. At the forest stage of succession on post-industrial wastelands, K-selected, arthropodophagous species prevailed (Madej 2004). It seems that both life history strategy and food sources determine the sequence of species (Siepel 1990, Madej 2004).

I am grateful to Ms. Sylwia Ufnalska, who translated this work into English. I also thank Ms. Barbara Grajner, who made the graph shown in Figure 1.

References

Anderson J. M. 1975. Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. J. Anim. Ecol. 44: 475-495. Andrzejewski R. 1996. Ecological problems of the protection of biological diversity (in Polish). In: Różnorodność biologiczna, pojęcia, oceny, zagadnienia ochrony i kształ- towania. Zesz. Nauk. Komit. Człowiek i Środowisko 15: 71-86. Athias-Binche F. 1991. Ecology and evolution of phoresy in mites. In: F. Dusb´abek, V. Bukva (eds.). Modern acarology. Academia, Prague and SPB, Academic Publishing bv, Hague. Beckmann M., Schriefer T. 1989. Besiedlung einer Kompostdreiecksmiete durch die Mesofauna. Poster zu Verhandlungen der Gesellschaft f¨ur Okologie¨ (Essen 1988), 18: 755-760. Begon M., Harper J. L., Townsend C. R. 1990. Ecology. Blackwell Scientific Publica- tions, Boston. Binns E. S. 1982. Phoresy as migration – some functional aspects of phoresy in mites. Biol. Rev. 57: 571-620. Christian A. 1993. Untersuchungen zur Entwicklung der Raubmilbenfauna (Gamasina) der Halden des Braunkohlentagebaues Berzdorf/OL. Abh. Ber. Naturkundemus. 67, 2: 2-64. Christian A. 1995. Succession of Gamasina in coal mined areas in Eastern Germany. Acta Zool. Fenn. 196: 380-381. Colinvaux P. A. 1986. Ecology. Wiley and Sons, New York. Connell J. H., Slatyer R. O. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111: 1119-1144. Curry J. P. 1994. Grassland Invertebrates. Ecology, influence on soil fertility and effects on plant growth. Chapman & Hall, London. Curry J. P., Momen F. M. 1988. The fauna of grassland on reclaimed cutaway peat in Central Ireland. Pedobiologia 32: 99-109. De Deyn G. B., Raaijmakers C. E., Zoomer H. R. 2003. Soil invertebrate fauna enhance grassland succession and diversity. Nature 422: 711-713. 19

Dunger W. 1968. De Entwicklung der Bodenfauna auf rekultivierten Kippem and Halden des Braunkohlentagebaues. Ein Beitrag zur pedozoologischen Standortsdiagnose. Abh. Ber. Naturkundemus. 43, 2: 1-256. Dunger W. 1998. Immigration, Ansiedlung und Prim¨arsukzession der Bodenfauna auf jungen Kippb¨oden. In: W. Pflug (ed.). Braunkohlentagebau und Rekultivierung. Landschafts¨okologie – Folgenutzung Naturschutz. Springer, Berlin. Dunger W., Wanner M. 1999. Ansiedlung und Prim¨arsukzession der Bodenfauna auf Tagebaukippen – Ergebnisse und theoretische Ans¨atze. Verhandl. Gesellsch. Okol.¨ 29: 201-211. Dunger W., Wanner M., Hauser H., Hohberg K., Schulz H.J., Schwalbe T., Seifert B., Vogel J., Voigtl¨ander K., Zimdars B., Zulka K. P. 2001. Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia 45: 243-271. Eitminavichute I., Umbrasiene D. 1996. The succession of soil mites during the process of sewage sludge degradation. R. Mitchell, D. J. Horn, G. R. Needham, W. C. Welbourn (eds.). Acarology IX. The Ohio Biological Survey, Columbus, Ohio. Fali´nska K. 2004. Plant ecology (in Polish). PWN, Warszawa. Fitter A. H., Atkinson D., Read D. J., Usher M. B. (eds.). 1985. Ecological interactions in soil: plants, microbes and animals. British Ecological Society (United Kingdom), no 4, Blackwell, Oxford. Gjelstrup P. 2000. Soil mites and collembolans on Surtsey, Iceland, 32 years after the eruption. Surtsey Res. Reykjavik 11: 43-50. Gormsen D., Hedlund K., Huifu W. 2006. Diversity of soil mite communities when man- aging plant communities on set – aside arable land. Appl. Soil Ecol. 31: 147-158. Gwiazdowicz D. J. 2007. Ascid mites (Acari, Mesostigmata) from selected forest ecosys- tems and microhabitats in Poland. Wyd. Akademii Rolniczej im. Augusta Cie- szkowskiego, Pozna´n. H˚agvar S. 1991. Succession microarthropods in decomposing spruce needles: A litter bag study over ten years. In: G. K. Veeresh, D. Rajagopal, C. A. Viraktamath (eds.). Advances in management and conservation of soil fauna. Oxford & IBH Publishing, New Delhi. H˚agvar S. 1998. Mites (Acari) developing inside decomposing spruce needles: Biology and effect on decomposition rate. Pedobiologia 42, 4: 358-377. H˚agvar S., Kjøndal B. R. 1981. Succession, diversity and feeding habits of microarthro- pods in decomposing birch leaves. Pedobiologia 22, 5/6: 385-408. Huhta V. M., Hyv¨onen R., Kaasalainen P., Koskenniemi A., Muona J., Makel¨aI., Su- lander M, Vilkamaa P. 1986. Soil fauna on coniferous forest soil. Ann. Zool. Fenn. 23: 345-360. Huhta V., Ikonen E., Vilkamaa P. 1979. Succession of invertebrate populations in artifi- cial soil made of sewage sludge and crushed bark. Ann. Zool. Fenn. 16: 223-270. Hutson B. R. 1980. Colonization of industrial reclamation sites by Acari, Collembola and other invertebrates. J. Appl. Ecol. 17: 277-286. Hutson B. R., Luff M. L. 1978. Invertebrate colonization and succession on industrial reclamation sites. Sc. Proc. Roy, Dublin. H¨uttl R. F., Weber E. 2001. Forest ecosystem development in post – mining landscapes: a case study of the Lusatian lignite district. Naturwissenschaften 88: 322-329. John M. G. St., Bagatto G., Behan-Pelletier V., Lindquist E. E., Shorthouse J. D., Smith I. M. 2002. Mite (Acari) colonization of vegetated mine tailings near Sudbury, Ontario, Canada. Plant Soil 245: 295-305. 20

Kajak A., Wasilewska L. 1996. The species diversity of organisms and the course of the decomposition of matter in cultivated soils (in Polish). In: Różnorodność biolo- giczna, pojęcia, oceny, zagadnienia ochrony i kształtowania. Zesz. Nauk. Komit. Człowiek i Środowisko 15: 129-144. Kardol P., Bezemer T. M., van der Putten W. H. 2006. Temporal variation in plant – soil feedback controls succession. Ecol. Lett. 9: 1080-1088. Karg W., Freier B. 1995. Parasitiforme Raubmilben als Indikatoren f¨ur den ¨okologischen Zustand von Okosystemen.¨ Mitteilungen aus der Biologischen Bundesanstalt f¨ur Land- und Forstwirtschaft, Berlin. Kaufmann R. 2001. Invertebrate succession on an alpine glacier foreland. Ecology 82, 8: 2261-2278. Koehler H. 1984. Methodische, Okologische¨ und Experimentelle Untersuchungen zur Sukzession der Mesofauna der Abdeckschicht einer Bauschuttdeponie unter beson- derer Ber¨ucksichtigung der Gamasina (Acari, Parasitiformes). Diss., Universit¨at Bremen. Koehler H. 1991. A five year study on the secondary succession of Gamasina on a rud- eral site: the influence of recultivation. In: F. Dusb´abek, V. Bukva (eds.). Modern acarology. Academia, Prague and SPB Academic Publishing bv, Hague. Koehler H. 1997. Sekund¨are Sukzession von Bodenmesofauna. Habilitationsschrift, Uni- versit¨at Bremen. Koehler H. 1998. Secondary succession of soil mesofauna: A thirteen year study. Appl. Soil Ecol. 9: 81-86. Koehler H. 1999. Gamasina in a succession of thirteen years. In: J. Bruin, L. P. S. van der Geest, M. W. Sabelis (eds.). Ecology and evolution of the Acari. Kluwer Academic Publishers, Dordrecht. Koehler H. 2000. Natural regeneration and succession – results from a 13 years study with reference to mesofauna and vegetation, and implications for management. Landscape Urban Plan. 51: 123-130. Koehler H., Munderloch E., Hofmann S. 1995. Soil microarthropods (Acari, Collembola) from beach and dune characteristics and ecosystem context. J. Coast. Conserv. 1: 77-86. Koehler H., Weidemann G. 1993. Biogenic dune sand stabilization. Management and Preservation of coastal habitats. Proc. multidisciplinary workshop, Jastrzębia Góra, Poland, September, 1-5. Kov´aˇcL., Shnitzerova E., Miklisov´aD., Mati R. 1999. Gamasina communities (Acari, Parasitiformes) of arable soils with two different soil types. Pedobiologia 43, 1: 54-63. Lagerl¨of J., Andr´en O. 1985. Succession and activity of microarthropods and enchy- traeids during barley straw decomposition. Pedobiologia 28: 343-357. Madej G. 2004. Development of communities of mesostigmatid mites (Arachnida, Acari) in areas of postindustrial wastelands (in Polish). Wyd. Uniwersytetu Śląskiego, Katowice. Majer J. D. 1989 a. Animals in primary succession. The role of fauna in reclaimed lands. University Press, Cambridge. Majer J. D. 1989 b. Long-term colonization of fauna in reclaimed land. In: J. D. Ma- jer (ed.). Animals in primary succession. The role of fauna in reclaimed lands. University Press, Cambridge. Michalik J., Błaszak C. 2004. Entwicklung der Gamasina – Synusie auf einer Brandfl¨ache im Notecka – Wald in Polen. Abh. Ber. Naturkundemus. 76, 1: 33-42. Odum E. P. 1969. The strategy of ecosystem development. Science 164: 262-270. 21

Osler G. H. R., Guci C. S., Abbott L. K. 2004. Limited evidence for short – term suc- cession of microarthropods during early phases of surface litter decomposition. Pedobiologia 48: 37-49. Parr T. W. 1978. An analysis of soil microarthropod succession. Sci. Proc. R. Dublin Soc. Ser. A 6: 185-196. Pickett S. T. A. 1989. Space-for-time substitution as an alternative to long-term studies. In: G. E. Likens (ed.). Long-term studies in ecology: approaches and alternatives. Springer Verlag, New York. Rajski A. 1965. Ecological succession (Introduction) (in Polish). Ekol. Pol. Ser. B 11, 1: 23-49. Ruf A. 1997. Fortpflanzungsbiologie von Raubmilben and Charakterisierung von B¨oden. Ein Konzept zur Indikation von Belastungsz¨ust¨anden von B¨oden. Abh. Ber. Naturkundemus. 69, 2: 209-216. Ruf A., Beck L. 2005. The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives fo oribatid mites. Ecotoxicol. Environ. Safety 62: 290-299. Rusek J. 1978. Pedozootische Sukzessionen w¨ahrend der Entwicklung von Okosystemen.¨ Pedobiologia 18, 5/6: 426-433. Sabelis M. W. 1992. Predatory Arthropods. Natural Enemies. In: M. J. Crawley (ed.). The population biology of predators, parasites an diseases. Blackwell Scientific Publications, Boston. Schaefer M. 1991. The animal community: diversity and resources. In: E. R¨ohring, B. Ulrich (eds.). Ecosystems of the world. 7. Temperate deciduous forests. Amsterdam. Scheu S., Albers D., Alphei J., Buryn R., Klages U., Migge S., Platner C., Salamon J. A. 2003. The soil fauna community in pure and mixed stands of beech and spruce of different age: trophic structure and structuring forces. Oikos 101: 225-238. Scheu S., Schulz E. 1996. Secondary succession, soil formation and development of a di- verse community of oribatids and saprophagous soil macro – invertebrates. Bio- divers. Conserv. 5: 235-250. Schneider K., Maraun M. 2005. Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Ori- batida, Acari). Pedobiologia 49: 61-67. Schulz S. 1989. Abundanzdynamik der Gamasina und Uropodina (Acari: Mesostigmata) eines Kalkbuchenwaldes (Zur Funktion der Fauna in einem Mullbuchenwald 13). Gesellsch. Okol.¨ Verhandl. 17: 285-291. Schulz S. 1991. Die Milbenfauna (Acari: Mesostigmata und Cryptostigmata) in Leben- sr¨aumen auf Kalkgestein: Populations¨okologie, Sukzession und Beziehungen zum Lebensraum. Ber. Forschungszentr. Wald¨okosyst. Reihe A 79: 1-245. Siepel H. 1990. Decomposition of leaves of Avenell flexuosa and microarthropod succes- sion in grazed and ungrazed grassland. I. Succession of microarthropods. Pedobio- logia 34: 19-30. Skorupski M. 2001. Mites (Acari) from the order Gamasida in the Wielkopolski National Park. Fragm. Faun. 44: 129-167. Skorupski M., Gwiazdowicz J. D. 1997. Mesostigmata mites from soil habitat sof the Pieniny National Park. Abh. Ber. Naturkundemus. 69, 2: 201-208. Skubała P. 2004. Colonization and development of oribatid mite communities (Acari: Oribatida) on post-industrial dumps. Wyd. Uniwersytetu Śląskiego, Katowice. SmrˇzJ. 2000. Some soil fauna groups as a tool for soil characteristics analysis. IUAPPA, Section A, Praha. 22

Streit B., Buehlmann A., Reutimann P. 1985. Mite succession in compost communities: Studies with Oribatei, Gamasina, and Uropodina. Pedobiologia 28: 1-12. Szujecki A. 1980. Forest insects ecology (in Polish). PWN, Warszawa. Trojan P., Chudzicka E., Filipiuk I., Skibi´nska E., Sterzy´nska M., Wytwer J. 1994. Sec- ondary succession of fauna in the pine forests of Puszcza Białowieska. Fragm. Faun. 37: 1-104. Usher M. B., Parr T. W. 1977. Are there successional changes in arthropod decomposer communities? J. Environ. Manage. 5: 151-160. Walter D. E., Ikonen E. K. 1989. Species, Guilds, and Functional Groups: Taxonomy and Behavior in Nematophagous Arthropods. J. Nematol. 21, 3: 315-327. Whelan R. J. 1978. Acarine succession in grassland on cutaway raised bog. Sci. Proc. Roy. Dublin Soc. A 6: 175-183. DEAD WOOD AS THE RICHEST HABITAT IN A HEALTHY FOREST AND MITE (ACARI) FAUNA LIVING IN IT

Piotr Skubała

University of Silesia, Department of Ecology ul. Bankowa 9, 40-007 Katowice, Poland; e-mail: [email protected]

A long history of human management of forests has created the European forests that we know today, “clean” forests, places where it is difficult to find decaying wood. As a result of this, many people think about dead wood as an unwanted element in a forest. Whereas, dead wood (coarse woody debris) is an integral part of a natural forest and it appears in many different forms. Types of coarse woody debris (CWD – any woody material > 2.5 cm in diameter ac- cording to Harmon et al. 1986) include logs; fallen branches; standing dead trees or shrubs or their partial remains, e.g. snags and stumps; dead parts of living trees; below-ground material, e.g. buried wood and coarse roots. The importance of deadwood in forest ecosystems has been reiterated in 80’s (Bobiec et al. 2005, Maser and Trappe 1984).

Key role of dead wood for forest’s health and life-cycle

Dead wood is not an optimal extra, but a critical component in forest life cycle. Decaying wood performs various ecological functions until it is finally incorporated into the soil (Berg et al. 1994, Dudley and Vallauri 2004, Harmon 2001, Harmon and Franklin 1989, Harmon et al. 1986, Jonsell et al. 1998, Maser et al. 1979, Samuelsson et al. 1994, S¨odestr¨om 1988, Speight 1989, Thomas 2002): – Maintaining forest productivity by providing organic matter, moisture, nu- trients Serving as a seedbed for plants, – Supplying a food source for fungi, e.g. mycorrhizal ones, and bacteria, among others those which fixate nitrogen, – Stabilising the forest by helping to preserve slope and surface stability and reducing soil erosion, 24

– Affecting soil development processes, – Storing carbon in the long-term, the mitigating some of the impacts of cli- mate change, – It is a critical component for vertebrate wildlife, that live, feed or nest in cavities in dead and dying timber, – Numerous representatives of invertebrates are dependent on this resource for their survival. Aldo Leopold, the forester, philosopher and environmentalist, reminded that: The land is one organism. Its parts, like our own parts, compete with each other and cooperate each other.... To keep every cog and wheel is the first rule of intelligent tinkering (Leopold 1953, p. 146-147). Recently, more and more forest managers are becoming aware that dead wood is one of these “cogs and wheels” (Thomas 2002). Perception of the role of this part of the ecosystem has greatly changed since 70’s. Today foresters are moving away from a “blanket” removal of all woody detritus to retaining and even en- hancing the amounts of dead wood in forests (Harmon 2001). The focus of forest management has shifted from a strong emphasis on regeneration and production of pulp and timber to a broaden perspective, including the maintenance of biodi- versity (Gunnar 2000). However, we are only beginning to appreciate the crucial role of decaying wood for forest’s health. And many foresters have still problems accepting that dead wood is a critical component of forest ecosystems and should be an integral part also of managed forests. The conservation of dead wood site was first actively promoted by Charles El- ton. In 1954 Elton and Miller described dead wood in forests as “centres of action” (Elton and Miller 1954). Unfortunately, the importance of coarse woody debris has not been appreciated by ecologists and ignored in many ecological studies (Harmon et al. 1986). Nevertheless, CWD has slowly become an important focus of many scientific and questions in the last decade (Harmon 2001). Natural mortality pat- terns had being studied hardly and CWD became consider a crucial factor for biodiversity (Berg et al. 1994, Esseen et al. 1997, Harmon et al. 1986). It is worth to mention that, our accumulation of data on the importance of CWD for a forest ecosystem is far slower than is our cutting of natural forests.

Lack of dead wood in managed forests

Management practices in forests have gone so long that there is little or no awareness that CWD is missing. During the past centuries, old and dead trees have consequently been removed from most Central European forests (Schiegg 2001). It has resulted in striking contrast between managed and natural forests (Harmon et al. 1986). Only about 10% of the land surface of most Europe today remains in some more or less “seminatural” condition and only a small fraction of that area is forested (Butler et al. 2002, Speight 1989). As regards deciduous forests, only 0.2% of the Central European ones remain in a relatively natural state (Hannah 25 et al. 1995). In old-growth forests the amount of dead wood could be very high, although it considerably depends on the forest types, input and decomposition rate of CWD and climatic factors (Ódor and Standov´ar 2003). In unmanaged European broadleaf forest, dead wood constitutes from 40 to 200 cubic meters per hectare and 5-30% of the total volume (Dudley and Vallauri 2004). These figures contrast dramatically with dead wood volumes in managed forests. Only a low amount of dead wood – 1 to 3 m3/ha – is present in conventional forest managed systems in Central Europe (Jabin et al. 2004). The average volume of dead wood is less than 3 m3/ha in commercial forests in Poland (Bobiec et al. 2005). In general, the amount of dead wood in near-natural, old-growth forests in boreal region is 10-15 times higher than in managed stands. With regard to broad-leaved forests, the amount of dead wood is cc. 4-5 times higher (Ódor and Standov´ar 2003). Unmanaged and managed forests also differ considerably in the quality of dead wood (Jonsson 2000, Kruys et al. 1999, S¨odestr¨om 1988). In natu- ral forests the amount of large woody debris is high, dead wood of all decay stages is proportionally represented (Ódor and Standov´ar 2003).

Restoring dead wood and naturalness

Europe has begun to understand the importance of the decaying wood ecosys- tem in late 80’s (Butler et al. 2002). In this period the Council of Europe and the Forestry Commission had appreciated the importance of woodlands contain- ing post-mature habitats (Recommendation... 1988, Forest nature... 1990). Fur- thermore, the Forest Stewardship Council certification also favours dead wood retention to preserve biodiversity. Any FSC certification scheme should add some requirements for dead wood management (Dudley and Vallauri 2004). Since the 1990s, there has been a gradual change and the protection of decaying wood has become a part of forest management in many European countries. For instance forest regulation in Poland requires at least 5 logs per hectare, but this regulation is among non-obligatory requirements. As regards obligatory require- ments, it is allowed to have 0.5 m3 of dead wood per hectare in spruce forests, 1 m3/ha in other coniferous forests and 2 m3/ha in deciduous forests. (Instrukcja Ochrony Lasu 2004). The Swedish FSC standards encourage dead wood manage- ment aiming for an increase of dead wood stores in a typical Swedish spruce forest to more than 20 m3/ha (Dudley and Vallauri 2004). The problem is that decaying wood in managed forests consists mainly of small-diameter logging or thinning waste or old trunks from the period before mechanical harvesting (Simil¨aet al. 2003). How can we increase amount of dead wood in a forest? Besides natural retention of dead wood, it can be established through artificial deliberate creation. The list of these artificial methods and studies on their efficiency is long. They can include: – deliberate creation of uprooted trees or standing dead trees (McCay et al. 2002), – topping trees with chainsaws and explosives (Brown 2002, Lewis 1998), – snags created by mechanical girdling (chainsaw) (Shea et al. 2002), 26

– snags created by baiting with bark beetle pheromones (Shea et al. 2002), – inoculation of fungi into trees to promote colonization by woodpeckers (Huss et al. 2002), – drilling (nest holes of different sizes so that species using secondary nest holes have instantly created habitat) (Brown 2002). The Ministerial Conference on the Protection of Forests in Europe has agreed a series of criteria and indicators of good management. Recently a new indicator was added specifically related to dead wood: Indicator 4.5: Dead wood – Volume of standing dead wood and of lying dead wood on forest and other wooded land classified by forest type (Dudley and Vallauri 2004, p. 12). For European boreal and temperate forests, between 20-30 m3/ha of dead wood or 3 to 8% of the total volume of wood could be suggested as a reasonable amount, divided between standing dead trees and down logs (Dudley and Vallauri 2004). Is dead wood a threat to commercial forestry? Some forestry managers still think so, whereas dead wood management does not threaten tree health and does not cost a lot. Forest stability and resilience are valuable compensation for leaving veteran trees and decaying wood (Bobiec et al. 2005). In deciduous forests the risk of damage when old trees or dead wood are retained is almost nil. There is a real risk of damage caused by insects in coniferous monocultures, but particularly where there are large-scale operations taking place (Winter 1993). There are still many problems in implementing the recommendations dealing with increasing amount of dead wood and we should still work on encouraging a positive attitude towards dead wood.

Saproxylic invertebrates in dead wood

The habitat value of decaying wood has been recognized for many groups of species, including birds, small mammals, herpetofauna, insects and other in- vertebrates, vascular plants, non-vascular plants, bacteria and fungi (Pyle and Brown 2002) (Fig. 1). Invertebrates, chiefly insects, play a significant role in the decomposition of CWD by attacking wood directly or by influencing other organ- isms. Invertebrates may also use CWD as protection from environmental extreme or as a hibernation or a nesting site. Some organisms spending much of their life cycle in CWD, e.g. bark beetles, wood-boring beetles, mites and collembolans, breed and reproduce there as well (Harmon et al. 1986). Species of invertebrates that depend, during some part of their life cycle, on dead or dying wood, on wood-inhabiting fungi, or upon the presence of other species living in dead wood were defined by Speight (1989) as saproxylic species. Beetles, flies and their larvae, which are wood-feeders, represent most impor- tant part of saproxylic complexes in dead wood. Many beetles, flies, springtails, woodlice, mites, bugs and earthworms feed on wood mould or fungal fruiting bod- ies on wood. Saproxylic predators include large numbers of beetles, some fly larvae, bugs, ants, snakefly larvae, spiders, false scorpions and mites (Kirby and Drake 1993). 27 rous microorganisms, plants, invertebrates and Fig. 1. Dead wood as habitat, shelter and food source for nume vertebrates 28

Many threatened species are associated with dead wood in Europe, ranging from simple organism to complex, mobile species like woodpeckers (Bobiec et al. 2005). Through Europe, saproxylic species have been identified as the most threatened community of invertebrates. Many of them are cited in national Red Data Book lists. Following examples concerning invertebrates described the scale of problem in European forests: – About 1800 species for Britain (6% of the entire British invertebrate fauna) and a little over 600 for Ireland are known to be dependent on the process of wood decay (Alexander 2003). Nearly 330 these species are listed in the British Red Data Book (Dudley and Vallauri 2004); – In Sweden, 80% of the red-listed forest insects are dependent on specific habitat elements, mainly old tress, logs or snags (Berg et al. 1994); – In Germany about 1350 species of beetles are known to live exclusively on dead wood. 60% of those species are endangered (Nicolai 1997); – 37% of Coleoptera species were bound to dead wood in the Masane forest in France (Trav´e2003); – According to Speight (1989), there are grounds for asserting that 20% of Eu- rope’s terrestrial invertebrate species may currently be vulnerable to extinc- tion, and one of the most serious threats to the invertebrate fauna is the loss of primeval forests. The limited number of specialists who can find and identify saproxylic inverte- brates, means that many sites are poorly documented or are even unknown, and may be destroyed before their full potential is recognized (McLean and Speight 1993).

Mites in dead wood – general remarks, present state of knowledge

One group of dead wood-related organisms which is still poorly studied in a forest habitat is soil-dwelling mites (Acari). Mites are numerously found in de- composing wood, but rarely studied, they are often absent from the publications dealing with such biotopes. This is surprising, given the number of studies on forest floor mites, as their authors unfortunately investigated mainly litter and soil. Still mites associated with CWD fully belong the ecosystem and play a non-negligible part in the sylvigenetic cycle (Trav´e2003). Mites associated with CWD have been shown to increase the availability and suitability of organic particles for de- composer communities (Norton 1990), and contribute to nutrient cycling and soil formation (Wallwork 1976). Furthermore, mites are often important egg predators occurring in dead wood (Harmon et al. 1986). In 1966 Charles Elton precisely described the role of dead wood as a critical habitat component (Elton 1966). But mites were omitted in his studies. Elton’s interest in this habitat inspired many scientists to start research on decayed wood. But still mite fauna of CWD has virtually gone unstudied. The list of ecological 29 studies on mites in dead wood is short. Below there are listed quantitatively (*) and also qualitatively (**) inquiries on mite fauna in dead wood: – Larkin and Elbourn (1964) gave a vivid description of the varied nature of natural dead branches as a habitat for animals (*); – Fager (1968) reported on species composition and relatively abundance of arthropods on fallen small oak branches and oak artifacts on the ground (**); – Wallwork (1976) studied the mite fauna of decaying twigs and branches of Betula lutea and Tsuga. (**); – Abbott et al. (1980) and Abbott and Crossley (1982) documented popula- tion densities and effects of microarthropods found on decaying branch litter during the initial stages of decay (*); – Seastedt et al. (1989) presented the results on microarthropod densities in large woody debris from coniferous forests in the northwestern U.S. (**); – Johnston and Crossley (1993) gave an interpretation of the importance of woody debris in the hardwood forest floors (**); – Paviour-Smith and Elbourn (1993) presented the list of invertebrate species found in a study of aerial dead wood on oak, ash, sycamore and hawthorn in a partly ancient woodland in southern Britain (**); – Nicolai (1997) studied the fauna of freshly fallen trunks of spruce and of beech trees in typical stands of central Europe (*); – Trav´e(2003) studied microarthropod fauna in dead wood (beech, oaks) in the Masane forest (**); – Skubała and Sokołowska (2006, in press) and Skubała and Duras (2008) presented the results of mite fauna in lying spruce and beech logs in different stage of decay (**).

Mite densities in decayed wood versus densities in forest litter and soil

Coarse woody debris was found as a richer or poorer substrate for different groups of mites than forest floor. The results are different because authors usually studied a selected type of CWD, dead wood of certain tree species or they collected samples in one of the decay classes. There are still no studies, which cover all types of dead wood and of all tree species. On the other hand, it is really difficult to do such overall research because of extremely high numbers of mites occurring in decaying substrate. There are some of the results on densities of mites in CWD: – The results on microarthropod densities in large woody debris from conifer- ous forests in the northwestern U.S. indicate that decaying wood is a rela- tively poor substrate for microarthropods. Microarthropod population den- sities were about half of those numbers observed in an equivalent amount of forest litter and soil (Seastedt et al. 1989). Fewer numbers were observed for all groups, with mesostigmatid mites and collembolans exhibiting the largest difference in population densities; 30

– Spruce decaying wood of the class IV log appeared to be richer in oribatids (3698 ind./100 g of d.m.) than surrounding litter and soil (Skubała and Sokołowska 2006). The average abundance of oribatids in nearby litter and soil (2695 ind./100 g d.m.) was only slightly higher than in other decaying logs, but the differences were only significant with regard to adults; – In studies carried out on beech logs in the third class of decay by Skubała and Duras (2008), the mean abundance of oribatids (285 ind./100 g d.w.) in dead wood was twice times higher than the abundance from the top 10 cm of litter and soil of adjacent forest soil (123 ind./100 g d.w.) (Fig. 2); – Evans et al. (2003) found a positive influence of logs on abundance of mites occupying the leaf litter and the fermentation layers. Abundance of fun- gal feeders, such as oribatid mites under logs, may be associated with the increased density of wood fragments, which contain higher number of spe- cialized fungi.

Fig. 2. The beech log in the third class of decay in the “Góra Chełm” Reserve with the mean abundance of oribatids – 285 individuals/100 grams of dry weight (Skubała and Duras 2008)

With regard to other studies on microarthropod fauna in dead wood, the au- thors cited only densities of mites in decaying substrate and did not make a com- parison with forest litter and soil. – The average density of the collected microarthropod population was very high (893.3 individuals per 100 g of dry matter, 239 indiv./100 g d.m. for Oribatida) in dead wood (beech, oaks) in the Masane forest (Trav´e2003). 31

– In small decaying oak logs on the forest floor, oribatid species were the most numerous group of mites (52.9%), followed by Mesostigmata (33%) and Astigmata (7.6%) and Prostigmata (6.6%) (Fager 1968). – The fauna of aerial dead wood on oak, ash, sycamore and hawthorn was dominated by Acari and Collembola. Oribatid mites comprise 68.8% of the total mite number, followed by Prostigmata (15.4%), Mesostigmata (14.8%) and Astigmata (1.0%) (Paviour-Smith and Elbourn 1993).

Relationship of soil mite biodiversity to coarse woody debris

The mite fauna in dead wood is described as been impoverished or richer in comparison with that found in forest litter and soil. There are some examples of studies on biodiversity of mites in decaying wood. – Seastedt et al. (1989) found that oribatid mite species richness (22 species) in woody debris was much lower than in forest floor. An examination of an equal number of wood and litter samples from Montana contained twice as many species from the litter samples. The number of species of all microarthropod groups was lower in decaying wood compared with species numbers in litter and soil. – Sixty-eight species of Oribatida have been collected by Trav´e(2003) in beech and oak dead wood, which corresponded to about one quarter of all species found in the reservation. – Johnston and Crossley (1993) recorded 60 species in CWD. Nevertheless, mite species diversity in wood was lower than in litter. – The total number of mite species in spruce lying logs (80 species) was higher than in the surface soil layer (0-7.5 cm in depth) in the Babia Góra National Park (63 species) (Skubała and Sokołowska 2006). – In studies on fallen logs by Skubała and Sokołowska (in press) dead wood was much richer in species (126) than litter and soil (76). – Beech logs in the third class of decay appeared to be richer habitat for oribatid mites than forest litter and soil (Skubała and Duras 2008). There were significantly more species (86) noted in beech logs than in forest soil (64). In others studies the authors recorded the species richness of different groups of mites, but they did not compare it to the number of species present in the forest floor. – Fager (1968) reported 55 species of mites in decaying logs, but only 26 species of oribatids were observed, followed by Mesotigmata (25 species). Astigmata and Prosigmata were represented by 4 and 3 species, respectively. – Wallwork (1976) recorded more mite species in twigs and branches of Betula lutea (12) than in Tsuga (6 species). Both decaying woody material was in the initial stages of decay. 32

– Paviour-Smith and Elbourn (1993) recorded 154 mite species in a study of aerial dead wood on oak, ash, sycamore and hawthorn in partly ancient woodland in southern Britain. The highest species richness was noted for Prostigmata (54 species), followed by Oribatida (46), Mesostigmata (36) and Astigmata (21).

Mite population densities in wood of varying stage of decay

The decomposition process occurring within a log, branch or root of almost any tree is a continuous process characterized by leaching, fragmentation, trans- port, respiration and biological transformation (Harmon et al. 1986). Most of the investigated physical and chemical characteristics change significantly during de- cay of wood. The physical changes, e.g. decrease of wood density and increase of water capacity, are fast in early stages. On the other hand, the changes in chemical properties of dead wood are usually more pronounced in later stages (Ódor and Standov´ar 2003). The degree of decay influences the use of CWD by biota (Maser and Trappe 1984). Mites immigrate into CWD as other organisms, such as wood-boring beetles, penetrate it and modify its habitality. Three phases can be recognized in the process of decay of dead wood (Maser and Trappe 1984, Speight 1989): 1. The colonization phase, during which the wood is invaded by primary saproxylics. Saproxylic beetles associated with fungi attack the wood when it is still hard. But also wood-boring mites are included to the group of the primary saproxylics. They can inhabit the outer bark of fallen tree in the first class of decay. Furthermore, arboreal mite species (living on leaving standing tree) also dwelling on lying logs or other CWD. 2. The decomposition phase, during which secondary saproxylics together with primary ones continue the process of decomposition. Saprophages, my- cophages, predators or parasites compose the group of secondary saproxylics. More organisms dwelling downed wood in this phase and the decomposition of dead wood accelerates and diversifies. As organic materials increased and more fungi become established, mites which prefer fungi for food, appear in higher number. 3. The humification phase, during which the saproxylics are progressively replaced by soil organisms. The wood becomes converted into a red-brown friable mass, composed mainly of the faeces of others. Springtails, woodlice, millipedes, worms, nematodes and mites start to dominate the fauna in de- caying wood. Studies in which mites were analysed in dead wood in different stages of decay are really rare. The conclusions drawn from these studies are more or less similar. – Maser and Trappe (1984) observed that the mite was the most numerous and diverse as a fallen tree approaches class IV of decay (in 5 decay phase system). 33

– Microarthropod population densities in large woody debris increased during the decay process in the studies carried out by Seastedt et al. (1989) on tree stems in the northwestern U.S. The highest density and number of ori- batid species was recorded in middle class of decay (III), similarly in the case of Mesostigmata and Astigmata. On the contrary, the highest number of Prostigmata was found in wood of the decay class V. – Skubała and Sokołowska (2006) observed that the abundance of oribatids and species richness in spruce lying logs tended to increase with log age. The abundance and number of species in the decay class IV was the highest. Such a trend indicates that resource heterogeneity increase with log age until class decay IV or III. It might be concluded that dead wood becomes a more rewarding food resource in the course of decomposition. One important aspect of the colonization of CWD by mites is the increasing number of fungi (many oribatids are fungivorous) during decomposition of wood and the fact that the highest diversity of fungi is observed in logs III and IV (Bader et al. 1995). In the final class of decay the mite fauna becomes poorer because the remaining material becomes more and more homogenous again.

The mite fauna associated with dead wood and saproxylic complexes

Are there unique species of Acari associated with coarse woody debris? Do lying logs, hollow trees and basal tree holes shelter unique species of soil mites? Or does decaying wood in the forest floor habitats serve as a refuge for mite species normally occurring in litter and fermentation layers? The answer is not simple and the results have been obtained hitherto are uncertain. – Johnston and Crossley (1993) observed that most of the oribatid mites that occurred in the forest floor could be found in decaying logs. Among this group of 73 species only 7 – Atropacarus sp., Camisia spinifer, Nanherman- nia sp., Omnatocepheus ocellatus, Oribatula spp., and Scheloribates pallidus – appeared to use CWD as a preferred habitat. With regard to other mite groups, oak logs were settled by common soil-litter forms, at least for the most part. Most of the Prostigmata found in CWD were predators. Simi- larly the Mesostigmata listed were also predators, some common in forest canopies and forest floors (e.g. Amblyseius sp., Asca aphidoides). Johnston and Crossley (1993) considered that CWD in the forest floor habitats served as a refuge for mite species normally occurring in litter and F layers. – Similarly Seastedt et al. (1989) considered that the fauna of decaying wood might be considered a subset of the forest floor fauna. The authors recorded members of the Oppiidae and Suctobelbidae as the most numerous in decay- ing wood and they were also the most abundant species found in litter and soil. Nearly all oribatid species obtained from dead wood were also present in litter. Only Microtritia sp., Gehypochthonius sp. and Epilohmannia sp. appeared to be restricted to decaying wood. 34

– During the study on mite fauna at Masane Athias-Binche (1977) found 20 species of Uropodina, among which 8 (40%) were strictly linked to dead wood and are phoretic. – The results from the studies on inhabitation of fallen spruce trees by orib- atid mites by Skubała and Sokołowska (2006) lead to slightly different con- clusions. In the five decaying logs (in different stages of decay), 80 oribatid species were recorded, of which 32 were found exclusively in dead wood. Even several of the dominant species, e.g. Anachipteria deficiens, Caleremaeus monilipes, Lauroppia maritima and Melanozetes meridianus appeared to be obligate members of the intra-log community (Fig. 3).

Fig. 3. Quadroppia quadricarinata (Michael 1885) – oribatid mite species associated with older spruce logs in the Babia Góra National Park (Skubała and Sokołowska 2006)

– Furthermore, Skubała and Sokołowska (in press) while studying on succes- sional patterns in Oribatida associated with spruce dead wood concluded that that oribatid mites were using logs as a completely separate habitat rather than as an extension of the forest floor. Some mite species appeared to specialize on dead wood as fifty-five species (of 131 total) were obligate members of intra-log community. – Similarly Skubała and Duras (2008) considered that decaying beech logs (in third class of decay) represented rather habitat islands in the “sea” of forest litter and soil. Oribatid mite communities of downed logs were 67% distinct with only 38 species held in common with forest litter and soil. Forty-nine 35

oribatid species (44%) are obligate members of the intra-log community. The dominant species found in logs (e.g. Tectocepheus alatus, Oppiella unicari- nata, and Tectocepheus minor) were generally different than those recorded in forest floor (e.g. Oppiella margidentata, Oppiella nova and Tectocepheus minor). – The oribatid fauna was dominated by two widespread forest soil species – Carabodes labyrinthicus and Odontocepheus elongates in aerial dead wood on oak, ash, sycamore and hawthorn (Paviour-Smith and Elbourn 1993). The Prostigmata were dominated by the algivorous or mycetopagous Tar- sonemus bifurcatus. The Mesostigmata recorded were all predators with the most frequent species – Gamasellodes bicolor. The elongate, xylophagous Michaelopus corticalis was the most abundant representative of the Astig- mata. – In Fager’s inquiries hard-bodied oribatid mites (e.g. Carabodes labyrinthicus, Adoristes ovatus, Tectocepheus velatus, Xenillus tegeocranus, Phthiracarus affine) were the most numerous species in small decaying oak logs (Fager 1968). Zercon triangularis, Eupodes variegatus and Rhizoglyphus echinopus were the most frequent species in natural oak logs of mesostigmatid, prostig- matid and astigmatid mites, respectively. Species that feed directly on wood are not the most numerous representatives of oribatids in decaying wood. Seastedt et al. (1989) noted that the dominant species in wood appeared to be mycophagous and the number of wood-feeding mites composed a small minority of mite fauna in decaying stems. The authors noted that few species (e.g. Microtritia sp., Gehypochthonius sp. and Epilohmannia n.sp.) which were restricted to dead wood preferred the wood of later decay classes. It might mean that these species were actually feeding on the microflora contained on the wood (Seastedt et al. 1989). Similarly, Johnston and Crossley (1993) noted few wood feeders, e.g. Atropacarus sp., Carabodes sp., among dominants in woody debris. In decaying spruce logs among 15 dominants in spruce decaying logs, only Caleremaeus monilipes, Carabodes labyrinthicus, Phthiracarus anonymus and At- ropacarus striculus are regarded as wood-feeding mites (Skubała and Sokołowska 2006). Among 86 species in dead wood of beech logs (Skubała and Duras 2008) 12 were herbivorous grazers (species that feed upon decaying wood). This group was less represented in forest floor (3 species). However, the dominant species in logs appeared to be mycophagous and wood-feeding oribatids compose a small minority of fauna in decaying logs. In aerial dead wood on oak, ash, sycamore and hawthorn six species of Pthiracarus were recorded in dead wood, however, they were found less commonly in the samples (Paviour-Smith and Elbourn 1993). Mites may enter decaying wood as phoretic forms on boring beetles. Passalid beetles carry several species of mites with them (Norton 1980). Do these species compose an important part of mite fauna in dead wood? One of them is Meso- plophora, the species which is able to clasp the setae of passalid beetles and thus accompany them into decaying logs. But in general few of these phoretic species were observed as numerous inhabitants of CWD (Skubała and Sokołowska 2006, Skubała and Duras 2008). In the Masane forest in France three of the total 68 oribatid species display phoretic behaviour by using saproxylophage Coleoptera 36

(Trav´e2003). Among Oribatida, phoresy is extremely rare and is only known for species living in dead wood (Norton 1980). Phoresy is frequent among Uropod- ina and even compulsory for the species living in dead wood (Trav´e2003). In the Masane beech forest among 20 Uropodina species 8 (40%) were strictly linked to dead wood and were phoretic (Trav´e2003).

Loss of CWD means loss of mites

The consequences of human removal of CWD may be great because of the numerous functions of CWD (Harmon et al. 1986). In The pattern of animal com- munities, Charles Elton (1966) described how important role for animals played dead wood. He estimated that 1/5th of fauna is lost when a forest was cleaned of decaying wood (Elton 1966): „When one walks through the rather dull and tidy woodlands... that result from modern practices, it is difficult to believe that dying and dead wood provides one of the two or three greatest resources for animal species in a natural forest, and if fallen timber and slightly decayed trees are removed the whole system is gravely impoverished of perhaps more that a fifth of its fauna” (Elton 1966, p. 279). Other authors also tried to calculate how much the forest fauna is diminished when CWD is removed. Berg et al. (1994) estimated that about 28% of the in- vertebrates were dependent on downed wood. In Deadwood – living forests... the authors concluded that up to 30% of forest species depend on veteran tress and dead wood (Dudley and Vallauri 2004). Martikainen et al. (2000) estimated that a relatively small increase in the general level of decaying wood (e.g. from 3 to 13 m3/ha) would increase the species richness, perhaps by about 50%. Sokołowska and Skubała (2007) have estimated that downed spruce logs were a habitat for about 13% of mite fauna and 43% of springtail fauna in the Babia Góra National Park, whereas beech logs housted 7% of mites and 5% of collembolans in the beech forest.

References

Abbott D. T., Crossley D. A. 1982. Woody litter decomposition following clear-cutting. Ecology 63: 35-42. Abbott D. T., Seastedt T. R. and Crossley D. A. 1980. The abundance, distribution and effects of clearcutting on Cryptostigmata in the southern Appalachians. Environ. Entomol. 9: 618-623. Alexander K. N. A. 2003. The British saproxylic invertebrate fauna. Proceedings of the second pan-European Conf. Saproxylic Beetles. People’s Trust for Endangered Species and English Nature: 1-3. Athias-Binche F. 1977. Etude quantitative des Uropodides d’un arbre mort de la hˆetraie de la Massane. 1. Caract´eres g´en´eraux du peuplement. Vie Milieu 27: 157-175. Bader P., Jansson S., Jonsson B. G. 1995. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol. Conserv. 72: 355-362. 37

Berg AA., Ehnstr¨om B., Gustafsson L., Hallingb¨ack T., Jonsell M. and Weslien J. 1994. Threatened plant, animal and fungus species in Swedish forests: distribution and habitat associations. Conserv. Biol. 8: 718-731. Bobiec A. (ed.), Gutowski J. M., Zub K., Pawlaczyk P., Laudenslayer W. F. 2005. The afterlife of a tree. WWF-Poland, Warszawa-Hajnówka. Brown T. K. 2002. Creating and maintaining wildlife, insect, and fish habitat structures in dead wood. Proc. symp. the ecology and management of dead wood in western forests. November 2-4 1999, Reno, Nevada: 883-892. Butler J., Alexander K. N. A., Green T. 2002. Decaying wood: An overview of its status and ecology in the United Kingdom and Continental Europe. Proc. symp. the ecology and management of dead wood in western forests. November 2-4 1999, Reno, Nevada: 11-19. Dudley N., Vallauri D. 2004. Deadwood – living forests. The importance of a veteran trees and deadwood to biodiversity. WWF Report, October 2004. Elton C. S. 1966. Dead and dying wood. In: Ch. S. Elton. The pattern of animal com- munities. Wiley and Sons, New York. Elton C. S., Miller R. S. 1954. The ecological survey of animal communities: With a practical system of classifying habitats by structural characters. J. Anim. Ecol. 42: 460-496. Esseen P.-A., Ehnstr¨om B., Ericson L., Sj¨oberg K. 1997. Boreal forests. Ecol. Bull. 46: 16-47. Evans A. M., Clinton P. W., Allen R. B., Frampton C. M. 2003. The influence of logs on the spatial distribution of litter-dwelling invertebrates and forest floor processes in New Zealand forests. For. Ecol. Manage. 184: 251-262. Fager E. W. 1968. The community of invertebrates in decaying oak wood. J. Anim. Ecol. 37: 121-142. Forest nature conservation guideliness. 1990. Forestry Commission. London, HMSO. Gunnar B. G. 2000. Availability of Coarse Woody Debris in a Boreal Old-Growth Picea abies Forest. J. Veget. Sci. 11: 51-56. Hannah L., Carr J. L., Lankerani A. 1995. Human disturbance and natural habitat: a biome level analysis of global data set. Biodivers. Conserv. 4: 128-155. Harmon M. E. 2001. Moving towards a new paradigm for woody detritus management. Ecol. Bull. 49: 269-278. Harmon M. E., Franklin J. F. 1989. Tree seedlings on logs in Picea – Tsuga forests of Oregon and Washington. Ecology 70: 48-59. Harmon M. E., Franklin J. F., Swanson F. J. 1986. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 5: 133-302. Huss M. J., Bednarz J. C., Juliano D. M., Varland D. E. 2002. The efficacy of inoculating fungi into conifer trees to promote cavity excavation by woodpeckers in managed forests in Western Washington. Proc. symp. the ecology and management of dead wood in western forests. November 2-4 1999, Reno, Nevada: 777-794. Instrukcja Ochrony Lasu. 2004. Pa´nstwowe Gospodarstwo Leśne lasy Pa´nstwowe, War- szawa. Jabin M., Mohr D., Kappes H., Topp W. 2004. Influence of deadwood on density of soil macro-arthropods in a managed oak-beech forest. For. Ecol. Manage. 194: 61-69. Johnston J. M., Crossley D. A. 1993. The significance of coarse woody debris for the diversity of soil mites. In: J. W. McMinn, D. A. Crossley (eds.). Proc. Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity. General Technical Report SE-94. Athens: 82-87. 38

Jonsell M., Weslien J., Ehnstr¨om B. 1998. Substrate requirements of red-listed saprox- ylic invertebrates in Sweden. Biol. Conserv. 7: 749-764. Jonsson B. G. 2000. Availability of coarse woody debris in an old-growth boreal spruce forest landscape. J. Veget. Sci. 11: 51-56. Kirby K. J., Drake C. M. 1993. Dead wood matters: the ecology and conservation of saproxylic invertebrates in Britain. English Nature Science, Peterborough. Kruys N., Fries C., Jonsson B. G., L¨am˚as T., St˚ahl G. 1999. Woodinhabiting cryptogams on dead Norway spruce (Picea abies) trees in managed Swedish boreal forests. Can. J. For. Res. 29: 178-186. Larkin P. A., Elbourn C. A. 1964. Some observations on the fauna of dead wood in live oak trees. Oikos 15: 79-92. Leopold A. 1953. Round river. B. L. Leopold (ed.). Oxford University Press, New York. Lewis J. C. 1998. Creating snags and wildlife trees in commercial forest landscapes. West. J. Appl. For. 13 (3): 97-101. McCay T. S., Hanula J. L., Loeb S. C., Lohr S. M., McMinn J. W., Wright-Miley B. D. 2002. The role of coarse woody debris in southeastern pine forests: Preliminary results from a large-scale experiment. Proc. symp. the ecology and management of dead wood in western forests. November 2-4 1999, Reno, Nevada: 135-144. McLean I. F. G., Speight M. C. D. 1993. Saproxylic invertebrates – the European con- text. In: K. J. Kirby, C. M. Drake (eds.). Dead wood matters: the ecology and conservation of saproxylic invertebrates in Britain. English Nature Science, Peter- borough. Martikainen P., Siitonen J., Puntilla P., Kaila L., Rauh J. 2000. Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Fin- land. Biol. Conserv. 94: 199-209. Maser C., Anderson R. G., Cromack, K. Jr., Williams, J. T., Martin R. E. 1979. Dead and down woody material. In: Wildlife habitats in managed forests in the Blue Mountains of Oregon and Washington. Agricultural Handbook 553, Washington, DC. Maser C., Trappe J. M. 1984. The seen and unseen world of the fallen tree. General Technical Report PNW-164, Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland. Nicolai V. 1997. The production of arthropods on dead wood of spruce and beech in typical central European forests during the first five years after the breakdown of the trunks. Spixiana 20: 183-190. Norton R. A. 1980. Observations on phoresy by Oribatid mites (Acari: Oribatei). Int. J. Acar. 6 (2): 121-130. Norton R. A. 1990. Acarina: Oribatida. In: D. L. Dindal (ed.). Soil biology guide. Wiley and Sons, New York. Ódor P., Standov´ar T. 2003. Changes of physical and chemical properties of dead wood during decay: Hungary. Nat.-Man. Work. Rep. 24: 23-29. Paviour-Smith K., Elbourn C. A. 1993. A quantitative study of the fauna of dead and dying wood in living trees within Wytham Woods, Oxford. In: K. J. Kirby, C. M. Drake (eds.). Dead wood matters: the ecology and conservation of saproxylic invertebrates in Britain. English Nature Science, Peterborough. Pyle C., Brown M. M. 2002. The effects of microsite (logs versus ground surface) on the presence of forest floor biota in a second-growth hardwood forest. Proc. symp. the ecology and management of dead wood in western forests. November 2-4 1999, Reno, Nevada: 393-403. 39

Recommendation No. R(88)10 of the Committee of Ministers to members states on the protection of saproxylic organisms and their biotopes. 1988. Strasbourg, Council of Europe. Samuelsson J., Gustafson L., Ingel¨og T. 1994. Dead and dying trees–a review of their importance for biodiversity. Sw. Environ. Protect. Agen. Rep. 4306. Schiegg K. 2001. Saproxylic insect diversity of beech: limbs are richer than trunks. For. Ecol. Manage. 149: 295-304. Seastedt T. R, Reddy V. M., Cline S. P. 1989. Microarthropods in decaying wood from temperate coniferous forest. Pedobiologia 33: 69-77. Shea P. J., Laudenslayer Jr. W. F., Ferrell G., Borys R. 2002. Girdled versus bark beetle- -created ponderosa pine snags: utilization by cavity-dependent species and differ- ences in decay rate and insect diversity. Proc. symp. the ecology and management of dead wood in western forests. November 2-4 1999, Reno, Nevada: 145-153. Simil¨aM., Kouki J., Martikainen P. 2003. Saproxylic beetles in managed and seminat- ural Scots pine forests: quality of dead wood matters. For. Ecol. Manage. 174: 365-381. Skubała P., Duras M. 2008. Do decaying logs represent habitat islands? Oribatid mite communities in dead wood. Ann. Zool. 58 (2): 453-466. Skubała P., Sokołowska M. 2006. Oribatid fauna (Acari, Oribatida) in spruce fallen trees in the Babia Góra National Park. Biol. Lett. 43 (2): 243-248. Skubała P., Sokołowska M. (in press). Succession of oribatid fauna (Acari, Oribatida) in fallen spruce trees. Deadwood as a guarantee of species and functional diversity. Proc. 12th Int. Congr. Acarology, 21-26 August 2006, Amsterdam. S¨oderstr¨om L. 1988. Sequence of bryophytes and lichens in relation to substrate variables of decaying coniferous wood in Northern Sweden. Nord. J. Bot. 8: 89-97. Sokołowska M., Skubała P. 2007. Assesing of microarthropods number in dead wood in Polsih forests (in Polish). Zesz. Nauk. Pol. Tow. Glebozn. Oddz. Rzesz. 9: 85-90. Speight M. C. D. 1989. Saproxylic invertebrates and their conservation. Nature and en- vironment series 42. Council Europe, Strasbourg. Thomas J. W. 2002. Dead wood: from forester’s bane to environmental boon. Proc. symp. the ecology and management of dead wood in western forests. November 2-4 1999, Reno, Nevada: 3-9. Trav´eJ. 2003. Dead wood and saproxylic complex in the Massane forest: Role in the con- servation of Invertebrates. Proc. second pan-European Conf. on Saproxylic Beetles. People’s Trust for Endangered Species and English Nature: 1-4. Wallwork J. A. 1976. The distribution and diversity of soil fauna. Academic Press, Lon- don. Winter T. 1993. Dead wood – is it a threat to commercial forestry? In: K. J. Kirby and C. M. Drake (eds.) Dead wood matters: the ecology and conservation of saproxylic invertebrates in Britain. English Nature Science, Peterborough.

ORIBATID MITES (ACARI, ORIBATIDA) AS BIOINDICATORS OF FOREST HABITATS

Stanisław Seniczak, Anna Seniczak

University of Technology and Life Sciences, Department of Ecology ul. Kordeckiego 20, 85-225 Bydgoszcz, Poland; e-mail: [email protected]

Introduction

Oribatida are the most abundant and rich in species among the mites. They are rather small (0.1-2 mm in length), but very differentiated in the body size, shape and colour, presence of different outer structures, which have a systematic value, ecological requirements and ability to accept changes in the habitat (Nied- bała 1980). Until now almost 10,000 species were described, while estimates of the world fauna range 50,000-100,000 species (Schatz and Behan-Pelletier 2008). In Poland we know above 500 species (Olszanowski et al. 1996). Most species live in terrestrial ecosystems, but some are bound to aquatic habitats like lakes, rivers and permanent pools. Most species are parthenogenetic and reproduce by thelytoky (Norton and Palmer 1991), while the others are dioecious. Females of some species differ morphologically from the males, but is some species these differences are in- distinct. Oribatida develop similarly through the egg, hexapod prelarva and larva, and octopod protonymph, deutonymph, tritonymph and adult. Genital opening develops gradually from the protonymph, which has a pair of genital papillae, and during the further development a pair of genital papillae is added to deu- tonymph and tritonymph, so the last nymph has 3 pairs of genital papillae, and so has the adult. Eggs are laid though the ovipositor, which in some species is as long as the body and helps the female to lay eggs in some slits, protecting them against predators. Some species lay legs on the surface of substrate, individually or in groups. In some groups (Malconothridae, Trimalaconothridae) the first stages develop quickly, and inside the females it is possible to observe in eggs well de- veloped larval characters, including legs. The larva and nymphs eat and grow, so their cuticular skeleton gets too tight, so they molt and transform into next stages. However, in some groups of mites the dorsal shield is carried by the next juvenile stage, which has an ecological importance; the mite looks bigger, and is probably less attractive to predators. Additionally, in some groups of mites like Damaeidae 42 and Belbidae, females lay eggs on the gastronotum of juvenile stages, which carry them despite of molting, taking a great part in enlarging the areas occupied by particular species. Classification of Oribatida is complicated and bases mainly on the morphology of adults (Weigmann 2006). Simpler system divided the Oribatida in the lower “Macropylina” and higher “Brachypylina” (Balogh and Mahunka 1979), but the former group was lately divided in many groups (Weigmann 2006). Generally, the adults of the lower Oribatida are in a great deal morphologically similar to the nymphs, while those of the higher Oribatida greatly differ from the juveniles. Grandjean (1954, 1965) distinguished seven types of juvenile stages, which differ mainly by the number of gastronotal setae, pattern of gastronotal cuticle, pres- ence of macro- and microsclerites and presence of exuviae of earlier stages on the gastronotum. Based on two recent systematics of Oribatida, proposed by Sub´ias (2004) and Weigmann (2006), many differences occur in them, which creates prob- lems with the determination of species in ecological investigations. Fortunately, the systematics of Oribatida is still improving by new data collected in molecular bi- ology, biology, including the morphology of the juvenile stages, and ecology. The juvenile stages of most species are still undescribed, which makes problems with their determination in ecological investigations, and using them as bioindi- cators. In particular that juvenile stages are sometimes very abundant, even pre- dominating in the age structure, and are generally more active than the adults in decomposition of the organic matter. Most oribatid species are saprophagus and feed decaying litter and mycelium, being probably able to detect microorganisms they eat. Some species consume the same food (lichens, wood) all their life, while the others change the food during ontogeny. Luxton (1972) distinguished the following trophic groups in the Oribati- da: macrophytophages (phylophages, lichenphages, xylophages), microphytopha- ges (mycetophytophages, algophytophages, bacteriophytophages) and panphy- tophages (non specialists), while Siepel and Ruiter-Dijkman (1993) distinguished seven trophic groups: – herbivorous grazers, with only cellulose activity, – fungivorous grazers, with chitinase and trehalase activity, – herbo-fungivorous grazers, which are able to digest green plants and fungi, – fungivorous browsers, which are able to digest only trehalose, – opportunistic herbo-fungivores, which are able to digest cellulose in litter, living plants and trehalose in fungi, – herbivorous browsers (carrion and bacteria feeders), – omnivores (feed on plants and food with chitin). The oribatid mites are generally slowly moving, especially the juvenile forms, and are ecologically bound to the organic layers in which they live. They cannot escape from unfavourable factor, like flying insects or birds, so their answer to this factor can be either to adapt to it or to die, that increases their bioindicative value. Potentially high bioindicative value of Oribatida results from their following characters: 43

– wide ecological requirements and geographical distribution, – high abundance and species diversity (good scale of measure of habitat qual- ity), – slow mobility, – distinct reaction to kind of organic matter and its quality, – connection with the other soil organisms, especially microflora, – reaction to stress factors with a certain delay, – narrow ecological demands of some species (good bioindicators), – reaction to stress factors on different levels of systematic organization (large communities, populations of species, individuals). There is a wide discussion in the literature, which bioindicator is better, a large community or a particular species. Theoretically, bioidication in oribatid mites can be measured on the level of community, population of species or a single in- dividual. Using large groups seems to be practical, because their determination is much easier and allows avoiding all problems connected with the determination of species. Aoki (1979) compared in Japan the bioindicative value of 49 families of Oribatida and divided them in five types of different sensitivity. Ten families were the most sensitive to the destruction of natural forest, while eight families were the most insensitive to it. Weigmann (1997) put attention to isovalent species groups, which bioindicative value is higher than that of a single individual, while Beck et al. (1997) compared the bioindicative value both of large groups and particular species of Oribatida from several geographic regions and pointed the species, which provide us with more information about the habitat than the large groups. Many other authors (H˚agvar and Kjøndal 1981, H˚agvar and Abrahamsen 1990, Seniczak S. et al. 1997 a-d, 1998 a-d) investigated indicative value of the whole Oribatida and particular species, and also found species more sensitive than the larger groups. These investigations indicated that some species were sensitive to particular factors, while some others tolerated them, which made using large groups as bioindicators risky. If the densities of species with the opposite reaction to this factor were similar, the reaction of the whole group was indistinct (Siepel 1995). Practically, communities and populations of species were usually investi- gated in the field conditions, while the populations of species or single individuals were tested in the laboratory conditions.

Forest as a habitat for oribatid mites

A well developed forest is the most complicated among terrestrial ecosystems, both in the vertical and horizontal aspects. High trees dominate in it, with many vertical layers and a great scale of ecological factors. There are epiphytes on the tree trunks and branches, like mosses and lichens, which greatly modify the living conditions for mites. Forest is also differentiated in horizontal aspect, with bushes under the canopy of high trees, and different patches of forest floor, like blubbery, heath, mosses, herbs and lichens. All these plants supply the soil with different kinds of litter, modify the soil conditions and protect the soil against evaporation. 44

The Oribatida are rather small, and use small habitats, so they react distinctly to all forest habitats. Most of oribatid mites live in the soil, but many species live arboreal seasonally or during the whole life. Seniczak S. (1973) investigated the vertical and horizontal distribution of Ori- batida on young Scots pine (Pinus sylvestris L.), larch (Larix decidua Mill.) and spruce (Picea abies (L.) Karst.) trees in Scots pine stands in Poland and found out that on Scots pine and spruce trees these mites achieved the highest density and species diversity in the lower section, while on larch tress – in the middle section. On all trees Diapterobates humeralis (Hermann, 1804), Micreremus bre- vipes (Michael, 1888) and Cymbaeremaeus cymba (Nicolet, 1855) were the most abundant in the upper or middle sections, which suggested that they are typ- ical arboreal species. Interestingly, in the distal parts of branches the juvenile stages of Diapterobates humeralis were many times more abundant then adults (Seniczak S. 1974), that resulted from the developing of this mite on the trees. The density of arboreal oribatid mites depends on soil fertility that affects plant species richness; in undeveloped plant association Vaccinio-Piceetalia this density was two times higher than in Leucobryo-Pinetum cladonietosum. However, in the latter plant association the density of Trichoribates trimaculatus C.L. Koch, 1835 was distinctly higher than in the former plant association. Diapterobates humer- alis, Micreremus brevipes, Cymbaeremaeus cymba and Trichoribates trimaculatus were also rather abundant on young Scots pine trees in different regions of Poland (Dąbrowski 1999). However, on old forest trees the arboreal oribatid mites differ slightly from those on young trees. On old spruce trees, Micreremus brevipes and Cymbaere- maeus cymba highly dominated in higher and middle sections (Kiełczewski and Seniczak 1971), and abundant were also Phauloppia lucorum (C.L. Koch, 1841) and Carabodes labyrhinthicus (Michael, 1879). Niedbała (1969) found in the upper part of old Scots pine, spruce and oak (Quercus robur L.) trees near Pozna´nthe most abundant Cymbaeremaeus cymba, Micreremus brevipes, Phauloppia rauschenensis (Sellnick, 1908) and Dometorina plantivaga (Berlese, 1895), with the participa- tion of juveniles lower than 14% of mites. Some of these species or closely related species from genera Carabodes, Hemileius, Phauloppia and family Achipteriidae were found by Rooe et al. (2007) in epiphytes on sugar maple trees (Acer saccha- rum Marsch.) in Huntington Wildlife Forest (USA). Therefore, the density and species composition of arboreal mites can inform about the species of tree, its age, epiphytes and forest plant associations. Most oribatid species live in the forest soil, which is also highly differentiated both in vertical and horizontal aspects. It is composed of several vertical horizons, which differ from each other by the content and quality of organic matter, dimen- sions of soil pores, moisture, content of oxygen, temperature etc. Oribatida are generally sensitive to the content and quality of organic matter, which they eat. Coniferous trees produce acid litter, which is attractive to fungi, so the oribatid mites also cooperate with fungi, eat them and mix with the soil material. The decay of forest fall begins on the tress. About 40% of dead needles are infected by Lophodermium pinastri, Fusicoccum sp. and Pullaria sp. (Kendrick and Burges 1962), but after falling down they are still hard and non attractive 45 to most oribatid mites. Therefore, a succession of oribatid species develops in the decaying forest litter (Seniczak S. 1979). Some species, like Adoristes ovatus (C.L. Koch, 1839) and Hemileius initialis (Berlese, 1908), with well developed chelicerae, occupy abundantly the upper soil horizon, with slightly changed dead needles, transform them, enlarging their surface and making them more attractive to the other oribatid species and microrganisms. Some other oribatid species, like Liacarus sp. and box mites have also well developed chelicerae, and are able to burrow inside hard tissues of pine needles, cones or tree branches and lay eggs there, so the larvae after hatching feed inside them. This way, the mites comminute the hard plant tissues both from the outside and inside. In the upper soil horizon the leaf litter is loose, with large air spaces between needles, leafs, cones and small branches, and therefore it is a good habitat for relatively large or quickly mowing species. However during the years the litter in the forest floor is successfully covered with new layers of fresh litter, and gets more pressed, comminuted and mixed with mycelium, and therefore more attractive for the other species, with weaker chelicerae, like Nothrus silvestris (Nicolet, 1855), Tectocepheus velatus (Michael, 1880), Oppiella nova (Oudemans, 1902), Microppia minus (Paoli, 1908), Suctobel- bidae and Brachychthoniidae (Seniczak S. 1979). In the podsolised rusty soil in the Preserve “Las Piwnicki” in Poland, most species occurred in the Of horizon, less lived in the Ol horizon, and the number of species rapidly decreased with the soil depth. The air spaces in the lower horizons are small and they limit the size of oribatid species to small or slim, like Microppia minus and Sellnickochtho- nius cricoides (Weis-Fogh, 1948). Vertical distribution of mites in the forest soil indicates in some degree the level of decay of soil organic matter. The Oribatida play the positive role in the forest soil, mainly by the following activities: – comminute the organic matter; their faecal pellets provide a large surface area for the other consumers and microorganisms, – mix the organic matter with the microorganisms, – decompose of organic matter together with their gut microflora, – provide the soil with air, – provide the soil with nitrogen by producing protein, chitin etc. Activity of oribatid mites is generally low. The process of the food digestion lasts about 8 hours (Berthet 1964), with a great participation of the gut microflora, which has a symbiotic character (Stefaniak and Seniczak 1976, 1981, 1983). In the gut microflora of Oribatida the bacteria predominate, indicating that the reaction of gut tract is about neutral, while outside the mites, in the soil, it is acid and fungi are most abundant. The gut microflora decompose very actively the organic mater, by acting on pectins, saccharose, cellulose, lignin and also chitin. Interestingly, the activity of gut microflora highly stimulated the speed of development of oribatid species (Seniczak S. and Stefaniak 1978, Siepel and Ruiter-Dijkman 1993). There- fore, higher metabolic activity of juvenile stages in decomposing of soil organic matter, comparing to the adult, has its explanation in more abundant and more active gut microflora than in the adult. 46

The oribatid mites eat about 20% of year forest fall (Berthet 1967), but their assimilation rate depends on groups. After Luxton (1972) efficiency of assimila- tion of macrophytophags is 10-15%, panphytophags 40-50%, and microphytophags 50-65%. The production of oribatid mites is 2 times higher than rodents and over 5 times than birds per ha (Krivoluckij 1976). Due to a high density oribatid mites occupy 2-3 place on the list of land animals, which decay the organic matter. Soil mites, especially the juveniles, are also a good food for soil predators which activate the soil life. Generally, a low metabolism of oribatid mites and fungi is good for forest ecosystems, because it allows developing thick litter. Scots pine trees usually grow on sandy soils and thick litter stores much water and mineral compounds, and creates good living conditions to oribatid mites and fungi, which slowly release the mineral compounds, which are necessary for plants grow. In the forest areas important are ecotones, e.g. these between forests of different age or tree composition, forest and meadows or forest and lakes. These ecotones present a great variety of habitats and therefore are rich in oribatid species, which has been well observed between Scots pine forest and forest meadows (Seniczak S. et al. 2000) and between this forest and forest lakes (Seniczak S. et al. 2006). Shel- terbelts in the agricultural landscape differ by their structure from the forests, but the ecotones between them and arable fields or meadow are also rich in species (Miko 1993, Seniczak S. et al. 2000), and increase considerably the total biodi- versity of agricultural landscape. Interestingly, in these ecotones there are species, like Dissorhina ornata (Oudemans, 1900), which prefer the ecotones, and seem to be typical for them.

Bioindicative value of oribatid communities and populations

Reaction to natural factors

Among the features which characterize communities of forest Oribatida, the most important seem to be the density, species composition, domination structure of species, age structure and the Shannon H index. Iturrondobeitia et al. (1997) stated that the distribution of Oribatida in Spain is linked to the type of vegetation, geography and soil abiotic factors (mainly acidity), soil health and salinity. In Poland the Oribatida occurred abundantly in the acid soils, with a thick layer of organic matter, and their density exceeded often 500 thousands indiv./m2. The density of mites greatly depends on plant covering (Seniczak S. 1994), but the species number is relatively low, comparing to more fertile soils (Table 1). When the soil fertility gets higher, the species richness of oribatid mites increases, but the density usually decreases, according to Thienemann’s principles (Remmert 1985): – when the habitat is more differentiated, more species live in it, but no species can reach a high density, – when the habitat is less differentiated, less species live in it, but some of them can be very abundant. The Oribatida and vascular plants reacted to soil fertility according to these principles, probably due to trophic connections between these groups. Exceptions 47

Table 1 2 Density (thousand ind./m ) and species number of Oribatida in some forest in Poland (Seniczak S. 1979, 1994)

Plant association Type of humus, location, patches Density Species number Tilio-Carpinetum mull, Białowieża NP, thin leaf litter 63 75 Peucedano-Pinetum moder, Białowieża NP, dead needles 293 41 Cladonio-Pinetum xeromor, dead needles 215 19 Tuchola Forest lichens 452 16 mosses 627 26 heath 777 27 are lichens, mosses and other pioneer plants and mites connected with them, which cover rocks and initial soils, with a low fertility. Iturrondobeitia et al. (1997) found in North Spain the most oribatid species in evergreen oak forest, less in pine forest and meadows, and the least at dunes. In the light of Thienemann principles, the density and species number of oribatid mites indicate the soil fertility. Domination structure of some species can also have a bioindicative value. For example, Tectocepheus velatus is a widely distributed species and lives in many terrestrial ecosystems. It usually predominated in forest soils with thick organic layer, but in non fertile soil the adults predominated, while in fertile soil the juveniles were distinctly more abundant than the adults (Seniczak S. 1979).

Reaction to pollution

Most studies on the Oribatida from polluted areas concern heavy metals. One of the first investigations was carried out by Williamson and Evans (1973), who compared the influence of lead on the density of soil invertebrates, including mites. Surprisingly, even a very high concentration of this metal (19 000 mg/kg) did not affect the total density of mites, which might have been caused by replacing the sensitive groups by more tolerant ones (Siepel 1995). More detail study of Strojan (1978) near a zinc smelter at Palmerton (USA), that included different groups of mites, showed that the Oribatida were the most sensitive invertebrates to heavy metals. Close to the zinc smelter, where the soil contained 26 000 mg Zn/kg, 900 mg Cd/kg and 2300 mg Pb/kg, the abundance of mites was 1/15 of that in the control plot. In the most polluted plot, the Oribatida made up 20% of all mites, while in the control plot their participation was higher (53% of all mites). Streit (1984) studied the reaction of some soil oribatid species to copper pollution. From eight analysed species, only Heminothrus peltifer (C. Koch, 1839) decreased significantly its density, the concentration of metal in the soil was however not high (200 mg/kg). Oribatida belong to the biggest accumulators of heavy metals (Lebrun and Van Straalen 1995), especially lead (Roth 1993), which may be connected with their high requirement to calcium, which enters the body by the same route as lead. They were also among the invertebrates accumulating the highest levels of other metals 48

(Fe, Mn, Zn, Cu, Ni) near the metal smelting works in Tula (Russia) (Van Straalen et al. 2001). The accumulation rate of heavy metals differs however between dif- ferent species. For example near metal smelting works in Tula the concentration of zinc in Xenillus tegeocranus (Hermann, 1804) was 119 ţg/g, but in Suctobel- bella acutidens (Forsslund, 1941) it was 1050 ţg/g. The concentration of lead in Nothrus palustris (C. Koch, 1839) was 11 ţg/g, but in Platynothrus peltifer 770 ţg/g (Zaitsev and Van Straalen 2001). Interesting studies were carried out by H˚agvar and Abrahamsen (1990) in the gradient of naturally lead polluted soil in Norway, with the concentration of this metal up to 150 000 mg/kg. Oribatida were sensitive to lead and they were rather scarce in the soils with 5000 mg/kg, but more sensitive were Gamasida. The species number of Oribatida decreased with the increasing Pb content in the soil. Seniczak S. et al. (1997 a-d) studied the effect of pollutants on arboreal and soil Oribatida of young Scots pine forests in the regions polluted by seven largest plants in Poland. In the region polluted by the copper smelting works “Głogów”, the density and species number of arboreal Oribatida were highly reduced near the emitter of pollution, in comparison to the control plot, while in the other polluted areas these values increased with the distance from this emitter (Seniczak S. et al. 1997 a) (Table 2). As a matter of soil Oribatida, only a high concentration of metals (2500 mg Cu/kg and 1500 mg Pb/kg) reduced considerably the density and species number of Oribatida, while small concentrations (200 mg Cu/kg and 200 mg Pb/kg) increased these values comparing to the control plot. In the most polluted plot Oribatula tibialis (Nicolet, 1855) dominated, while in less polluted soils Tectocepheus velatus was the most abundant. In the study of Streit (1984), similar concentration of Cu stimulated the abundance of T. velatus. The analyses at the species level near copper smelting works “Głogów” showed that some species of Oribatida were sensitive to metals, others tolerated them, and others yet were sensitive to high concentrations but tolerant of low concentrations of metals. Seniczak S. et al. (1998a), Seniczak S. and Dąbrowski (1998) and Klimek and Seniczak (2000) investigated also the influence of nitrogen plants “Włocławek” and “Police” on the arboreal and soil Oribatida in young Scots pine forests. Nitrogen pollutants were not as aggressive to these mites as heavy metals and their effects were better observed on arboreal mites than on soil mites. In the most polluted areas the density and species number of arboreal Oribatida were the lowest near the emitter of pollution, and generally increased in the direction of the control plots, while in the soil Oribatida only the species number was reduced in polluted plots, with the densities being lower or higher than in the control plots, probably due to eutrofication of forest soil. The eutrofication is not good for Scots pine forest in a long term, because it stimulates the activity of soil organisms, increases participation of grasses and other nitrofile plants in the forest floor, disturbing the circulation of elements in the ecosystem. Besides, the eutrofication makes the forest litter thinner and it is not able to store much precipitation and elements that are necessary for plants growth. Sulphur pollution is very common in industrialized countries, and highly affects the soil reaction. From the investigated plants, “Wistom” emitted distinctly more sulphur pollution than “Polchem” (Seniczak S. and Dąbrowski 1997, Dąbrowski 49 1) 1) 1) < < Table 2 < 0 (0) 32/25 68/44 97/50 4.4/10 8.6/19 6.4/19 9.9/27 0.1 ( 0.1 ( 0.7 (7) 0.1 (2) 119/43 Kujawy 1.6 (36) 5.6 (65) 0.2 ( < < l plots (4) ty of two arboreal 1) 1) 1) < < < 0.1 (6) 0 (0) 57/19 84/43 4.8/14 7.0/19 6.4/29 Lubo´n 0.8 (8) 0.1 ( 0.1 ( 0.1 ( 118/32 195/36 10.3/29 0.9 (14) 4.0 (82) < < < < 1) 1) 1) < < < 0 (0) 79/36 Police 6.7/15 8.4/25 7.3/24 0.8 (9) 0.1 ( 0.1 ( 0.1 ( 111/22 146/29 115/43 10.4/24 1.6 (22) 2.3 (22) 2.3 (34) < < < 1) 1) < Plants < 82/38 97/38 7.8/14 0.1 ( 0.8 (9) 132/38 105/44 10.0/21 10.2/21 11.2/27 2.1 (21) 1.0 (10) 2.4 (22) 4.2 (54) 1.4 (13) 0.1 ( Włocławek < ne forest polluted by different plants (plots 1-3) and contro 8.4/17 9.6/18 0.2 (2) 0.8 (5) 0.3 (3) 1.5 (7) 323/37 304/37 286/36 105/44 12.6/18 22.4/27 3.0 (36) 3.8 (30) 1.3 (14) 2.2 (10) ) oribatid mites, number of species (given after), and densi Polchem 2 63/38 91/40 4.3/20 4.0/20 5.9/26 8.5/26 0.1 (2) 0.1 (1) 0.1 (2) 0.5 (6) 100/39 131/50 0.7 (17) 0.7 (12) 1.3 (15) 1.2 (27) Wistom 1) < 0 (0) 0 (0) 1.9/6 49/11 4.2/18 5.8/23 6.3/29 0.1 (2) 0.2 (3) 0.4 (6) 0.5 (9) 0.1 ( 149/44 259/38 153/32 Głogów 0.7 (16) ) and soil (thousand ind./m < 2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Plot Taxa trimaculatus labyrinthicus Trichoribates Arboreal Oribatida Carabodes Oribatida Soil Density of arboreal (ind./dm species (with dominance index in brackets) in young Scots pi 50 and Seniczak S. 1998, Seniczak S. et al. 1998 b, 1999), but both plants reduced the density and species number of arboreal Oribatida and species number of soil Ori- batida, comparing to the control plots. In the region polluted by plant “Wistom” the density of soil Oribatida was lower, but it was higher near plant “Polchem”, comparing to the control plots. The pollution of both plants tolerated Chamobates schuetzi (Oudemans, 1902), but the lower concentration of pollution near plant “Polchem” tolerated several other typical forest taxa, like Tectocepheus velatus, Microppia minus, Oppiela nova (Oudemans, 1902), Suctobelba sp. and Brachy- chthoniidae. These results are partly consistent with H˚agvar and Kjøndal (1981), who found Tectocepheus velatus and Brachychthoniidae tolerant to increasing soil acidity. It is possible that sulphur pollution activates the growth of mycelium in forest litter, which is fed by many oribatid species. Florid pollution was harmful both to arboreal and soil Oribatida and their lower abundance and species number was observed near the factory “Lubo´n” (Seniczak S. et al. 1997 b). In other polluted areas, the density and species number of these mites increased in the direction of the control plot. Cement pollution emitted by the plant “Kujawy” decreased the density and species number of arboreal oribatid mites, and species number of soil Oribatida, comparing to the control plot. The density of soil Oribatida was reduced only near the emitter (Seniczak S. et al. 1997 c), while in the other polluted plots it was higher or lower than in the control plot. Generally, the reaction of arboreal Oribatida to air pollutants was more distinct than that of soil Oribatida, which are protected from these pollutants by the soil with its buffer system. Therefore the arboreal Oribatida are recommended to be more practical to use in forest monitoring, as less abundant and poorest in species than the soil Oribatida. From the arboreal species, two species reacted opposite to air pollutants in all polluted regions. Carabodes labyrinthicus was sensitive to them, while Trichoribates trimaculatus tolerated them, achieving the highest den- sities and dominance index near the emitters of pollution. The exceptions were heavy metals and cement pollutants, which T. trimaculatus did not tolerate. How- ever, in these cases this species was the most abundant in less polluted plots, situated further from the emitter of pollution. A great tolerance of T. trimacula- tus to high concentrations of different pollutants demonstrates the ability of some Oribatida to live in polluted areas, where they participate in the decomposition of organic matter and activate the living processes despite the great degeneration of ecosystems.

Reaction of Oribatida in laboratory tests

The most simple toxicity tests are based on evaluation of the survival of adult animals after exposure to different concentrations of toxic substances. In oribatid mites such tests concerned mostly heavy metals and have been carried out on sev- eral species. It was very interesting that adults survived very high levels of heavy metals, at least during several weeks of exposure. For example both copper and lead, even at high concentrations (1,500 ţg/g), did not affect significantly the 51 survival of adult Heminothrus peltifer (Koch, 1839) during 3-month experiment (Denneman and Van Straalen 1991). Even more surprising were the results ob- tained by Ludwig et al. (1991), who demonstrated that Nothrus silvestris Nicolet, 1855 and Rhysotritia duplicata (Grandjean, 1953) could survive 8 weeks on food contaminated with 10,000 ţg Pb/g or 1,000 ţg Cd/g. Steganacarus magnus (Nico- let, 1855) was exposed even to a higher concentration of lead (50,000 ţg Pb/g) and to 1,000 ţg Cd/g without any harmful effect. An increased mortality of mites was observed only at concentrations 100,000 ţg Pb/g or 5,000 ţg Cd/g (Ludwig et al. 1993). Even an extreme tolerance of metals in adults does not necessarily guarantee that the species will reproduce and persist in a polluted environment. The production of eggs as a parameter is much more sensitive to toxicity (Lebrun and Van Straalen 1995), while the survival of juvenile stages seems to be even a more sensitive measure (Seniczak A. et al. 2000, Seniczak A. and Seniczak S. 2002, Seniczak A. 2005). For some species that are easier to cultivate in the laboratory, also the fecundity, mortality of the offspring and the time of development were studied. Small doses of copper and lead increased the fecundity of Heminothrus peltifer (Denneman and Van Straalen 1991) and Archegozetes longisetosus Aoki, 1965 (Seniczak A. et al. 2000), what was explained by hormesis, that is by a stimulating effect of low levels of toxic substances (Stebbing 1982). At concentrations above the tolerance level of a particular species, the de- crease of fecundity, increase of mortality of juveniles, and prolongation of the development were observed. Comparing the toxicity of different metals studied so far it is obvious that the most toxic to mites is cadmium. It was harmful to Archegozetes longisetosus at the concentration in food ca. 250 ţg Cd/g (Seniczak A. and Seniczak S. 2002), while Heminothrus peltifer was even more sensitive and its reproduction declined at the concentration 8 ţg Cd/g (Van Straalen et al. 1989). These two species had a similar sensitivity to copper and lead (Denneman and Van Straalen 1991, Seniczak A. et al. 2000). The harmful concentration of copper (LOEC – Lowest Observable Effect Concentration) was 598 ţg/g for Heminothrus peltifer and 713 ţg/g for Archegozetes longisetosus, while for lead it was 1,495 ţg/g and 1,146 ţg/g, respectively. In contrast, copper was very harmful to Per- galumna nervosa, even at relatively low concentration (337 ţg/g), as it affected its reproduction and survival and development of juveniles. This species seems to be more sensitive to copper than other Oribatida studied so far, that could be caused by the high accumulation of this metal. In field studies of Skubała and Kafel (2004), Pergalumna nervosa was one of the species with the highest bioaccumula- tion factor for copper; it contained almost 12 times more of this metal than found in soil. Pergalumna nervosa, similarly like Heminothrus peltifer and Archegozetes longisetosus, tolerated higher concentration of lead then copper. Copper is an es- sential element and therefore the accumulation factor for it can be higher than for nonessential metal like lead, as invertebrates are not adapted to such high concentrations they find in polluted environments (Hopkin 1989). Some studies also reported morphological changes in mites, which were caused by heavy metals. For example in the area polluted by nickel and lead near St. Pe- tersburg (Russia) in the representatives of the Oppioidea anomalies of the skeleton 52 and legs were noted in a small part of the investigated population (4 specimens out of 5 thousand studied) (Dubinina and Alekseev 1994). The laboratory studies on Oppiella nova (Oudemans, 1902) demonstrated that these changes were caused by nickel and were passed to the progeny. In Archegozetes longisetosus serious morphological changes in the fourth pair of legs occurred in nearly all mites (95%) exposed to high level of lead (2,000 ţg/g) since the larval stage onwards (Seniczak A. and Seniczak S. 1998). These legs occur for the first time in the protonymph and are present in all subsequent development stages. In mites exposed to lead these legs were usually much shorter than normal legs and therefore were not involved in locomotion. They had fused segments, exposed neotrichy and translocated setae, some setae and claws grew larger than those on normal legs (Fig. 1). These changes were present in all nymphal stages and adults, but they did not seem to have a ge- netic background. The leg malformations were accompanied by the increased level of the heat shock proteins (hsp70), that are known to play the protective function in the organisms in the stress conditions (K¨ohler et al. 2005). Similar concentra- tion of lead did not cause any leg malformations in Pergalumna nervosa; as this species is probably more tolerant of lead than Archegozetes longisetosus. A high resistance of some Oribatid species to heavy metals must be an effect of lower accumulation rate or very effective mechanisms of heavy metal detoxifi- cation and storage in the harmless form or their excretion. Mites, like the other terrestrial invertebrates, take heavy metals together with food. The accumulation of metals greatly depends on the way of feeding. The species feeding on fungi are more exposed to heavy metals, as fungi are well known accumulators of heavy metals. Therefore the fungivorous grazers, like Nothrus silvestris (Nicolet, 1855) and Ceratozetes gracilis (Michael, 1884) accumulate about 10 times more lead (re- spectively 113 ţg/g and 103 ţg/g) than the herbivorous Heminothrus peltifer (12 ţg/g) (Siepel 1995). Also Zaitsev and Van Straalen (2001) noticed that the content of heavy metal in species relates to their mode of feeding. Ecological factors like temperature, humidity and soil pH or the presence of other metals modify the influence of heavy metals on Oribatida. For exam- ple, in Archegozetes longisetosus, the harmful influence of lead was reduced by copper, due to antagonistic interaction between those two metals (Seniczak S. et al. 1999) or increased by zinc, because of synergism (Seniczak A. et al. 2005). Most metals get into the organism passively and cannot be controlled by the animal, so their accumulation depends on the concentration in food (Dallinger 1993). For example, the concentration ratio of lead in Oribatida (organism/soil) was 0,8 (Roth 1993). Also cadmium was accumulated by Heminothrus peltifer at similar level as was in food (Van Straalen et al. 1989). In this situation it is very important to organism to get rid of the excessive amount of metals, to detoxify them or store in the harmless form. Mites like the other invertebrates store the metals in the insoluble granules, called ‘spherites’, which are located within the digestive system, what protects the other organs and tissues from them. Four types of spherites were distinguished in the invertebrates (Hopkin 1989), three (A, B, C) are located in the cells and the type D outside the cells; they differ in size and appearance and are responsible for accumulation of different metals. In mites only two types of granules were 53

Fig. 1. The protonymph of Archegozetes longisetosus with IV pair of legs damaged by lead (Seniczak A. and Seniczak S. 1998) described. In Steganacarus magnus the granules A were found in the ventriculus and postcolon, where they accumulated lead, while granules B were located in the caeca and accumulated cadmium (Ludwig et al. 1993). In many oribatid species the pair of preventricular glands, containing numerous granules, is present and they are considered an important place of pH regulation and detoxification (Ludwig et al. 1993). When mites were transferred to uncontaminated diet, the metals from the granules were excreted to the lumen of digestive system, and this way part of the metal burden was eliminated from the body (Ludwig et al. 1993). Some authors have also suggested that mites can accumulate heavy metals in the cuticle and get rid of them during moulting (Ludwig et al. 1991, Kratzmann et al. 1993). This could be possible, because for example Acrotritia duplicata, which 54 has a very thick cuticle, accumulated in the same conditions 3 times more lead and 7 times more cadmium than Nothrus silvestris (Ludwig et al. 1991). However this presumption has never been proved, as Ludwig et al. (1993) found no metals in the cuticle of Steganacarus magnus exposed to lead and cadmium. Another important strategy, which helps to survive in contaminated environ- ment, is the avoidance behaviour, when the animal can distinguish between not contaminated and contaminated food and avoid that last one. The avoidance mech- anism has been demonstrated for some soil invertebrates, like for example spring- tails (Joosse and Verhoef 1983). Also oribatid mite, Heminothrus peltifer, was able to avoid the food contaminated by cadmium, when its concentration was 438 ţg/g (Van Straalen et al. 1989). The knowledge from the laboratory experiments could be useful for developing the standard toxicity tests with the use of the Oribatid mites. Such tests already exist for several other groups of the soil invertebrates (Walker et al. 2002). Taking into account a great importance and wide distribution of the Oribatid mites their use in standard toxicity test would be desirable (Seniczak A. 2006). Some mite species are relatively easy to rare and very common and could became a powerful tool in the assessment of the biological effects of heavy metals (or other substances) in soil.

References

Aoki J. 1979. Difference in sensitivities of oribatid families to environmental change by human impacts. Rev. Ecol. Biol. Sol. 16, 3: 415-422. Balogh J., Mahunka S. 1979. New taxa in the system of the Oribatida (Acari). Acta Zool. Acad. Sci. Hung. 71: 279-290. Beck L., Woas S., Norak F. 1997. Taxonomische Ebenen als Basis der Bioindikation - Fallbeispiele aus der Gruppe der Oribatiden (Acari). Abh. Ber. Naturkundemus. 69, 2: 67-85. Berthet P. 1964. L’activit´edes Oribatides (Acari: Oribatei) d’une chˆenale. Mem. Inst. Sci. Nat. Belg. 152: 1-152. Berthet P. 1967. The metabolic activity of Oribatei (Acarina) in different forest floors. In: K. Petrusewicz (ed.). Secondary productivity of terrestrial ecosystems. IBP-PT, Warszawa. Dąbrowski J. 1999. Arboreal mites (Acari) of young Scots pine forests in some regions polluted by factories. (in Polish). Rozpr. ATR 94. Dąbrowski J., Seniczak S. 1998. Arboreal mites (Acari) associated with young Scots pine forests polluted by the “Wistom” chemical factory. Ochr. Środ. 2: 195-202. Dallinger R. 1993. Strategies of metal detoxification in terrestrial invertebrates. In: R. Dallinger, S. Rainbow (eds.). Ecotoxicology of metals in invertebrates. Lewis Pub- lishers, Boca Raton. Denneman C. A. J., Van Straalen N. M. 1991. The toxicity of lead and copper in re- production tests using the oribatid mite Platynothrus peltifer. Pedobiologia 35: 305-311. Dubinina H. V., Alekseev A. N. 1994. Skeleton changes in the oribatid mites under the influence of the heavy metals ions accumulation. Acarina 2, 1-2: 81-93. 55

Grandjean F. 1954. Essai de classification des Oribates (Acariens). Bull. Soc. Zool. Fr. 78: 421-446. Grandjean F. 1965. Compl´ement ´amon travail de 1953 sur la classification des Oribates. Acarologia 7: 127-157. H˚agvar S., Abrahamsen G. 1990. Microarthropoda and Enchytraeidae (Oligochaeta) in naturally lead-contaminated soil: a gradient study. Entomol. Soc. Am. 19: 1263-1277. H˚agvar S., Kjøndal B. R. 1981. Effects of artificial acid rain on the microarthropod fauna in decomposing birch leaves. Pedobiologia 22: 409-244. Hopkin, S. P. 1989. Ecophysiology of metals in terrestrial invertebrates. Elsevier Pub- lishers, London. Iturrondobeitia J. C, Salo˜na M. I., Pereda J., Caballero A. I., Andr´es M. C. 1997. Ori- batid mites as an applied tool in studies on bioindication: a particular case. Abh. Ber. Naturkundemus. 69, 6: 85-96. Joosse E. N. G., Verhoef S. C. 1983. Lead tolerance in Collembola. Pedobiologia 25, 1: 11-18. Kendrick W. B., Burges A. 1962. Biological aspects of decay of Pinus silvestris leaf litter. Nova Hedwig. 4: 313-342. Kiełczewski B., Seniczak S. 1971. Moss mites (Oribatei) occuring on spruce trees. (in Polish). Pr. PTPN Kom. Nauk Roln. Kom. Nauk Leśn. 32: 45-49. Klimek A., Seniczak S. 2000. Soil oribatid mites (Acari, Oribatida) of with young Scots pine forests in the region polluted by chemical plant ‘Police’. (in Polish). Zootech- nika 31: 95-107. K¨ohler H. R., Alberti G., Seniczak S., Seniczak A. 2005. Lead induced hsp 70 and hsp 60 pattern transformation and leg malformation during postembrionic development In the oribatid mite Archegozetes longisetosus Aoki. Comp. Biochem. Physiol. C 141: 398-405. Kratzmann M., Russell D., Ludwig M., Petersen U., Wein C., Storch V., Alberti G. 1993. Untersuchungen zur Bodenarthropodenfauna zweier Buchwaldstandorte im Einflußbereich geogener Schwermetalle. Verh. Gesell. Okol.¨ 22: 413-417. Krivoluckij D. A. 1976. The role of oribatid mites in biogeocenose. (in Russian). Zool. Żurn. 55: 226-236. Lebrun P., Van Straalen N. M. 1995. Oribatid mites: prospects for their use in ecotoxi- cology. Exp. Appl. Acarol. 19: 361-379. Ludwig M., Kratzmann M., Alberti G. 1991. Accumulation of heavy metals in two orib- atid mites. In: F. Dusb´abek, V. Bukva (eds.). Modern acarology. Prague and SPB Academic Publishing bv, Hague. Ludwig M., Kratzmann M., Alberti G. 1993. The influence of some heavy metals on Ste- ganacarus magnus (Acari, Oribatida). Zeitschr. Ang. Zool. 4: 455-467. Luxton M. 1972. Studies on the oribatid mites of a Dannish beech wood soil. I. Nutri- tional biology. Pedobiologia 12: 434-463. Miko L. 1993. Effects of poplar windbreaks on soil agroecosystems of East Slovakia. Ecológia (Bratislava) 12: 163-178. Niedbała W. 1969. The arboreal moss mites (Acari, Oribatei) in Pozna´nenvirons. (in Polish). Pol. Pis. Entomol. 39, 1: 83-94. Niedbała W. 1980. Moss mites – mites of terrestrial ecosystems. PWN, Warszawa. Norton R. A., Palmer S. C. 1991. The distribution mechanisms and evolutionary signif- icance of parthenogenesis in oribatid mites. In: R. Schuster, P. W. Murphy (eds.). The Acari – reproduction, development and life-history strategies. Champan and Hall, London. 56

Olszanowski Z., Rajski A., Niedbała W. 1996. Catalogue of Polish fauna. Mites (Acari), moss mites (Oribatida). (in Polish). Sorus, Pozna´n. Remmert H. 1985. Ecology. (in Polish). PWRiL, Warszawa. Rooe H. T., McGee G. G., Norton R. A. 2007. Arboreal mite communities on epiphytic lichens of the Adirondack Mountains of New York. North. Natur. 14, 3: 425-438. Roth M. 1993. Investigations on lead in the soil invertebrates of a forest ecosystem. Pedobiologia 37: 270-279. Schatz H., Behan-Pelletier V. 2008. Global diversity of oribatid mites (Oribatida: Acari: Arachnida). Hydrobiologia 595: 323-328. Seniczak A. 2005. Preliminary studies on the toxicity of copper and lead in Pergalumna nervosa (Berlese, 1914) (Acari, Oribatida) in laboratory tests. In: K. Tajovsk´y, J. Schlaghamersk´y, V. Piˇzl (eds.). Contributions to soil zoology in Central Europe II. Institute of Soil Biology, Cesk´eBud˘ejovice.ˇ Seniczak A. 2006. The influence of heavy metals on the soil mites. In: G. Gabryś, S. Ignatowicz (eds.). Postępy polskiej akarologii. Wyd. SGGW, Warszawa. Seniczak A., Ignatowicz S., Seniczak S. 2000. Effect of some heavy metals on the bionomy of mite Archegozetes longisetosus (Acari, Oribatida) in the laboratory conditions. Chem. Inż. Ekol. 10: 1085-1091. Seniczak A., Seniczak S. 1998. The influence of high concentrations of lead on the mor- phology of Archegozetes longisetosus (Acari, Oribatida). In: V. Piˇzl, K. Tajovsk´y (eds.). Soil zoological problems in Central Europe. Institute of Soil Biology, Cesk´eˇ Bud˘ejovice. Seniczak A., Seniczak S. 2002. The effect of cadmium on Archegozetes longisetosus (Acari, Oribatida) in laboratory conditions. Eur. J. Soil Biol. 38: 315-317. Seniczak A., Seniczak S., Długosz J. 1999. The effect of copper and lead on Archegozetes longisetosus Aoki (Acari, Oribatida). In: K. Tajovsk´y, V. Piˇzl (eds.). Soil zoology in Central Europe. Institute of Soil Biology, Cesk´eBud˘ejovice.ˇ Seniczak A., Seniczak S., Długosz J. 2005. The effect of lead and zinc on the moss mite Archegozetes longisetosus Aoki (Acari, Oribatida) in the laboratory conditions. In: K. Tajovsk´y, J. Schlaghamersk´y, V. Piˇzl (eds.). Contributions to soil zoology in Central Europe. Institute of Soil Biology, Cesk´eBud˘ejovice.ˇ Seniczak S. 1973. Vertical distribution of arboreal mites on some species of trees in dif- ferent types of forest habitat. (in Polish). PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 36: 171-189. Seniczak S. 1974. Ecological characteristic of more important arboreal moss-mites in young trees of two habitat-types of the forest. (in Polish). PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 38: 183-198. Seniczak S. 1979. Juvenile stages of moss mites (Acari, Oribatei) as an essential compo- nent of agglomerations of these mites trans forming the organic matter of soil. (in Polish). Rozpr. UMK. Seniczak S. 1994. The differentiation of soil mites in a Scots pine forest with the specific analysis of Oribatida (Acari). (in Polish). Zesz. Nauk. ATR Bydg. Zootechnika 26: 101-110. Seniczak S., Bukowski G., Seniczak A., Bukowska H. 2006. The soil Oribatida (Acari) of the ecotones between the Scots pine forest and lakes in the National Park Bory Tucholskie. Biol. Lett. 43, 2: 221-225. Seniczak S., Dąbrowski J. 1997. The arboreal mites (Acari) associated with young Scots pine forests polluted by the ‘Polchem’ chemical factory in Toru´n, Poland. Abh. Ber. Naturkundemus. 69, 6: 57-61. 57

Seniczak S., Dąbrowski J. 1998. The effect of air pollution produced by the ‘Police’ chem- ical factory (Poland) on the mites (Acari) associated with young Scots pine forests. Probl. Land. Ecol. 3: 228-235. Seniczak S., Dąbrowski J., Długosz J. 1997 a. Effect of copper smelting air pollution on the mites (Acari) associated with young Scots pine forests polluted by a copper smelting works at Głogów, Poland. I. Arboreal mites. Water Soil Air Poll. 94: 71-84. Seniczak S., Dąbrowski J., Klimek A., Kaczmarek S. 1997 b. The arboreal and soil mites (Acari) associated with young Scots pine forests polluted by a chemical factory Lubo´nnear Pozna´n. Bull. Pol. Acad. Sci. 44: 101-104. Seniczak S., Dąbrowski J., Klimek A., Kaczmarek S. 1997 c. Effect of pollution produced by a cement and lime factory ‘Kujawy’ on mites (Acari) associated with young Scots pine forests in Bielawy, Poland. Bull. Pol. Acad. Sci. 45: 1-6. Seniczak S., Dąbrowski J., Klimek A., Kaczmarek S. 1998 a. The effects of air pollution produced by a nitrogen fertilizer factory ‘Włocławek’ (Poland) on mite (Acari) associations in young Scots pine forests. Soil Appl. Zool. 9: 453-458. Seniczak S., Dąbrowski J., Klimek A., Kaczmarek S. 1998 b. The mites (Acari) asso- ciated with young Scots pine forests polluted by the ‘Wistom’ chemical factory, Poland. In: V. Piˇzl, K. Tajowsk´y(eds.). Soil zoological problems in Central Eu- rope. Institute of Soil Biology, Cesk´eBud´ejovice.ˇ Seniczak S., Dąbrowski J., Klimek A., Kaczmarek S. 1998 c. Effect of alkaline deposition on the mites (Acari) associated with young Scots pine forests in Poland. Water Soil Air Poll. 109: 407-428. Seniczak S., Kaczmarek S., Seniczak A. 1998 d. Soil mites (Acari) of ecotones, between shelterbelt and cultivated fields in the agricultural landscape near Turew, Poland. Pol. Acad. Sci. 46: 7-12. Seniczak S., Klimek A., Gackowski G., Kaczmarek S., Zalewski W. 1997 d. Effect of cop- per smelting air pollution on the mites (Acari) associated with young Scots pine forests polluted by a copper smelting works at Głogów, Poland, II. Soil mites. Water Soil Air Poll. 97: 287-302. Seniczak S., Klimek A., Kaczmarek S. 1999. The soil mites (Acari) associated with young Scots pine forests polluted by the ‘Polchem’ chemical factory in Toru´n(Poland). In: K. Tajowsk´y, V. Piˇzl (eds.). Soil zooloy in Central Europe. Institute of Soil Biology, Cesk´eBud´ejovice.ˇ Seniczak S., Klimek A., Kaczmarek S. 2000. Soil mites (Acari) of the ecotone between the Scots pine forest and meadow in the forest landscape in Tuchola Forest, Poland. Probl. La. Ecol. 6: 247-260. Seniczak S., Stefaniak O. 1978. The microflora of the alimentary canal of Oppia nitens (Acarina, Oribatei). Pedobiologia 18: 110-119. Siepel H. 1995. Are some mites more ecologically exposed to pollution with lead than others? Exp. Appl. Acarol. 19: 391-398. Siepel H., Ruiter-Dijkman E. M. 1993. Feeding guilds of oribatid mites based on their carbohydrase activities. Biol. Biochem. 25, 11: 1491-1497. Skubała P., Kafel A. 2004. Oribatid mite communities and metal bioaccumulation in ori- batid species (Acari, Oribatida) along the heavy metal gradient in forest ecosystem. Environ. Poll. 132: 51-60. Stebbing A. R. D. 1982. Hormesis – the stimulation of growth by low levels of inhibitors. Sci. Total Environ. 22: 213-234. Stefaniak O., Seniczak S. 1976. The microflora of the alimentary canal of Achipteria coleoptrata (Acarina, Oribatei). Pedobiologia 16: 185-194. 58

Stefaniak O., Seniczak S. 1981. The effect of fungal diet on the development of Oppia nitens (Acar, Oribatei) and on the microflora of its alimentary tract. Pedobiologia 21: 202-210. Stefaniak O., Seniczak S. 1983. Intestinal microflora of different feeding groups of soil mites (Acarida, Oribatida). In: Ph. Lebrun, H. M. Andr´e, A. De Medts, C. Gre- goire-Wibo, G. Wauthy G. (eds.). New trends in soil biology. Dieu-Brichart, Lou- vain. Streit B. 1984. Effects of high copper concentration on soil invertebrates (earthworms and oribatid mites). Experimental results and a model. Oecologia 64: 381-388. Strojan C. L. 1978: The impact of zinc smelter emission on forest litter arthropods. Oikos 31: 41-46. Sub´ias L. S. 2004. Systematic, synonymic and biogeographical check-list of the world’s oribatid mites (Acariformes, Oribatida) (1758-2002). Graellsia 60: 3-305. Van Straalen N. M., Butovsky R. O., Pokarzhevskii A. D., Zaitsev A. S., Verhoef S. C. 2001. Metal concentrations in soil and invertebrates in the vicinity of a metallur- gical factory near Tula (Russia). Pedobiologia 45: 451-466. Van Straalen N. M., Schobben J. H., De Goede R. M. 1989. Population consequences of cadmium toxicity in soil microarthropods. Ecotoxicol. Environ. Safety 17: 190-204. Walker C. H., Hopkin S. P., Sibly R. M., Peakall D. B. 2002. Principle of ecotoxicology. (in Polish). Wyd. Nauk. PWN, Warszawa. Weigmann G. 1997. Bioindication by means of isovalet species group. Abh. Ber. Natur- kundemus. 69, 2: 59-65. Weigmann, G. 2006: Hornmilben (Oribatida). In: Die Tierwelt Deutschlands. Begr. 1925 von Fr. Dahl. 76. Teil. Goecke & Evers, Keltern. Williamson P., Evans P. R. 1973. A preliminary study of the effect of high levels of in- organic lead on soil fauna. Pedobiologia 13: 16-21. Zaitsev A. S., Van Straalen N. M. 2001. Species diversity and metal accumulation in oribatid mites (Acari, Oribatida) of forests affected by metallurgical plant. Pedo- biologia 45: 467-479. MESOSTIGMATID MITES (ACARI) ASSOCIATED WITH SCOLYTIDAE IN POLAND

Dariusz J. Gwiazdowicz

Pozna´nUniversity of Life Sciences, Department of Forest Protection ul. Wojska Polskiego 71c, 60-625 Pozna´n, Poland, e-mail: [email protected]

Introduction

First acarological studies in Poland date back to the beginning of the twentieth century and these were conducted both by German and Polish researchers. How- ever, at that time there were very few studies on the connections between mites and insects, except for the publications by Krasucki (1927) and Ruszkowski (1927). More rapid development of Polish acarology occurred after WWII. Kiełczewski (1948) described the incidence of Harpalus hirtipes attacked by approximately 300 larvae Uroobovella marginata (C.L. Koch, 1839). Strojny (1952, 1954) described cases of insects, for instance Saperda carcharias L., attacked by unknown mites. Over time a trend in research emerged which concerned the role of predatory mites in reducing the number of harmful forest insects. Kiełczewski and Michalski (1962) analyzed the impact of mites on the density of the Scolytinae population. This topic enjoyed even more dynamic growth of interest in the years that fol- lowed covering various groups of mites found in bark beetles galleries (Bałazy and Kiełczewski 1965, Bałazy 1966, 1968, Kiełczewski and Bałazy 1966, Kiełczewski et al. 1973). The dynamic changes in the environment and the increasing anthropogenic impact at the turn of the 60s and the 70s of the past century caused imbalance in the biocenosis and forest ecosystems. The decreased biological resistance of forests was favorable to more intense and more widespread occurrences of dangerous insect pests. The identification of both potential and real natural enemies of bark beetles could contribute to the protection of forest ecosystems and consequently lead to a positive economic effect. Several research projects aimed at the identification of the Mesostigmata fauna, which are predators living on bark beetle galleries, were initiated in the early 80s. The effects of these studies are presented in Table 1. It includes only publications concerning particular bark beetle species, whereas 60 studies such as Gwiazdowicz (1999), Wiśniewski (1977, 1979 e), Wiśniewski and Hirschmann (1983 a), concerning the acarofauna found in bark beetle galleries without specifying bark beetle species, were omitted.

Conclusion

Thus far the mites of the order Mesostigmata have been studied in Poland in bark beetle galleries of 51 bark beetle species (Scolytidae). 133 mite species of the order Mesostigmata have been reported in those bark beetle galleries. The most common species included: Proctolaelaps fiseri (in bark beetle galleries of 39 Scolyti- dae species), Lasioseius ometes (32), Trichouropoda obscura (28), Dendrolaelaps quadrisetus (19), Trichouropoda ovalis (17), Dendrolaelaps cornutulus (16), Pleu- ronectocelaeno austriaca (16), Dendrolaelaps disetosimilis (15) and Dendrolaelaps tenuipilus (15). The investigation of this microenvironment resulted in the collection of a ma- terial which was the basis for the description of species new to science such as Dendrolaelaps hunteri, D. krantzi, D. lindquisti, Trichouropoda galica, T. rafal- skii, T. vitzthumilongiseta, T. wisniewskii. The most numerous families were: Digamasellidae (31 species), Parasitidae (20), Ascidae (19) and Trematuridae (17). It is noteworthy that mites which dom- inated here were representatives of a few species such as Dendrolaelaps (30 species), Trichouropoda (17) and Proctolaelaps (9). This might confirm the findings of world- wide research (Hirschmann and Wiśniewski 1982, 1987) concerning these genera or the results of comprehensive studies also conducted in this microenvironment (Gwiazdowicz 2007). Bark beetle species, whose galleries featured the largest number of mite species included: Ips typographus (59 mite species), Tomicus piniperda (50), Pityok- teines curvidens (43), Hylurgops palliatus (45), Pityogenes chalcographus (35), Polygraphus poligraphus (35), Tomicus minor (30), Pityokteines vorontzowi (29), Cryphalus piceae (26) and Dryocoetes autographus (26). This is not due to the pe- culiar character of bark beetle galleries formed by given species but to the intensity of the research and the number of investigated samples. The number of collected samples depended on how accessible and how common the selected insect species in the forest environment were. Currently there is ongoing research on the correlations between the succession phase of under bark insects and the succession of mites of the order Mesostigmata. One may hope that new information on those correlations will be revealed in the near future. 61 d rek hal- hal- Table 1 Ferrari, 1867 et al. 1992, Kaczmarek and Michalski 1995b, c Michalski and Ratajczak 1989 Michalski et al. 1985,Michalski Michalski et and al. Ratajczak 1992b, 1989 Kiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1994 ski et and al. Ratajczak 1985, Mic 1989 Michalski et al. 1992b,Michalski Michalski et and al. Ratajczak 1992b, 1994 Wiśniewski Michalski 1979d, and Kiełczewski Ratajczak and 1994 Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Wiśniewski 1979d, Kiełczewski andWiśniewski Wiśniewski 1979d, 1983 Kiełczewski andWiśniewski Wiśniewski 1979c 1983 Michalski et al. 1992b,Kaczmarek Michalski et and al. Ratajczak 1992, 1994 Michalski Kaczmarek et 1995b, al. 1985, c Michalski and Ratajczak 1989, Kaczma Kaczmarek and Michalski 1995c Kaczmarek et al.Ratajczak 1992, 1994, Michalski Kaczmarek et andKiełczewski Michalski and al. 1995b, Wiśniewski 1992b, 1983, c Michalski Michalskiski et and and al. 1985, Ratajczak Mic Ratajczak 1989, 1994 Michalski etMichalski al. et 1992b, al. Michalski 1985, an Michalski and Ratajczak 1989 (Ratzeburg, 1837) (Ratzeburg, 1837) Cryphalus piceae Cryphalus intermedius Cryphalus abietis Hirschmann, 1960 Hirschmann, 1960 Hirschmann 1978 Vitzthum, 1926 Hirschmann, 1960 Hirschmann, 1960 Hirschmann et Zirngiebl-Nicol, 1961 Hirschmann, 1960 Hirschmann, 1963 (Kramer, 1886) (Kramer, 1886) Hirschmann, 1960 (Vitzthum, 1926) (Vitzthum, 1923) (Vitzthum, 1923) T¨gad,1910) (Tr¨ag˚ardh, aˇina,1960 Samˇsiˇn´ak, C.L. Koch, 1836 (Oudemans, 1903) (Oudemans, 1903) Dendrolaelaps cornutus Dendrolaelaps tenuipilus Gamasodes spiniger Lasioseius ometes Pleuronectocelaeno austriaca Proctolaelaps fiseri Uroobovella vinicolora Lasioseius ometes Proctolaelaps hystrix Trichouropoda longiovalis Trichouropoda sociata Trichouropoda stammerisimilis Celaenopsis badius Dendrolaelaps armatus Dendrolaelaps disetosimilis Dendrolaelaps hexaspinosus Dendrolaelaps quadrisetosimilis Dendrolaelaps quadrisetosimilis Dendrolaelaps cornutus Ameroseius longitrichus List of mesostigmatid mites associated with Scolytidae 62 - l. d ki rek lski hal- hal- Table 1 – cont. 1992b, Michalski and Ratajczak 1994, Kaczmarek and Michals et al. 1992, Kaczmarek and Michalski 1995b, c Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989, Kaczmarek et al. 1992,1995b, Michalski c et a Kaczmarek et al. 1992,Michalski Kaczmarek et and al. Michalski 1992b, 1995b,Michalski Michalski c et and al. Ratajczak 1992b, 1994 Kiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1994 ski et al. and 1985, Mic Ratajczak1995b, c 1989, KaczmarekMichalski et et al. al. 1985,Kaczmarek Michalski 1992, et and al. Ratajczak Kaczmarek 1992, 1989 Kaczmarek Kaczmarek and and Michalski Michalski 1995c 1995b,Michalski c et al. 1992b,Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski Michalski and and Ratajczak Ratajczak 1989 1994 Michalski et al. 1985, Michalski and Ratajczak 1989, Kaczma Michalski and Ratajczak 1989, Michalskiand et Ratajczak al. 1994, 1992b, Micha KaczmarekMichalski and and Michalski Ratajczak 1995b, 1989, c Kaczmarek et al.Michalski 1992, 1995b, Michal c Michalski et al. 1992b,Kaczmarek Michalski et and al. Ratajczak 1992, 1994 Michalski Kaczmarek et and al. Michalski 1992b, 1995b,Kaczmarek Michalski c et and al. Ratajczak 1992, 1994 Kiełczewski Kaczmarek and and Wiśniewski Michalski 1983 1995b, c Kiełczewski and Wiśniewski 1983 ski et al. 1992b, Michalski and Ratajczak 1994, Kaczmarek an (Herbst, 1793) Crypturgus cinereus Vitzthum, 1926 Hirschmann et Wiśniewski, 1987 Hirschmann, 1960 Hirschmann et Zirngiebl-Nicol, 1961 Hirschmann, 1960 Hirschmann et Zierngiebl-Nicol, 1961 Hirschmann, 1963 (C.L. Koch, 1836) Berlese, 1904 (Vitzthum, 1926) (Berlese, 1918) (C.L. Koch, 1839) T¨gad,1910) (Tr¨ag˚ardh, aˇina,1960 Samˇsiˇn´ak, (Oudemans, 1903) (C.L. Koch, 1836) ra˚rh 1910 Tr¨ag˚ardh, sp. sp. sp. Trichouropoda longiovalis Dendrolaelaps tetraspinosus Eviphis ostrinus Gamasodes spiniger Lasioseius ometes Lasioseius Gamasellodes bicolor Macrocheles Parasitus Pergamasus mediocris Pleuronectocelaeno austriaca Proctolaelaps fiseri Trichouropoda obscura Trichouropoda ovalis Trichouropoda structura Trichouropoda swietokrzyskii Uroobovella vinicolora Zercon curiosus Dendrolaelaps tenuipilus Ameroseius longitrichus 63 Table 1 – cont. sp. Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Wiśniewski 1979d, Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kaczmarek and Michalski 1995c Kaczmarek et al. 1992,Kaczmarek Michalski and et Ratajczak al. 1994 marek 1992, and Michalski Michalski 1995c andKaczmarek and Ratajczak Michalski 1994, 1995c Kiełczewski Kacz- and Wiśniewski 1983 Kaczmarek et al.marek 1992, and Michalski Michalski 1995c andKaczmarek Ratajczak et 1994, al.marek Kacz- 1992, and Michalski Michalski 1995c andWiśniewski 1979b Ratajczak 1994,Kiełczewski Kacz- and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kaczmarek and Michalski 1995c Kaczmarek et al.marek 1992, and Michalski Michalski 1995c andKaczmarek Ratajczak et 1994, al.marek Kacz- 1992, and Michalski Michalski 1995c and Ratajczak 1994, Kacz- (Ratzeburg, 1837) (Gyllenhal, 1813) Crypturgus Crypturgus pusillus Dryocoetes autographus Hirschmann, 1960 Vitzthum, 1926 (Leitner, 1949) Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 (Berlese, 1920) (Berlese, 1920) Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1963 Wiśniewski, 1979 (C.L. Koch, 1836) (C.L. Koch, 1836) (C.L. Koch, 1839) (C.L. Koch, 1839) (C.L. Koch, 1839) aˇina,1960 Samˇsiˇn´ak, C.L. Koch, 1836 (Oudemans, 1903) sp. Lasioseius ometes Proctolaelaps fiseri Trichouropoda obscura Trichouropoda ovalis Trichouropoda obscura Amblyseuis Ameroseius longitrichus Celaenopsis badius Dendrolaelaps cornutulus Dendrolaelaps disetosimilis Dendrolaelaps hexaspinosus Dendrolaelaps lindquisti Dendrolaelaps multidentatus Dendrolaelaps quadrisetosimilis Dendrolaelaps quadrisetus Dendrolaelaps tenuipilus Dendrolaelaps tetraspinosus Dendrolaelaps quadrisetus Pleuronectocelaeno austriaca Veigaia nemorensis Amblyseuis obtusus 64 l. l. ki ki lski lski hal- hal- hal- Table 1 – cont. Reitter, 1913 1992b, Michalski and Ratajczak 1994, Kaczmarek and Michals 1992b, Michalski and Ratajczak 1994, Kaczmarek and Michals Kaczmarek et al.marek 1992, and Michalski Michalski 1995c andKiełczewski and Ratajczak Wiśniewski 1994, 1983 Kiełczewski Kacz- and Wiśniewski 1983, Michalskiski et and al. 1985, Ratajczak Mic Ratajczak 1989, Kaczmarek 1994, Kaczmarek et and al.Michalski Michalski et 1992, 1995c al. Michalski 1992b, and Kiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1994 ski et and al. Ratajczak 1985, Mic 1989, Kaczmarek et al. 1992,1995c Michalski et a Michalski and Ratajczak 1989, Michalskiand et Ratajczak al. 1994 1992b, Micha Wiśniewski 1979a, Kiełczewski andMichalski Wiśniewski and 1983 Ratajczak 1989, Michalskiand et Ratajczak al. 1994 1992b, Micha Kaczmarek et al.marek 1992, and Michalski Michalski 1995c andKiełczewski and Ratajczak Wiśniewski 1983, 1994, Michalskiski et Kacz- and al. Ratajczak 1985, Mic 1989, Kaczmarek et al. 1992,1995c Michalski et a Michalski et al.marek 1992b, and Michalski Michalski 1995c andKaczmarek and Ratajczak Michalski 1995c 1994,Kaczmarek Kacz- and Michalski 1995c Kiełczewski and Wiśniewski 1983 Michalski et al. 1992b, Michalski and Ratajczak 1994 (Panzer, 1793) Ernoporus tiliae Dryocoetes hectographus Vitzthum, 1926 (Berlese, 1904) (Vitzthum, 1923) Hirschmann, 1960 (C.L. Koch, 1836) (C.L. Koch, 1836) (Kramer, 1882) (Vitzthum, 1926) aˇina,1960 Samˇsiˇn´ak, (Berlese, 1918) (Kramer, 1876) aˇina,1960 Samˇsiˇn´ak, (Oudemans, 1903) (Hirschmann, 1963) sp. Gamasellodes bicolor Lasioseius ometes Pleuronectocelaeno austriaca Proctolaelaps fiseri Proctolaelaps pini Proctolaelaps xyloteri Proctolaelaps Trichouropoda elegans Trichouropoda obscura Trichouropoda polytricha Uroobovella vinicolora Vulgarogamasus kraepelini Eugamasus magnus Trichouropoda obscura Dendrolaelaps armatus 65 lski Table 1 – cont. Erichson, 1836 Wiśniewski 1979d, Kiełczewski andMichalski Wiśniewski et 1983 al. 1992b,Hirschmann Michalski and and Wiśniewski Ratajczak 1987 1994 Kiełczewski and Wiśniewski 1983 Majewski and Wiśniewski 1978 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Majewski and Wiśniewski1983, Michalski 1978, and Kiełczewski RatajczakKiełczewski 1989 and and Wiśniewski Wiśniewski 1983 Wiśniewski 1979a Majewski and Wiśniewski 1978,Kiełczewski Michalski and and Ratajczak1989, Wiśniewski 1989 Michalski 1983, et al.Michalski Michalski 1992b, and Michalski Ratajczak and and 1989, Ratajczak Michalskiand Ratajczak et 1994 Ratajczak al. 1994 1992b, Micha Wiśniewski 1979d, Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Michalski et al. 1992b, Michalski and Ratajczak 1994 Wiśniewski and Hirschmann 1983b Majewski and Wiśniewski 1978 sp. Erichson, 1836 (Paykull, 1800) Hylastes Hylastes ater Hylastes opacus Hylastes cunicularius Hirschmann et Wiśniewski, 1987 Hirschmann, 1960 (Oudemans, 1902) (Berlese, 1920) (C.L. Koch, 1836) (C.L. Koch, 1836) (C.L. Koch, 1836) (Hirschmann, 1963) (Linnaeus, 1758) 1960 Samˇsiˇn´ak, (Vitzthum, 1920) (Berlese, 1918) (C.L. Koch, 1839) (C.L. Koch, 1839) (Karg, 1970) aˇina,1960 Samˇsiˇn´ak, 1960 Samˇsiˇn´ak, (Oudemans, 1903) (C.L. Koch, 1836) (Kramer, 1876) sp. sp. sp. Trichouropoda obscura Trichouropoda vitzthumilongiseta Dendrolaelaps Eviphis ostrinus Gamasellodes bicolor Pergamasus crassipes Pergamasus septentrionalis Proctolaelaps fiseri Proctolaelaps rotunda Proctolaelaps xyloteri Proctolaelaps Trichouropoda obscura Trichouropoda ovalis Urodiaspis tecta Proctolaelaps fiseri Trichouropoda obscura Trichouropoda ovalis Dendrolaelaps Trichouropoda bipilis Anthoseius richteri Lasioseius ometes Dendrolaelaps quadrisetus Dendrolaelaps quadrisetosimilis 66 ski Table 1 – cont. Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Wiśniewski 1979d, Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Michalski and Ratajczak 1989 Kiełczewski and Wiśniewski 1983 Michalski and Ratajczak 1989 Michalski and Ratajczak 1989 Michalski and Ratajczak 1989 Wiśniewski 1979d, Kiełczewski and Wiśniewski 1983, Michal Hirschmann and Wiśniewski 1987 Kaczmarek and Michalski 1995c Kaczmarek and Michalski 1995c Kaczmarek and Michalski 1995c Kaczmarek and Michalski 1995c Kaczmarek and Michalski 1995c Kaczmarek and Michalski 1995c Kaczmarek and Michalski 1995c Kaczmarek and Michalski 1995c Kaczmarek and Michalski 1995c Kaczmarek and Michalski 1995c Bałazy et al.marek and 1977, Michalski Kiełczewski 1995c Bałazy and et al. Wiśniewski 1977, 1983, Kiełczewski and Kacz- Wiśniewski 1983 and Ratajczak 1989 (Gyllenhal, 1813) (Zetterstedt, 1828) (Fabricius, 1775) Hylesinus varius Hylurgops palliatus Hylurgops glabratus Hirschmann et Wiśniewski, 1987 (Oudemans, 1902) Hirschmann, 1960 (Berlese, 1920) (Berlese, 1920) (Vitzthum, 1923) Hirschmann et Zirngiebl-Nicol, 1961 Hirschmann, 1963 (C.L. Koch, 1836) (C.L. Koch, 1836) ¨le,1859 M¨uller, (Vitzthum, 1926) (Vitzthum, 1920) (Berlese, 1918) (Berlese, 1918) (C.L. Koch, 1839) (Karg, 1970) aˇina,1960 Samˇsiˇn´ak, 1960 Samˇsiˇn´ak, 1960 Samˇsiˇn´ak, (Oudemans, 1903) (Oudemans, 1903) (Hirschmann, 1963) sp. Proctolaelaps fiseri Trichouropoda obscura Trichouropoda ovalis Dendrolaelaps quadrisetus Gamasellodes bicolor Lasioseius ometes Proctolaelaps fiseri Proctolaelaps pini Trichouropoda bipilis Dendrolaelaps quadrisetus Gamasellodes bicolor Lasioseius ometes Porrhostaspis lunulata Proctolaelaps fiseri Tichouropoda longiovalis Trichouropoda obscura Trichouropoda polytricha Uroobovella vinicolora Ameroseius Trichouropoda vitzthumilongiseta Pergamasus septentrionalis Anthoseius richteri Dendrolaelaps disetosimilis Ameroseius longitrichus 67 c k ski 989 994 hal- Table 1 – cont. Kiełczewski and Wiśniewski 1983 Majewski and Wiśniewski1983, Michalski 1978, et Kiełczewski al.Kaczmarek 1985, and and Michalski Michalski and Wiśniewski 1995b, RatajczakKiełczewski c and 1989 Wiśniewski 1983, Michalski andKiełczewski Ratajczak and 1 Wiśniewski 1983 Majewski and Wiśniewski 1978, KaczmarekMichalski and Michalski et 1995 al. 1985 Kiełczewski and Wiśniewski1995b 1983, KaczmarekMichalski and et al. Michalski 1992b,Kaczmarek Michalski and and Michalski Ratajczak 1995b, 1994 Kiełczewski c and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989,Kiełczewski Kaczmarek and and Wiśniewski Michalski 1983 1995b,Kiełczewski c and Wiśniewski 1983 Bałazy et al. 1977,Kiełczewski Majewski and Wiśniewski and 1983, Wiśniewski Michalski andMichalski 1978 Ratajczak et 1 al. 1992b,Kiełczewski Michalski and and Wiśniewski Ratajczak 1983 1994 Kiełczewski and Wiśniewski 1983 Bałazy et al. 1977, Kiełczewski and Wiśniewski 1983,and Michal Michalski 1995b, c Kaczmarek and Michalski 1995c Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 and Ratajczak 1989, Michalski and Ratajczak 1994, Kaczmare Hirschmann, 1960 Sellnick, 1958 Hirschmann et Wiśniewski, 1982 Hirschmann, 1960 Hirschmann, 1960 (Oudemans, 1902) Hirschmann, 1960 (Berlese, 1920) Bhattacharyya, 1963 Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 (C.L. Koch, 1839) Hirschmann, 1960 Berlese, 1903 (Kramer, 1886) Hirschmann, 1960 Hirschmann, 1960 (Berlese, 1903) ra˚rh 1942 Tr¨ag˚ardh, (Linnaeus, 1758) (Berlese, 1918) T¨gad,1910) (Tr¨ag˚ardh, Sellnick, 1935 (Oudemans, 1903) sp. Dendrolaelaps armatus Dendrolaelaps comatus Dendrolaelaps cornutus Dendrolaelaps hexaspinosus Dendrolaelaps punctatus Dendrolaelaps quadrisetosimilis Dendrolaelaps quadrisetus Dendrolaelaps septentrionalis Dendrolaelaps tenuipilus Dendrolaelaps tetraspinosus Dendrolaelaps tuberosus Dendrolaelaps Gamasellodes bicolor Holoparasitus calcaratus Hypoaspis austriaca Lasioseius ometes Microsejus truncicola Paragamasus parrunciger Paragamasus runciger Pergamasus brevicornis Pergamasus crassipes Pergamasus septentrionalis Dendrolaelaps disetosimilis Dendrolaelaps nostricornutus Gamasodes spiniger Dendrolaelaps acornutus 68 - - - l. d 9, ki ki ak aj- ski ew- Table 1 – cont. 1994, Kaczmarek and Michalski 1995b, c and Wiśniewski 1983, Michalskitajczak et 1989, al. Michalski 1985, et Michalski al. and Ra 1992b, Michalski and Ratajcz Michalski et al. 1992b,Kaczmarek Michalski and and Michalski Ratajczak 1995b, 1994 Bałazy c et al. 1977, Majewski and Wiśniewski 1978, Kiełczews Kaczmarek and Michalski 1995b,Kiełczewski c and Wiśniewski 1983 Wiśniewski 1979a, Michalski et al. 1992b, Michalski andBałazy Rat et al. 1977 Michalski and Ratajczak 1994 Kaczmarek and Michalski 1995b,Bałazy c et al.ski 1977, et Kiełczewski al. and 1985,1992b, Wiśniewski Michalski Michalski and 1983, and Ratajczak Michal 1994, Ratajczak1995c Kaczmarek 1989, and Michals Michalski etBałazy et a al. 1977, Wiśniewskiski 1979d, Kiełczewski 1983, and Michalski Wiśni etMichalski et al. al. 1985, 1992b, MichalskiWiśniewski Michalski and and 1979d, Ratajczak Ratajczak Kiełczewski 198 1994 ski and et al. Wiśniewski 1992b, 1983,Michalski Michalski 1995b, and Michal c Ratajczak 1994,Wiśniewski Kaczmarek and an Hirschmann 1984 Bałazy et al. 1977 Wiśniewski 1979d, Kiełczewski and Wiśniewski 1983, Michal Bałazy et al. 1977 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 czak 1994 and Ratajczak 1994, Kaczmarek and Michalski 1995b, c (Fabricius, 1792) Hylurgus ligniperda Vitzthum, 1926 Hirschmann et Zirngiebl-Nicol, 1961 (Vitzthum, 1923) (Westerboer, 1963) Wiśniewski et Hirschmann, 1984 Hirschmann, 1960 (C.L. Koch, 1836) ¨le,1859 M¨uller, (Kramer, 1882) (Vitzthum, 1926) (Hirschmann, 1963) aˇina,1960 Samˇsiˇn´ak, (C.L. Koch, 1839) C.L. Koch, 1836 aˇina,1960 Samˇsiˇn´ak, (Oudemans, 1902) sp. sp. Proctolaelaps longanalis Porrhostaspis lunulata Proctolaelaps fiseri Proctolaelaps rotunda Proctolaelaps xyloteri Trichouropoda elegans Trichouropoda longiovalis Trichouropoda obscura Trichouropoda polytricha Trichouropoda rafalskii Trichouropoda Uroobovella vinicolora Zercon triangularis Proctolaelaps Veigaia transisalae Pleuronectocelaeno austriaca Trichouropoda ovalis Dendrolaelaps armatus 69 j- j- 994, Table 1 – cont. Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Majewski and Wiśniewski1983 1978, KiełczewskiKiełczewski and and Wiśniewski Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Majewski and Wiśniewski 1978 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Majewski and Wiśniewski1983 1978, KiełczewskiKiełczewski and and Wiśniewski Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Bałazy et al. 1987,Bałazy Kaczmarek et and al. Michalski 1987, 1995a,Michalski Kaczmarek c et and al. Michalski 1985, 1995a,czak Bałazy c 1989, et Kaczmarek al. andKaczmarek 1987, Michalski and 1995a, Michalski Michalski c and 1995c Rata Michalski et al. 1985,czak Bałazy 1989, Michalski et et al. al.Kaczmarek 1992b, 1987, Michalski and and Michalski Michalski Ratajczak and 1995a, 1 Rata Bałazy c et al. 1987,Bałazy Kaczmarek et and al. Michalski 1987, 1995a,Bałazy Kaczmarek c et and al. Michalski 1987, 1995a, Kaczmarek c and Michalski 1995a, c (Gyllenhal, 1827) Ips acuminatus Hirschmann, 1960 Hirschmann, 1960 (Oudemans, 1902) Hirschmann, 1960 (Berlese, 1904) (Berlese, 1920) Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 (C.L. Koch, 1839) Hirschmann, 1963 (Kramer, 1886) (C.L. Koch, 1836) (Hirschmann, 1963) Wiśniewski, 1979 (Linnaeus, 1758) Bhattachacharyya, 1963 (Karg, 1968) (Vitzthum, 1923) (C.L. Koch, 1939) (Karg, 1970) aˇina,1960 Samˇsiˇn´ak, sp. sp. Dendrolaelaps disetosimilis Dendrolaelaps hexaspinosus Dendrolaelaps punctatus Dendrolaelaps tenuipilus Dendrolaelaps Holoparasitus calcaratus Paragamasus celticus Paragamasus resinae Pergamasus crassipes Pergamasus septentrionalis Proctolaelaps fiseri Proctolaelaps hystrix Proctolaelaps rotunda Trichouropoda obscura Veigaia nemorensis Vulgarogamasus kraepelini Anthoseius richteri Dendrolaelaps krantzi Dendrolaelaps punctatus Dendrolaelaps quadrisetosimilis Dendrolaelaps quadrisetus Dendrolaelaps Dendrolaelaps tenuipilus Dendrolaelaps cornutus Ameroseius longitrichus 70 j- j- ki azy 994, Table 1 – cont. Bałazy et al. 1987,Kiełczewski Kaczmarek and and Wiśniewski Michalski 1983, 1995a,et Michalski c et al. al. 1985, 1987,1992b, Bał Michalski and Michalski Ratajczak and 1994,1995a, Kaczmarek c and Ratajczak Michals 1989,Michalski et Michalski al. et 1985,czak Bałazy 1989, al. Michalski et et al. al. 1992b,Kaczmarek 1987, Michalski and and Michalski Michalski Ratajczak and 1995a, 1 Rata Bałazy c et al. 1987,Michalski Kaczmarek et and al. Michalski 1985, 1995a,czak Bałazy c 1989, et Kaczmarek al. andKaczmarek 1987, Michalski and 1995a, Michalski Michalski c and 1995a, Rata c Kaczmarek and Michalski 1995a,Kaczmarek c and Michalski 1995a,Kaczmarek c and Michalski 1995a Kaczmarek and Michalski 1995a,Kaczmarek c and Michalski 1995a,Kaczmarek c and Michalski 1995a,Kaczmarek c and Michalski 1995a,Kaczmarek c and Michalski 1995a,Kaczmarek c and Michalski 1995a,Kaczmarek c and Michalski 1995a,Kaczmarek c and Michalski 1995a,Wiśniewski c 1979d, Kiełczewskimarek and and Michalski 1995a, WiśniewskiKaczmarek c and 1983, Michalski 1995a, Kacz- Kaczmarek c and Michalski 1995a, c Kaczmarek and Michalski 1995a, b, c (Heer, 1836) (Eichhoff, 1872) Ips cembrae Ips amitinus Vitzthum, 1926 Vitzthum, 1926 Hirschmann, 1960 (Berlese, 1920) (Vitzthum, 1923) (Vitzthum, 1923) Hirschmann, 1960 Hirschmann, 1960 (C.L. Koch, 1836) Berlese, 1904 (Vitzthum, 1926) (Kramer, 1876) (Karg, 1970) aˇina,1960 Samˇsiˇn´ak, aˇina,1960 Samˇsiˇn´ak, (Oudemans, 1903) (Oudemans, 1903) (Hirschmann, 1963) (Vitzthum, 1923) Hirschmann et Kaczmarek, 1991 sp. Pleuronectocelaeno austriaca Proctolaelaps pini Proctolaelaps Trichouropoda polytricha Dendrolaelaps disetosimilis Dendrolaelaps punctatus Dendrolaelaps quadrisetus Eugamasus magnus Lasioseius ometes Pergamasus mediocris Pleuronectocelaeno austriaca Proctolaelaps fiseri Sejus hinangensis Trichouropoda obscura Trichouropoda polytricha Uroobovella ipidis Uroobovella vinicolora Lasioseius ometes Proctolaelaps fiseri Dendrolaelaps comatus Anthoseius richteri 71 hal- hal- hal- Table 1 – cont. Kiełczewski and Wiśniewski 1983 Kaczmarek and Michalski 1995a,Kaczmarek b, and c Michalski 1995a,Kaczmarek b, and c Michalski 1995b Kaczmarek and Michalski 1995a,Kaczmarek b, and c Michalski 1995a,Kaczmarek b, and c Michalski 1995a,Kaczmarek b and Michalski 1995a,Kiełczewski b, c and Wiśniewski1995a, b, 1983, c KaczmarekKiełczewski and and Wiśniewski Michalski 1983 Kaczmarek and Michalski 1995c Kaczmarek and Michalski 1995a,Wiśniewski b, c 1979d, Kiełczewskimarek and and Michalski 1995a, WiśniewskiKaczmarek b, and c 1983, Michalski 1995a, Kacz- Kaczmarek b, and c Michalski 1995a, b, c Michalski et al. 1992b,Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski and Ratajczak 1994 Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989 Michalski et al. 1985,Kiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1989 ski et and al. Ratajczak 1985, Mic 1989 Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989 Kiełczewski and Wiśniewski 1983 Bonr 1776) (B¨orner, (Sahlberg, 1836) Ips sexdentatus Ips duplicatus Hirschmann, 1960 Hirschmann, 1960 Vitzthum, 1926 Hirschmann, 1960 (Berlese, 1920) (Vitzthum, 1923) (Vitzthum, 1923) Hirschmann, 1960 Hirschmann et Zierngiebl-Nicol, 1961 Hirschmann, 1960 (C.L. Koch, 1836) (Kramer, 1882) (Vitzthum, 1926) (Hirschmann, 1963) T¨gad,1910) (Tr¨ag˚ardh, (Kramer, 1876) aˇina,1960 Samˇsiˇn´ak, 1960 Samˇsiˇn´ak, 1960 Samˇsiˇn´ak, (Oudemans, 1903) (Oudemans, 1903) sp. sp. Dendrolaelaps quadrisetosimilis Dendrolaelaps quadrisetus Dendrolaelaps tenuipilus Eugamasus magnus Lasioseius ometes Macrocheles Pleuronectocelaeno austriaca Proctolaelaps fiseri Sejus Trichouropoda elegans Trichouropoda obscura Trichouropoda polytricha Trichouropoda structura Uroobovella vinicolora Proctolaelaps fiseri Trichouropoda polytricha Dendrolaelaps quadrisetosimilis Lasioseius ometes Proctolaelaps fiseri Proctolaelaps rotunda Dendrolaelaps disetosimilis Gamasodes spiniger Dendrolaelaps armatus 72 , , z- , c cz- lski Table 1 – cont. 1995a, b, c Kaczmarek and Michalski 1994,Michalski 1995b, et c al. 1992a,b, c Kaczmarek and MichalskiKaczmarek and 1994, Michalski 1995a 1995a,Michalski c et al. 1992a,Kaczmarek Kaczmarek and and Michalski Michalski 1995b 1995b,Michalski c et al. 1992a, KaczmarekKiełczewski and and Michalski Wiśniewski 1994, 1983 1995b Kaczmarek and Michalski 1994,Kiełczewski 1995b, c and Wiśniewski1994, 1995 1983, a, Kaczmarek b,Kiełczewski c and and Wiśniewski Michalski 1983, Michalski et al. 1992a,Kaczmarek Ka and Michalski 1994,Kaczmarek 1995c and Michalski 1994,Kaczmarek 1995c and Michalski 1994,Kaczmarek 1995b, and c Michalski 1994,Kaczmarek 1995c and Michalski 1994,Michalski 1995a, and b, Ratajczak c 1989, Michalskiand et Ratajczak al. 1994 1992b, Micha Kiełczewski andMichalski Wiśniewski and 1983, Ratajczak 1994, Michalski Kaczmarek and et Michalski al. 1994 Kiełczewski and 1992a,b, Wiśniewski 1983 Michalski et al. 1992a,marek b, and Michalski Michalski and 1995b, RatajczakKaczmarek c and 1994, Michalski Kac 1994,Michalski 1995b, et c al. 1992a,Kaczmarek Kaczmarek and and Michalski Michalski 1995c 1995b,Kaczmarek c and Michalski 1994, 1995c marek and Michalski 1994, 1995a, b, c (Linnaeus, 1758) Ips typographus Hirschmann, 1960 Hirschmann et Wiśniewski, 1982 Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 (Berlese, 1920) Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 (C.L. Koch, 1839) Hirschmann, 1963 Hirschmann, 1960 Hirschmann, 1960 Wainstein, 1972 (Berlese, 1918) T¨gad,1910) (Tr¨ag˚ardh, Hirschmann, 1960 (C.L. Koch, 1839) (Canestrini, 1883) (Karg, 1970) (Sellnick, 1940) C.L. Koch, 1836 sp. Dendrolaelaps tetraspinosus Ameroseius longitrichus Anthoseius richteri Anthoseius verrucosus Arctoseius cetratus Celaenopsis badius Dendrolaelaps armatus Dendrolaelaps comatus Dendrolaelaps disetosimilis Dendrolaelaps latus Dendrolaelaps longifallax Dendrolaelaps nostricornutus Dendrolaelaps punctatus Dendrolaelaps quadrisetosimilis Dendrolaelaps quadrisetus Dendrolaelaps Gamasellodes bicolor Gamasodes spiniger Holoparasitus calcaratus Hypoaspis aculeifer Dendrolaelaps hexaspinosus Amblyseius obtusus Dendrolaelaps apophyseus 73 , - z- , c ski Table 1 – cont. Michalski et al. 1992b,Kaczmarek Michalski and and Michalski Ratajczak 1994, 1994 Kaczmarek 1995a, and b, Michalski c 1995a,Kaczmarek c and Michalski 1994,Kaczmarek 1995b, and c Michalski 1994,Michalski 1995a, et b, al. c 1992a,Michalski Kaczmarek et and al. Michalski 1992a, 1995b,Kaczmarek Kaczmarek c and and Michalski Michalski 1994, 1995c Michalski 1995a, et c al. 1992a,marek b, and Michalski Michalski and 1995b, RatajczakKiełczewski c 1994, and Kac Wiśniewskichalski 1983, and Michalski et Ratajczak1995a, al. b, 1994, 1992b, c Kaczmarek Mi Kaczmarek and and Michalski Michalski 1994, 1994, Michalski 1995c et al. 1992b,Kaczmarek Michalski and and Michalski Ratajczak 1995b 1994 Bałazy et al. 1977, Kiełczewski and Wiśniewski 1983, Michal Michalski et al. 1992b,Kiełczewski Michalski and and Wiśniewski Ratajczak 1983 1994 Michalski and Ratajczak 1989 Hirschmann et al. 1991, Kaczmarek and Michalski 1994,Kaczmarek 1995a and Michalski 1995c Michalski et al. 1992a, KaczmarekWiśniewski and 1979d, Michalski Kiełczewski 1994, and 1995b Wiśniewski Wiśniewski and 1983 Hirschmann 1991 Kaczmarek and Michalski 1994, 1995a, b, c and Ratajczak 1989,Ratajczak Michalski 1994, et Kaczmarek al. and Michalski 1992a, 1994, b, 1995a, b, Michalski c and b, c Vitzthum, 1926 ra˚rh 1942 Tr¨ag˚ardh, Mulr 1859) (M¨uller, ¨le,1859 M¨uller, (Kramer, 1882) Berlese, 1904 (Berlese, 1903) (Hirschmann, 1963) (Vitzthum, 1920) Wiśniewski et Hirschmann, 1986 (Kramer, 1876) Berlese, 1881 aˇina,1960 Samˇsiˇn´ak, (Oudemans, 1903) (Hirschmann, 1963) Hirschmann et Kaczmarek, 1991 (C.L. Koch, 1841) sp. C.L. Koch, 1836 sp. sp. sp. sp. Lasioseius ometes Lasioseius Microgynium rectangulatum Eugamasus magnus Paragamasus misellus Parasitus Pergamasus mediocris Pergamasus Pleuronectocelaeno austriaca Polyaspis patavinus Polyaspis Porrhostaspis lunulata Proctolaelaps fiseri Proctolaelaps rotunda Proctolaelaps Sejus hinangensis Trachytes aegrota Trichouropoda galica Trichouropoda elegans Proctolaelaps pini Sejus togatus Iphidosoma fimetarium Trichouropoda bipilis 74 - d , c , c , c ski cz- Table 1 – cont. Michalski 1994, 1995b, c Wiśniewski 1979d, Kiełczewskiski and and Ratajczak Wiśniewski 1989, 1983, Michalski Michal et al. 1992a,Kiełczewski Kaczmarek and an Wiśniewski 1983, Michalski et al. 1992a,Michalski Ka et al. 1992a, KaczmarekWiśniewski and 1979d, Michalski Kiełczewski 1994, and 1995b Wiśniewski 1983, Michal Kaczmarek and Michalski 1994,Hirschmann 1995c and Wiśniewski 1987 Michalski et al. 1992a,Kaczmarek Kaczmarek and and Michalski Michalski 1994, 1995b,Michalski 1995a, c b, and c Ratajczakmarek 1989, and Michalski Michalski 1994,Michalski et 1995a, et b, al. al. c 1992a, 1992a,Michalski Kaczmarek et Kacz- and al. Michalski 1992a, 1995b, KaczmarekMichalski c et and al. Michalski 1994, 1992a, 1995b KaczmarekKaczmarek and and Michalski Michalski 1994, 1994, 1995b 1995c Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Wiśniewski 1979a Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 marek and Michalski 1994, 1995a, b, c et al. 1992a,Michalski b, and Ratajczak Kaczmarek 1994 and Michalski 1994, 1995a, b, c, (Gyllenhal, 1827) (Fabricius, 1792) Orthotomicus laricis Orthotomicus suturalis Hirschmann et Wiśniewski, 1987 Hirschmann, 1960 Hirschmann et Zirngiebl-Nicol, 1961 (Vitzthum, 1923) Hirschmann et Zierngiebl-Nicol, 1961 (C.L. Koch, 1836) (C.L. Koch, 1836) (Vitzthum, 1926) (Hirschmann, 1963) (Linnaeus, 1758) 1960 Samˇsiˇn´ak, (C.L. Koch, 1839) (C.L. Koch, 1939) aˇina,1960 Samˇsiˇn´ak, aˇina,1960 Samˇsiˇn´ak, (Oudemans, 1903) (Vitzthum, 1923) ra˚rh 1910 Tr¨ag˚ardh, sp. (Kramer, 1876) T¨gad,1901) (Tr¨ag˚ardh, sp. Trichouropoda obscura Trichouropoda vitzthumilongiseta Trichouropoda Uroobovella ipidis Uroobovella vinicolora Uropoda Veigaia cerva Lasioseius ometes Pergamasus crassipes Proctolaelaps fiseri Proctolaelaps rotunda Proctolaelaps xyloteri Trichouropoda obscura Veigaia kochi Trichouropoda ovalis Trichouropoda structura Trichouropoda longiovalis Dendrolaelaps disetosimilis Proctolaelaps fiseri Trichouropoda polytricha Veigaia nemorensis Zercon curiosus 75 d 989 hal- hal- hal- hal- Table 1 – cont. sp. (Herbst, 1783) Kiełczewski and Wiśniewski 1983 Hirschmann and Wiśniewski 1987 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Wiśniewski and Hirschmann 1983b Bałazy et al. 1977 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983, Michalski andMichalski Ratajczak et 1 al. 1985 Michalski et al. 1985,Majewski Michalski and and Wiśniewski Ratajczak 1978 1989 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989 Michalski et al. 1992b,Kiełczewski Michalski and and Wiśniewski Ratajczak 1983 1994 Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989 Kiełczewski and Wiśniewski 1983, Michalskiski et and al. 1985, Ratajczak Mic Ratajczak 1989, 1994 Michalski etKiełczewski al. and 1992b, Wiśniewski Michalski 1983 an Orthotomicus Pityogenes bidentatus Hirschmann et Wiśniewski, 1987 Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 Hirschmann et Wiśniewski, 1982 Vitzthum, 1926 (Oudemans, 1902) (Kramer, 1886) (C.L. Koch, 1836) (C.L. Koch, 1836) (Hirschmann, 1963) (Berlese, 1918) (Vitzthum, 1923) (C.L. Koch, 1939) (Karg, 1970) (Karg, 1970) aˇina,1960 Samˇsiˇn´ak, 1960 Samˇsiˇn´ak, (Oudemans, 1903) (C.L. Koch, 1836) sp. sp. sp. Trichouropoda vitzthumilongiseta Veigaia nemorensis Dendrolaelaps quadrisetosimilis Dendrolaelaps Proctolaelaps fiseri Trichouropoda obscura Dendrolaelaps apophyseosimilis Dendrolaelaps cornutus Dendrolaelaps quadrisetosimilis Dendrolaelaps Eviphis ostrinus Gamasellodes bicolor Gamasellodes insignis Lasioseius ometes Parasitus Pergamasus septentrionalis Pleuronectocelaeno austriaca Proctolaelaps fiseri Proctolaelaps hystrix Dendrolaelaps nostricornutus Trichouropoda obscura Anthoseius richteri Anthoseius richteri 76 ski hal- hal- Table 1 – cont. (Linnaeus, 1761) Michalski et al. 1992b,Michalski Michalski et and al. Ratajczak 1985, 1994 Wiśniewski Michalski 1979d, and Kiełczewski Ratajczak and 1989 Wiśniewski 1983, Michal Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989 Kaczmarek and Michalski 1994, 1995b, c Kaczmarek and Michalski 1995c Kaczmarek et al. 1992,Kiełczewski Kaczmarek and and Michalski 1995c 1989, Wiśniewski Kaczmarek 1983, et al.Kaczmarek Michalski 1992, et Kaczmarek and al. and 1992, MichalskiMichalski Ratajczak Kaczmarek 1995c et and al. Michalski 1992a, 1995c Kaczmarek Kaczmarek et and al. Michalski 1992, 1995b,Michalski Kaczmarek c et and al. Michalski 1985 1995c Kaczmarek and Michalski 1995b,Kaczmarek c et al. 1992,Michalski 1995b, Michalski c et al.Michalski 1992a, et Kaczmarek al. and 1992a,Kaczmarek Kaczmarek and and Michalski Michalski 1995c 1995c Michalski et al. 1992b,Kiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1994 ski et and al. Ratajczak 1985, 1989, Mic Michalski Kaczmarek 1995c et al. 1992,Kaczmarek Kaczmarek and and Michalski 1995c Kaczmarek and Michalski 1995c Michalski et al. 1992b,Michalski Michalski et and al. Ratajczak 1992a, 1994 Kaczmarek and Michalski 1995b, c et al. 1985, Michalski and Ratajczak 1989 Pityogenes chalcographus Hischmann et Wiśniewski, 1982 Hirschmann, 1960 (Berlese, 1904) (Berlese, 1920) Hirschmann et Zirngiebl-Nicol, 1961 Hirschmann, 1960 (Leitner, 1949) Hirschmann, 1960 (Kramer, 1886) Hirschmann, 1960 (C.L. Koch, 1836) (Hirschmann, 1963) (Evans, 1958) T¨gad,1910) (Tr¨ag˚ardh, (Kramer, 1876) Evans, 1958 (Karg, 1970) (Oudemans, 1903) sp. sp. sp. sp. Proctolaelaps Trichouropoda longiovalis Vulgarogamasus kraepelini Dendrolaelaps armatus Dendrolaelaps cornutus Dendrolaelaps disetosimilis Dendrolaelaps foveolatus Dendrolaelaps longifallax Dendrolaelaps nostricornutus Dendrolaelaps punctatus Dendrolaelaps quadrisetus Dendrolaelaps Eugamasus magnus Gamasodes spiniger Lasioseius ometes Leioseius elongatus Leioseius magnanalis Parasitus Pergamasus Trichouropoda obscura Proctolaelaps rotunda Anthoseius richteri 77 l. l. l. l- z- ki ki ki hal- hal- hal- Table 1 – cont. 1992b, Michalski and Ratajczak 1994, Kaczmarek and Michals 1992a, b, Michalski and Ratajczakski 1994, Kaczmarek 1995b, and c Micha and Wiśniewski 1983 1992b, Michalski and Ratajczak 1994, Kaczmarek and Michals Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989, Kaczmarek et al. 1992,1995c Michalski et a Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989, Kaczmarek et al. 1992, Michalski et a Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Michalski et al. 1992b,Michalski Michalski et and al. Ratajczak 1992a, 1994 Wiśniewski Kaczmarek 1979d, and Kiełczewski Michalski and 1995b,Majewski Wiśniewski c and 1983 Wiśniewski 1978, Wiśniewski 1979d, Kiełczews Michalski et al. 1992a,Kiełczewski Kaczmarek and and Wiśniewski Michalski 1983, 1995b, Michalskiski et c and al. Ratajczak 1985, 1989, Mic Kaczmarek et al. 1992,1995c Michalski et a Michalski et al. 1992a,marek b, and Michalski Michalski and 1995b, RatajczakKaczmarek c 1994, et Kac al.Ratajczak 1992, 1994, Michalski Kaczmarek et andKaczmarek Michalski al. and 1995c Michalski 1992b, 1995c MichalskiHirschmann and and Wiśniewski 1987 Hirschmann 1978, Wiśniewski 1979d Kaczmarek and Michalski 1995c Kaczmarek et al. 1992,Michalski 1995b, Michalski c et al.Michalski 1992a, et Kaczmarek al. and 1992a, Kaczmarek and Michalski 1995b, c Hirschmann et Wiśniewski, 1987 Vitzthum, 1926 (Sellnick, 1952) Hirschmann, 1978 Hirschmann et Zirngiebl-Nicol, 1961 (Vitzthum, 1923) Hirschmann et Zierngiebl-Nicol, 1961 (C.L. Koch, 1836) (Vitzthum, 1926) (Hirschmann, 1963) aˇina,1960 Samˇsiˇn´ak, (Vitzthum, 1920) (C.L. Koch, 1839) (C.L. Koch, 1939) aˇina,1960 Samˇsiˇn´ak, (Vitzthum, 1923) (C.L. Koch, 1841) sp. Proctolaelaps rotunda Trichouropoda longiovalis Proctolaelaps fiseri Proctolaelaps xyloteri Proctolaelaps Trachytes aegrota Trichouropoda bipilis Trichouropoda dalarnaensis Trichouropoda obscura Trichouropoda ovalis Trichouropoda polytricha Trichouropoda structura Trichouropoda vitzthumilongiseta Trichouropoda wisniewskii Uroobovella ipidis Uroobovella vinicolora Veigaia nemorensis Pleuronectocelaeno austriaca 78 c c d lski hal- Table 1 – cont. (Hartig, 1834) (Germar, 1824) Kiełczewski and Wiśniewski 1983 Michalski and Ratajczak 1989 Michalski et al. 1985 Michalski et al. 1985,Michalski Michalski et and al. Ratajczak 1985, 1989 Michalski and Ratajczak 1989 Michalski et al. 1992b,Michalski Michalski et and al. Ratajczak 1985, 1994 Michalski Michalski and and Ratajczak Ratajczak 1994, 1989 Michalski Kaczmarek et and al. Michalski 1985, 1995 Michalski Michalski et and al. Ratajczak 1985, 1989 Michalski Michalski et and al. Ratajczak 1985, 1989 Michalski Michalski and and Ratajczak Ratajczak 1989, 1989 Michalskiand et Ratajczak al. 1994, 1992b, Micha KaczmarekMichalski and and Michalski Ratajczak 1995c 1989 Michalski and Ratajczak 1994,Michalski Kaczmarek and and Ratajczak Michalski 1995 1994 Kaczmarek and Michalski 1995c Michalski et al. 1985,Michalski Kaczmarek et and al. Michalski 1985, 1995c Kiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1989 ski et and al. 1985, Ratajczak Mic Ratajczak 1989, 1994 Michalski etKaczmarek al. and 1992b, Michalski Michalski 1995c anMichalski et al. 1985,Michalski Michalski et and al. Ratajczak 1992b, 1989 Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski and Ratajczak 1994 Nodigr 1848) (N¨ordlinger, Pityogenes quadridens Pityokteines curvidens Pityogenes trepanatus Hirschmann et Wiśniewski, 1982 Hirschmann et Wiśniewski, 1982 Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 (Berlese, 1920) Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1963 (Kramer, 1886) (Kramer, 1886) Hirschmann, 1960 (Sowerby, 1806) Kramer, 1882 T¨gad,1910) (Tr¨ag˚ardh, Sellnick, 1935 (Karg, 1970) aˇina,1960 Samˇsiˇn´ak, C.L. Koch, 1836 sp. sp. sp. Dendrolaelaps nostricornutus Dendrolaelaps Proctolaelaps fiseri Ameroseius corbiculus Ameroseius longitrichus Celaenopsis badius Dendrolaelaps apophyseus Dendrolaelaps comatus Dendrolaelaps cornutus Dendrolaelaps disetosimilis Dendrolaelaps hexaspinosus Dendrolaelaps nostricornutus Dendrolaelaps quadrisetus Dendrolaelaps tenuipilus Dendrolaelaps trapezoides Dendrolaelaps Dinychus perforatus Gamasodes spiniger Hypoaspis austriaca Dendrolaelaps hexaspinosus Dendrolaelaps cornutus Amblyseius Anthoseius richteri Dendrolaelaps euepistomus 79 , d j- ski ski rek lski hal- Table 1 – cont. and Michalski 1995c Michalski et al. 1992b,Michalski Michalski and et Ratajczak al. 1994 marek 1992b, and Michalski Michalski 1995c andMichalski et Ratajczak al. 1992b, 1994,Kaczmarek Michalski Kacz- and and Michalski Ratajczak 1995c 1994 Michalski et al. 1985,Michalski Michalski and and Ratajczak Ratajczak 1989, 1989 Michalskiand et Ratajczak al. 1994 1992b, Micha Michalski et al. 1992b,Michalski Michalski et and al. 1985, Ratajczak Michalski 1994 and Ratajczak 1989, Kaczma Kiełczewski and Wiśniewski 1983, Michalskiski et and al. 1985, Ratajczak Mic Ratajczak 1989, 1994 Michalski etMichalski al. et 1992b, al. Michalski 1985, an Michalski and RatajczakMichalski 1989, et Michal al. 1985,Michalski Michalski et and al. Ratajczak 1992b, 1989 Kaczmarek Michalski and and Michalski Ratajczak 1995c 1994 Michalski and RatajczakKaczmarek 1989, and Michalski Michalski and 1995c Michalski Ratajczak et 1994 al. 1985, Michalski and RatajczakKaczmarek 1989, and Michal Michalski 1995c Wiśniewski 1979d, Michalski etczak al. 1989 1985, MichalskiMichalski and and Rata Ratajczak 1989 Michalski et al. 1985,Kaczmarek Michalski and and Michalski Ratajczak 1995c 1989 Michalski et al. 1985,Michalski Michalski et and al. Ratajczak 1992b, 1989 Michalski and Ratajczak 1994 et al. 1992b, Michalski and Ratajczak 1994 et al. 1992b, Michalski and Ratajczak 1994 Hirschmann, 1978 Vitzthum, 1926 Athias-Henriot, 1967 Hirschmann et Zirngiebl-Nicol, 1961 (Vitzthum, 1923) Berlese, 1903 Willmann, 1949 (C.L. Koch, 1836) (Vitzthum, 1926) Berlese, 1919 (C.L. Koch, 1839) aˇina,1960 Samˇsiˇn´ak, (Oudemans, 1903) (Hirschmann, 1963) (Berlese, 1887) (Vitzthum, 1923) (C.L. Koch, 1841) sp. sp. sp. sp. sp. Proctolaelaps fiseri Lasioseius ometes Leptogamasus tectegynellus Metagynella paradoxa Parasitus Pergamasus brevicornis Pergamasus Pleuronectocelaeno austriaca Proctolaelaps pini Trachytes aegrota Trichouropoda longiovalis Trichouropoda obscura Trichouropoda ovalis Trichouropoda stammerisimilis Trichouropoda Uroobovella ipidis Uroobovella vinicolora Uroobovella Uroseius infirmus Proctolaelaps Trichouropoda polytricha Hypoaspis praesternalis 80 ski ski ski ski ski lski hal- Table 1 – cont. (Reitter, 1895) Michalski et al. 1992b,Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski and Ratajczak 1994 Michalski and Ratajczak 1989 Michalski et al. 1985 Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989 Michalski et al. 1985, Michalski and RatajczakMichalski 1989, and Michal Ratajczak 1989 Michalski and Ratajczak 1994 Michalski and Ratajczak 1994 Michalski et al. 1985 Michalski et al. 1985,Michalski Michalski et and al. Ratajczak 1992b, 1989 Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski Michalski et and al. Ratajczak 1985, 1994 Michalski Michalski and and Ratajczak Ratajczak 1989, 1989 Michalskiand et Ratajczak al. 1994 1992b, Micha Michalski et al. 1985, Michalski and RatajczakMichalski 1989, et Michal al. 1985, Michalski and RatajczakMichalski 1989, et Michal al. 1985,Michalski Michalski et and al. Ratajczak 1992b, 1989 Wiśniewski Michalski 1979d, and Kiełczewski Ratajczak and 1994 Wiśniewski 1983, Michal Michalski and Ratajczak 1989 Michalski et al. 1985, Michalski and Ratajczak 1989, Michal et al. 1992b, Michalski and Ratajczak 1994 et al. 1992b, Michalski and Ratajczak 1994 et al. 1992b, Michalski and Ratajczak 1994 et al. 1985, Michalski and Ratajczak 1989 et al. 1992b, Michalski and Ratajczak 1994 Pityokteines spinidens Hirschmann et Wiśniewski, 1982 Vitzthum, 1926 Hirschmann, 1960 Hirschmann, 1960 Hirschmann et Zirngiebl-Nicol, 1961 Berlese, 1903 Willmann, 1949 (Kramer, 1886) Hirschmann, 1960 Hirschmann, 1960 (C.L. Koch, 1836) (C.L. Koch, 1839) (Leonardi, 1899) (C.L. Koch, 1939) aˇina,1960 Samˇsiˇn´ak, C.L. Koch, 1836 (Oudemans, 1903) (Hirschmann, 1963) Sellnick, 1943 sp. sp. sp. sp. Zercon Celaenopsis badius Dendrolaelaps armatus Dendrolaelaps comatus Dendrolaelaps disetosimilis Dendrolaelaps hexaspinosus Dendrolaelaps nostricornutus Dendrolaelaps Discourella modesta Hypoaspis praesternalis Lasioseius ometes Pergamasus brevicornis Pleuronectocelaeno austriaca Proctolaelaps fiseri Prozercon kochi Trichouropoda longiovalis Trichouropoda ovalis Dendrolaelaps cornutus Proctolaelaps pini Proctolaelaps Trichouropoda obscura Veigaia nemorensis Ameroseius 81 j- ski ski 989 hal- Table 1 – cont. (Jacobson, 1895) Michalski et al. 1985,Michalski Michalski et and al. Ratajczak 1992b, 1989 Michalski Michalski et and al. Ratajczak 1985, 1994 Wiśniewski Michalski 1979d, and Kiełczewski Ratajczak and 1989 Wiśniewski 1983, Michal Michalski et al. 1985,Bałazy Michalski et and al. Ratajczak 1977, 1989 czak Michalski 1989 et al.Michalski 1985, et Michalski al. and 1992b, Rata Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski and Ratajczak 1994 Michalski and Ratajczak 1994 Michalski and Ratajczak 1989 Kiełczewski and Wiśniewski 1983, Michalski andMichalski Ratajczak and 1 Ratajczak 1994 Michalski and Ratajczak 1994 Wiśniewski 1979b Michalski et al. 1985, Michalski et al. 1985,Kiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1989 ski et and al. Ratajczak 1985, Mic 1989 Majewski and Wiśniewski 1978, Michalski et al. 1985, Michal Michalski et al. 1992b,Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski Michalski and and Ratajczak Ratajczak 1989 1994 Michalski and Ratajczak 1989 Michalski et al. 1985,Michalski Michalski et and al. Ratajczak 1992b, 1989 Michalski and Ratajczak 1994 et al. 1985, Michalski and Ratajczak 1989 and Ratajczak 1989 Pityokteines vorontzowi Hirschmann, 1978 Hirschmann et Wiśniewski, 1982 Hirschmann et Wiśniewski, 1987 Hirschmann, 1960 Hirschmann, 1960 (Berlese, 1920) Hirschmann, 1960 Hirschmann, 1963 Berlese, 1903 Willmann, 1949 (Kramer, 1886) Wiśniewski, 1979 (Vitzthum, 1926) Sellnick, 1935 (C.L. Koch, 1939) (Karg, 1970) (Oudemans, 1903) (Vitzthum, 1923) sp. sp. sp. sp. sp. sp. Trichouropoda swietokrzyskii Trichouropoda Uroobovella ipidis Uroobovella Veigaia nemorensis Zercon Anthoseius richteri Dendrolaelaps cornutus Dendrolaelaps hexaspinosus Dendrolaelaps hunteri Dendrolaelaps nostricornutus Dendrolaelaps quadrisetus Dendrolaelaps tenuipilus Dendrolaelaps Hypoaspis praesternalis Hypoaspis Lasioseius ometes Parasitus Pergamasus brevicornis Uroobovella vinicolora Hypoaspis austriaca Dendrolaelaps disetosimilis Trichouropoda stammerisimilis Ameroseius longitrichus 82 - d d ki hal- hal- hal- Table 1 – cont. Eichhof, 1878 (Ratzeburg, 1837) and Wiśniewski 1983, Michalskitajczak et 1989 al. 1985, Michalski and Ra Kiełczewski and Wiśniewski 1983, Michalskiski et and al. 1985, Ratajczak Mic Ratajczak 1989, 1994 Michalski etKiełczewski al. and 1992b, Wiśniewski Michalski 1983 anMichalski and Ratajczak 1989 Michalski et al. 1985,Michalski Michalski et and al. Ratajczak 1992b, 1989 Michalski Michalski et and al. Ratajczak 1992b, 1994 Majewski Michalski and and Wiśniewski Ratajczak 1978, 1994 Wiśniewski 1979d, Kiełczews Michalski and Ratajczak 1989,Michalski Michalski et and al. Ratajczak 1985,Michalski 1994 Michalski et and al. Ratajczak 1985, 1989 Kiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1989 ski et and al. Ratajczak 1985, Mic 1989 Michalski et al. 1992b,Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski and Ratajczak 1994 Michalski et al. 1985, Michalski and Ratajczak 1989 Bałazy et al. 1977 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983, Michalskiski et and al. 1985, Ratajczak Mic Ratajczak 1989, 1994 Michalski etBałazy al. et 1992b, al. Michalski 1977 anMichalski et al. 1992b,Bałazy Michalski et and al. Ratajczak 1977 1994 Michalski et al. 1992b, Michalski and Ratajczak 1994 Pityophthorus glabratus Pityophthorus pityographus Hirschmann, 1960 Hirschmann, 1978 Vitzthum, 1926 Hirschmann et Zirngiebl-Nicol, 1961 Hirschmann, 1960 Hirschmann, 1960 (C.L. Koch, 1836) (Berlese, 1903) (Vitzthum, 1923) T¨gad,1910) (Tr¨ag˚ardh, (C.L. Koch, 1939) aˇina,1960 Samˇsiˇn´ak, (Oudemans, 1903) (Hirschmann, 1963) (Vitzthum, 1923) (C.L. Koch, 1841) sp. sp. C.L. Koch, 1836 sp. sp. Trichouropoda obscura Proctolaelaps hystrix Proctolaelaps pini Proctolaelaps Sejus togatus Trachytes aegrota Trichouropoda longiovalis Trichouropoda stammerisimilis Uroobovella ipidis Uroobovella Uropoda pulcherrima Veigaia nemorensis Dendrolaelaps apophyseosimilis Dendrolaelaps tenuipilus Dendrolaelaps Gamasodes spiniger Lasioseius ometes Pleuronectocelaeno austriaca Proctolaelaps fiseri Dendrolaelaps tenuipilus Ameroseius 83 c j- j- z- z- z- z- aj- aj- 994 989 Table 1 – cont. (Linnaeus, 1758) Bałazy et al. 1977,czak Michalski 1989, Michalski et et al. al.Bałazy 1985, 1992b, et Michalski Michalski and al. and Ratajczak 1977, Rata czak 1 Michalski 1989 et al.Bałazy 1985, et Michalski al. and 1977, Rata Michalski et al. 1992b,Bałazy Michalski et and al. Rat 1977, Michalski et al. 1992b,Michalski Michalski et and Rat al. 1992b, Michalski and Ratajczak 1994 Michalski and Ratajczak 1989,Kiełczewski Kaczmarek and and Wiśniewski Michalski 1995 1983 Kaczmarek and Michalski 1995c Kaczmarek and Michalski 1995b,Kiełczewski c and Wiśniewski 1983, Michalski andMichalski Ratajczak et 1 al. 1992a,marek b, and Michalski Michalski and 1995b, RatajczakMichalski c et 1994, al. Kac 1992a,Michalski Kaczmarek et and al. Michalski 1992a, 1995b,marek b, c and Michalski Michalski and 1995b, RatajczakMichalski c et 1994, al. Kac 1992a,Kaczmarek Kaczmarek and and Michalski Michalski 1995b, 1995b,Michalski c c and Ratajczak 1989 Michalski and Ratajczakmarek 1989, and Michalski Michalski 1995b,Michalski et c et al. al. 1992a, 1992a,b,marek Michalski and Kacz- Michalski and 1995c RatajczakKaczmarek and 1994, Michalski Kac 1995b Kaczmarek and Michalski 1995b Michalski et al. 1992a,marek b, and Michalski Michalski and 1995b, Ratajczak c 1994, Kac czak 1994 czak 1994 Polygraphus poligraphus Hirschmann, 1960 Hirschmann et Wiśniewski, 1982 Hirschmann, 1960 (Berlese, 1920) Hirschmann, 1960 (Vitzthum, 1923) Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1963 (Kramer, 1886) Hirschmann, 1960 Hirschmann, 1960 (C.L. Koch, 1836) (Berlese, 1918) (C.L. Koch, 1839) (Halbert, 1915) (Karg, 1970) aˇina,1960 Samˇsiˇn´ak, (Sellnick, 1940) sp. sp. Trichouropoda obscura Arctoseius cetratus Arctoseius minutus Dendrolaelaps armatus Dendrolaelaps cornutus Dendrolaelaps disetosimilis Dendrolaelaps nostricornutus Dendrolaelaps punctatus Dendrolaelaps quadrisetosimilis Dendrolaelaps quadrisetus Dendrolaelaps Dendrolaelaps tenuipilus Dendrolaelaps trapezoides Gamasellodes bicolor Trichouropoda ovalis Trichouropoda polytricha Proctolaelaps Dendrolaelaps comatus Proctolaelaps fiseri Ameroseius longitrichus Anthoseius richteri 84 - d 4, z- ski lski hal- hal- Table 1 – cont. Michalski et al. 1992a,marek b, and Michalski Michalski and 1995b, RatajczakKaczmarek c and 1994, Michalski Kac 1995b Michalski and Ratajczak1995b, c 1989,Kiełczewski and Kaczmarek Wiśniewski 1983, Michalskiski and et and al. Ratajczak 1985, Mic 1989 Michalski Michalski et al. 1992a,Michalski Kaczmarek et and Michalski al. 1995c ski 1985, et Michalski al. 1992b, andMichalski Michalski 1995c Ratajczak and Ratajczak 1989, 1994,Kaczmarek Michal Kaczmarek and an Michalski 1995b Kiełczewski and1989, Wiśniewski Michalski 1983, et al.Kaczmarek Michalski 1992a, and and b, Michalski 1995b, MichalskiMichalski Ratajczak c and and Ratajczak Ratajczak 1989, 199 Michalskiand et Ratajczak al. 1994 1992b, Micha Majewski and Wiśniewski1983 1978, KiełczewskiMichalski and and Ratajczak Wiśniewski 1989 Wiśniewski 1979d, Kiełczewski and Wiśniewski 1983, Michal Kaczmarek and Michalski 1995b Michalski and Ratajczak 1989, Michalskiski et and al. 1992a, Ratajczak b, 1994, Mic Michalski Kaczmarek et and al. Michalski 1992a, 1995b,Michalski Kaczmarek c and et Michalski al. 1995b,marek c 1992b, and Michalski Michalski 1995b andHirschmann and Ratajczak Wiśniewski 1987 1994,Michalski et Kacz- al. 1992a, Kaczmarek and Michalski 1995c et al. 1985, Michalski and Ratajczak 1989 Hirschmann et Wiśniewski, 1987 Vitzthum, 1926 Hirschmann et Zirngiebl-Nicol, 1961 (Vitzthum, 1923) (C.L. Koch, 1836) ¨le,1859 M¨uller, (Hirschmann, 1963) (Vitzthum, 1920) (C.L. Koch, 1839) Athias-Henriot, 1959 T¨gad,1910) (Tr¨ag˚ardh, Evans, 1958 aˇina,1960 Samˇsiˇn´ak, (Oudemans, 1903) (Hirschmann, 1963) sp. sp. sp. Lasioseius furcisetus Lasioseius ometes Leioseius elongatus Parasitus Pleuronectocelaeno austriaca Porrhostaspis lunulata Proctolaelaps fiseri Proctolaelaps pini Proctolaelaps rotunda Proctolaelaps Trichouropoda bipilis Trichouropoda obscura Trichouropoda ovalis Trichouropoda polytricha Trichouropoda vitzthumilongiseta Trichouropoda Trichouropoda longiovalis Gamasodes spiniger 85 ski lski lski Table 1 – cont. Michalski and Ratajczak1995b, c 1989, KaczmarekMichalski and and Ratajczak Michalski 1989 Majewski and Wiśniewski1983, Michalski 1978, and Kiełczewski RatajczakMichalski 1989 and and Ratajczak Wiśniewski 1989 Michalski et al. 1992b,Michalski Michalski and and Ratajczak Ratajczak 1989 1994 Majewski and Wiśniewski1983, Michalski 1978, and Kiełczewski RatajczakMichalski 1989 and and Ratajczak Wiśniewski 1989 Michalski and Ratajczak 1989 Bałazy et al. 1977, Kiełczewski and Wiśniewski 1983,Michalski Michal and Ratajczak 1989 Michalski and Ratajczak 1989 Michalski and Ratajczak 1989, Michalskiand et Ratajczak al. 1994 1992b, Micha Michalski and Ratajczak 1989, Michalskiand et Ratajczak al. 1994 1992b, Micha Michalski and Ratajczak 1989 Michalski and Ratajczak 1989 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Bałazy et al. 1977 Wiśniewski 1979d, Kiełczewski and Wiśniewski 1983 and Ratajczak 1989 (Marsham, 1802) (Ratzeburg, 1837) Scolytus intricatus Scolytus multistriatus Hirschmann et Wiśniewski, 1982 Hirschmann, 1960 (Canestrini, 1882) (Berlese, 1920) Hirschmann et Zirngiebl-Nicol, 1961 Hirschmann, 1960 (Kramer, 1886) (Westerboer, 1963) Hirschmann, 1960 (Vitzthum, 1926) (Hirschmann, 1963) Schcherbak, 1978 (C.L. Koch, 1839) (Karg, 1970) aˇina,1960 Samˇsiˇn´ak, 1960 Samˇsiˇn´ak, (Oudemans, 1903) (Hirschmann, 1963) sp. sp. sp. sp. Dendrolaelaps cornutus Dendrolaelaps nikolai Dendrolaelaps nostricornutus Dendrolaelaps quadrisetus Dendrolaelaps tenuipilus Dendrolaelaps tetraspinosus Hypoaspis Lasioseius ometes Proctolaelaps fiseri Proctolaelaps pini Proctolaelaps Proctolaelaps stammeri Trichouropoda longiovalis Pergamasus quisquiliarum Proctolaelaps fiseri Proctolaelaps rotunda Proctolaelaps Trichouropoda ovalis Lasioseius Uroobovella vinicolora Dendrolaelaps comatus Anthoseius richteri 86 ski 989 hal- Table 1 – cont. Michalski and Ratajczak 1989 Michalski and Ratajczak 1989 Kiełczewski and Wiśniewski 1983, Michalski andMichalski Ratajczak and 1 Ratajczak 1989 Michalski and Ratajczak 1989 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Bałazy et al. 1977 Wiśniewski 1979d, Kiełczewski and Wiśniewski 1983 Bałazy et al. 1987 Bałazy et al. 1987 Bałazy et al. 1987 Bałazy et al. 1977, Kiełczewski and Wiśniewski 1983,Bałazy Michal et al. 1977 Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Michalski et al. 1985,Michalski Michalski et and al. Ratajczak 1985, 1989 Kiełczewski Michalski and and Wiśniewski Ratajczak 1983 1989 et al. 1985, Michalski and Ratajczak 1989 Janson, 1856 (Herbst, 1793) sp. Mulr 1818) (M¨uller, (Hartig, 1834) (Fabricius, 1775) Scolytus Tomicus minor Scolytus ratzeburgii Scolytus rugulosus Scolytus scolytus Taphrorychus bicolor (Berlese, 1920) Hirschmann et Zirngiebl-Nicol, 1961 Hirschmann, 1960 Hirschmann, 1963 Hirschmann, 1960 Hirschmann, 1960 Berlese, 1904 (Hirschmann, 1963) (C.L. Koch, 1839) Hirschmann, 1969 (Karg, 1970) aˇina,1960 Samˇsiˇn´ak, 1960 Samˇsiˇn´ak, 1960 Samˇsiˇn´ak, C.L. Koch, 1836 (Oudemans, 1903) (Oudemans, 1903) (Oudemans, 1903) (Hirschmann, 1963) sp. sp. sp. Lasioseius ometes Proctolaelaps fiseri Trichouropoda longiovalis Proctolaelaps fiseri Proctolaelaps rotunda Proctolaelaps Trichouropoda ovalis Holoparasitus Pergamasus mediocris Proctolaelaps fiseri Anthoseius richteri Dendrolaelaps acornutus Dendrolaelaps armatus Dendrolaelaps comatus Lasioseius Proctolaelaps pini Dendrolaelaps quadrisetus Lasioseius ometes Hypoaspis curtipilis Celaenopsis badius Lasioseius ometes Ameroseius longitrichus 87 - d d l. 85, lski hal- hal- Table 1 – cont. Michalski and Ratajczak 1989, Michalski et al. 1992b, Micha Kiełczewski and Wiśniewski 1983 Bałazy et al. 1977 Kiełczewski and Wiśniewski 1983 Michalski et al. 1985,Michalski Michalski et and al. Ratajczak 1985, 1989 Majewski Michalski and and Ratajczak Wiśniewski 1989 1983 1978, KiełczewskiKiełczewski and and Wiśniewski Wiśniewski 1983 Bałazy et al. 1977 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983, Michalskiski et and al. 1985, Ratajczak Mic Ratajczak 1989, 1994 Michalski etMichalski al. et 1992b, al. Michalski 1992b, anKiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1994 ski et and al. 1985, Ratajczak Mic Ratajczak 1989, 1994 Michalski etKiełczewski al. and 1992b, Wiśniewski Michalski 1983 anBałazy et al.ski 1977, et Kiełczewski al. and 1985,1992b, Wiśniewski Michalski Michalski 1983, and and Michal Ratajczak RatajczakKiełczewski 1994 1989, and Wiśniewski Michalski 1983 etKiełczewski a and Wiśniewski 1983 Bałazy et al. 1977 Wiśniewski 1979d, Kiełczewski andWiśniewski Wiśniewski 1977, 1983 Kiełczewski andKiełczewski Wiśniewski and 1983 Wiśniewski 1977b, 1983, Michalski et al.and 19 Ratajczak 1994 Hirschmann, 1960 Sellnick, 1958 Vitzthum, 1926 (Sellnick, 1952) Hirschmann, 1960 Wiśniewski, 1977 Hirschmann, 1960 (Berlese, 1920) Hirschmann, 1960 Hirschmann, 1960 (Westerboer, 1963) (Hirschmann, 1963) (C.L. Koch, 1836) (Hirschmann, 1963) (Hirschmann, 1963) aˇina,1960 Samˇsiˇn´ak, (Oudemans, 1903) (C.L. Koch, 1836) sp. sp. sp. Dendrolaelaps procornutus Dendrolaelaps punctatus Dendrolaelaps quadrisetosimilis Dendrolaelaps quadrisetus Dendrolaelaps septentrionalis Dendrolaelaps tenuipilus Dendrolaelaps Eviphis ostrinus Gamasellodes insignis Lasioseius ometes Parasitus Pleuronectocelaeno austriaca Proctolaelaps epuraeae Proctolaelaps fiseri Proctolaelaps rotunda Proctolaelaps stammeri Proctolaelaps Trichouropoda dalarnaensis Trichouropoda kielczewskii Trichouropoda obscura Dendrolaelaps euepistomus 88 - j- ski hal- acz- Table 1 – cont. Wiśniewski 1979d, KiełczewskiMichalski et and al. Wiśniewski 1985, Michalski 1977a, and Ratajczak 1983, Michalski 1989, et Michal al. 1992b,Michalski Michalski et and al. Ratajczak 1992b, 1994 Kiełczewski Michalski and and Wiśniewski Ratajczak 1983 1994 Kaczmarek and Michalski 1995c Kiełczewski and Wiśniewski 1983 Kaczmarek et al. 1992,Kiełczewski Michalski and and Ratajczak Wiśniewski 1994 chalski 1983, and Michalski Ratajczak et 1994 Bałazy al. et 1992b, al. Mi 1977,Michalski Kiełczewski et and al. Wiśniewski 1992b, 1983 Kiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1994 ski et and al. Ratajczak 1985, Mic 1989 Majewski and Wiśniewski1983, Michalski 1978, et al. 1985, Kiełczewski Michalskimarek and and et Ratajczak al. 1989, Wiśniewski K 1992,czak Michalski 1994, et Kaczmarek al. and 1992b,Kiełczewski Michalski Michalski and 1995c and Wiśniewski Rata 1983 Majewski and Wiśniewski1983, Michalski 1978, and Kiełczewski RatajczakMajewski 1989 and and Wiśniewski Wiśniewski1983 1978, KiełczewskiMichalski and and Ratajczak Wiśniewski 1994 Majewski and Wiśniewski1983 1978, KiełczewskiKiełczewski and and Wiśniewski Wiśniewski 1983 Wiśniewski 1979b Kiełczewski and Wiśniewski 1983 et al. 1992b, Michalski and Ratajczak 1994 (Linnaeus, 1758) Tomicus piniperda Hirschmann et Wiśniewski, 1987 (Leitner, 1949) Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 (Berlese, 1904) Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1963 (Kramer, 1886) Hirschmann, 1960 Wiśniewski, 1979 (C.L. Koch, 1839) (C.L. Koch, 1839) C.L. Koch, 1836 Karg, 1970 (Kramer, 1876) sp. sp. Veigaia cerva Vulgarogamasus kraepelini Amblyseius tubae Amblyseuis Ameroseius longitrichus Ameroseius Celaenopsis badius Dendrolaelaps apophyseus Dendrolaelaps armatus Dendrolaelaps cornutulus Dendrolaelaps cornutus Dendrolaelaps disetosimilis Dendrolaelaps euepistomus Dendrolaelaps forcipiformis Dendrolaelaps hexaspinosus Dendrolaelaps krantzi Dendrolaelaps multidentatus Trichouropoda swietokrzyskii Trichouropoda ovalis Amblyseuis obtusus 89 - k ki hal- hal- Table 1 – cont. and Wiśniewski 1983, Michalskitajczak et 1989, al. Kaczmarek 1985, et Michalski al. and 1992, Ra Michalski and Ratajcza Michalski et al. 1985 Kiełczewski and Wiśniewski 1983 Michalski et al. 1985,Kiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1989 ski et and al. Ratajczak 1985, Mic 1989 Kiełczewski and Wiśniewski 1983, Michalskiski et and al. Ratajczak 1985, Mic 1989 Majewski and Wiśniewski1983 1978, KiełczewskiKiełczewski and and Wiśniewski Wiśniewski 1983 Bałazy et al. 1977,Kiełczewski Majewski and and WiśniewskiMichalski 1978 Wiśniewski et 1983, al.marek 1992b, and Kaczmarek Michalski Michalski 1995c et andKiełczewski and Ratajczak al. Wiśniewski 1983 1994,Bałazy 1992, Kacz- et al.marek 1977, et Kiełczewski al.tajczak and 1992, 1994, Michalski Wiśniewski Kaczmarek and etKiełczewski 1983, Michalski and al. 1995c Kacz- Wiśniewski 1992b, 1983 Kaczmarek Michalski and and Michalski 1995c Ra- Wiśniewski 1979d, Kiełczewski andKiełczewski Wiśniewski and 1983 Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Bałazy et al. 1977, Majewski and Wiśniewski 1978, Kiełczews 1994, Kaczmarek and MichalskiKiełczewski 1995c and Wiśniewski 1983 Hirschmann, 1960 Sellnick, 1958 Hirschmann et Wiśniewski, 1982 (Oudemans, 1902) (Berlese, 1920) Bhattacharyya, 1963 Hirschmann, 1960 Hirschmann, 1960 Hirschmann, 1960 Berlese, 1903 Berlese, 1904 Bhattachacharyya, 1963 (Berlese, 1918) (Vitzthum, 1923) Hirschmann, 1969 Evans, 1958 aˇina,1960 Samˇsiˇn´ak, (Oudemans, 1903) G. Canestrini et Berlese, 1884 sp. sp. Dendrolaelaps punctatus Dendrolaelaps quadrisetosimilis Dendrolaelaps quadrisetus Dendrolaelaps septentrionalis Dendrolaelaps tenuipilus Dendrolaelaps uncinatus Dendrolaelaps Gamasellodes bicolor Hypoaspis curtipilis Lasioseius ometes Leioseius elongatus Macrocheles Oplitis paradoxa Paragamasus celticus Paragamasus parrunciger Pergamasus brevicornis Pergamasus mediocris Pergamasus septentrionalis Proctolaelaps fiseri Proctolaelaps hystrix Dendrolaelaps nostricornutus 90 - - c 9, ki ski ew- Table 1 – cont. Linnaeus, 1758 Olivier, 1795 and Wiśniewski 1983, Michalskitajczak et 1989, al. 1985, KaczmarekMichalski Michalski and et and Ratajczak al. Ra 1994, Kaczmarek 1992, and Michalski Michalski 1995 et al. 1992b, Michalski et al. 1992b,Kiełczewski Michalski and and Ratajczak Wiśniewski 1994 chalski 1983, and Michalski Ratajczak et 1994 Bałazy al. et 1992b, al. 1977 Mi Wiśniewski 1979d, Kiełczewski andKaczmarek Wiśniewski 1983 et al.marek 1992, and Michalski Michalski 1995c andBałazy et Ratajczak al. 1994, 1977, Majewski Kacz- and Wiśniewski 1978, Kiełczews Bałazy et al. 1977, Wiśniewskiski 1979d, Kiełczewski 1983, and Michalski Wiśni etMichalski et al. al. 1985, 1992b, MichalskiBałazy Michalski and et and Ratajczak al. Ratajczak 1977 198 1994 Kaczmarek et al.marek 1992, and Michalski Michalski 1995c andWiśniewski 1979d, Ratajczak Kiełczewski 1994, andKiełczewski Wiśniewski Kacz- and 1983 Wiśniewski 1983 Bałazy et al. 1977, Kiełczewski and Wiśniewski 1983,Michalski Michal et al. 1992b, Michalski and Ratajczak 1994 Michalski and Ratajczak 1989 Michalski et al. 1992b,Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski Michalski et and al. Ratajczak 1992b, 1994 Michalski, Ratajczak 1994 Michalski et al. 1985,Michalski Michalski and and Ratajczak Ratajczak 1989 1989 et al. 1985, Michalski and Ratajczak 1989 Trypodendron lineatum Trypodendron domesticum Hirschmann et Wiśniewski, 1982 Hirschmann, 1960 Hirschmann, 1960 (C.L. Koch, 1836) (Kramer, 1882) (Vitzthum, 1926) (Hirschmann, 1963) (C.L. Koch, 1839) Athias-Henrior, 1959 (C.L. Koch, 1939) (Oudemans, 1903) (Hirschmann, 1963) (C.L. Koch, 1841) Kramer, 1882 sp. ra˚rh 1901 Tr¨ag˚ardh, sp. sp. sp. Proctolaelaps rotunda Proctolaelaps Trachytes aegrota Trichouropoda elegans Trichouropoda obscura Trichouropoda Uroobovella vinicolora Uropoda minima Veigaia kochi Veigaia nemorensis Dendrolaelaps nostricornutus Lasioseius furcisetus Lasioseius ometes Dendrolaelaps armatus Zerconopsis Trichouropoda ovalis Proctolaelaps pini Dendrolaelaps euarmatus Ameroseius 91 d j- hal- hal- hal- Table 1 – cont. sp. (Fabricius, 1792) Michalski and Ratajczak 1989 Michalski and Ratajczak 1989 Wiśniewski 1979b, Michalski etczak al. 1989 1985, MichalskiMichalski and et Rata al. 1985 Michalski et al. 1985,Michalski Michalski et and al. Ratajczak 1985, 1989 Michalski Michalski et and al. Ratajczak 1992b, 1989 Kiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1994 ski et and al. Ratajczak 1985, Mic 1989 Michalski and Ratajczak 1989 Michalski and Ratajczak 1989 Kiełczewski and Wiśniewski 1983 Wiśniewski 1979a, Kiełczewski andKiełczewski Wiśniewski and 1983 Wiśniewski 1983, Michalskiski et and al. 1985, Ratajczak Mic Ratajczak 1989, 1994 Michalski et al. 1992b, Michalski an Michalski et al. 1985,Michalski Michalski et and al. Ratajczak 1985, 1989 Michalski Michalski et and al. Ratajczak 1985, 1989 Kiełczewski Michalski and and Wiśniewski Ratajczak 1983, Michalski 1989 ski et and al. Ratajczak 1985, Mic 1989 Wiśniewski 1979a, Kiełczewski andWiśniewski Wiśniewski 1979d, 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Kiełczewski and Wiśniewski 1983 Trypodendron Trypodendron signatum Hirchmann et Wiśniewski, 1982 Hirschmann, 1960 (Westerboer, 1963) (Kramer, 1886) Hirschmann, 1960 (C.L. Koch, 1836) (Hirschmann, 1963) Wiśniewski, 1979 aˇina,1960 Samˇsiˇn´ak, 1960 Samˇsiˇn´ak, (C.L. Koch, 1839) aˇina,1960 Samˇsiˇn´ak, 1960 Samˇsiˇn´ak, 1960 Samˇsiˇn´ak, (Oudemans, 1903) (Oudemans, 1903) (Oudemans, 1903) (Hirschmann, 1963) sp. sp. sp. Dendrolaelaps cornutus Dendrolaelaps krantzi Dendrolaelaps nostricornutus Dendrolaelaps Lasioseius ometes Pergamasus Proctolaelaps fiseri Proctolaelaps longanalis Proctolaelaps pini Proctolaelaps rotunda Proctolaelaps xyloteri Trichouropoda obscura Dendrolaelaps Lasioseius ometes Proctolaelaps fiseri Proctolaelaps xyloteri Trichouropoda ovalis Proctolaelaps fiseri Dendrolaelaps comatus Dendrolaelaps hexaspinosus Lasioseius ometes 92 989 Table 1 – cont. Michalski and Ratajczak 1989 Kiełczewski and Wiśniewski 1983, Michalski andKiełczewski Ratajczak and 1 Wiśniewski 1983 Michalski et al. 1992b, Michalski and Ratajczak 1994 (Ratzeburg, 1837) (Fabricius, 1792) Xyleborus dispar Xyleborus cryptographus Hirschmann et Wiśniewski, 1982 (Berlese, 1920) Hirschmann, 1960 aˇina,1960 Samˇsiˇn´ak, Dendrolaelaps tenuipilus Proctolaelaps fiseri Dendrolaelaps quadrisetus Dendrolaelaps nostricornutus 93

Acknowledgements

I would like to extend my great thanks to Prof. Dr. Habil. J. Wiśniewski for kind comments upon the reading of the MS, and Dr. A. Mazur for the verification and updating the names of bark beetles. This work is the result of grant (No 2 P06L 048 28) sponsored by the Ministry of Sciences.

References

Bałazy S. 1966. Organizmy żywe jako regulatory liczebności populacji korników w drze- wostanach świerkowych ze szczególnym uwzględnieniem owadobójczych grzybów. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 21, 1: 3-50. Bałazy S. 1968. Analisys of bark beetle mortality in spruce forest in Poland. Ekol. Pol. Ser. A 16, 33: 657-687. Bałazy S., Kiełczewski B. 1965. Tarsonemoides gaebleri Schaarschm. (Acar., Tarsone- midae) – jajożerny roztocz w żerowiskach kornika drukarza, Ips typographus (L.). Pol. Pis. Entomol. Ser. B 1/2, 37/38: 7-18. Bałazy S., Kiełczewski B., Wiśniewski J. 1977. Zarodniki grzybów na roztoczach w że- rowiskach korników. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 44: 3-11. Bałazy S., Michalski J., Ratajczak E. 1987. Materiały do znajomości wrogów natural- nych Ips acuminatus Gyll. (Coleoptera; Scolytidae). Pol. Pis. Entomol. 57: 735-745. Bałazy S., Wiśniewski J., Kaczmarek S. 1987. Some noteworthy fungi occurring on mites. Bull. Pol. Acad. Sci. Biol. Sci. 35, 7-9: 199-224. Gwiazdowicz D. J. 1999. Roztocze (Acari, Gamasida) występujące w warstwach podko- rowych na terenie Białowieskiego Parku Narodowego. Sylwan 143, 5: 55-64. Gwiazdowicz D. J. 2007. Ascid mites (Acari, Mesostigmata) from selected forest ecosys- tems and microhabitats in Poland. Wyd. Akademii Rolniczej, Pozna´n. Hirschmann W. 1978. Teilg¨ange, Stadien von 6 neuen Trichouropoda-Arten aus der Ver- wandtschaft um Trichouropoda dalarnaensis (Sellnick 1952 i.l.) Hirschmann u. Zirngiebl-Nicol 1961 aus Polen, Mexico und Kanada (Trichouropodini, Uropodi- nae). Acarologie 24: 23-27. Hirschmann W., Wiśniewski J. 1982. Weltweite Revision der Gattungen Dendrolaelaps Halbert, 1915 und Longoseius Chant, 1961 (Parasitiformes). Acarologie 29, 1: 1-190, II: 1-48. Hirschmann W., Wiśniewski J. 1987. Weltweite Revision der Ganggattung Trichouropo- da Berlese 1916. VI. Die longiseta-Gruppe (Trichouropodini, Uropodinae). Aca- rologie 34: 1-50. Hirschmann W., Wiśniewski J., Kaczmarek S. 1991. Weltweite Revision der Ganggat- tung Sejus C.L. Koch 1836 (Trichopygidiina). Neubeschreibung von 26 Sejus-Arten Wiederbeschreibung der Typenart. Acarologie 38: 136-214. Kaczmarek S., Michalski J. 1994. Roztocze (Acari, Gamasida) w żerowiskach kornika drukarza (Ips typographus L.) w Polsce. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 78: 75-82. Kaczmarek S., Michalski J. 1995 a. Roztocze Acari, Gamasida występujące w żerowis- kach korników Coleoptera, Scolytidae z rodzaju Ips na terenie wybranych parków narodowych. Par. Nar. Rez. Przyr. 13 (1 supl.): 35-42. 94

Kaczmarek S., Michalski J. 1995 b. Materiały do poznania roztoczy (Acari: Gamasida) zasiedlających żerowiska korników (Coleoptera: Scolytidae) w Gorcza´nskim Parku Narodowym. Par. Nar. Rez. Przyr. 14, 3: 117-126. Kaczmarek S., Michalski J. 1995 c. Żerowiska korników środowiskiem bytowania roz- toczy (Acari, Mesostigmata). Mat. Konf. Szkodniki wtórne, ich rola oraz znaczenie w lesie. Wyd. Acarus: 37-42. Kaczmarek S., Michalski J., Ratajczak E. 1992. Zgrupowania roztoczy (Acari, Gamasi- da) zasiedlające żerowiska niektórych korników. Sylwan 136, 5: 51-59. Kiełczewski B. 1948. Pasożyty zewnętrzne owadów. Pol. Pis. Entomol. 18: 2-3. Kiełczewski B., Bałazy S. 1966. Zagadnienie drapieżnictwa roztoczy na jajach korników. Ekol. Pol. Ser. B 12, 2: 161-163. Kiełczewski B., Bałazy S., Seniczak S. 1973. Rola drapieżnych roztoczy w ograniczaniu liczebności szkodników w lesie. Zesz. Probl. Post. Nauk Roln. 144: 131-138. Kiełczewski B., Michalski J. 1962. Wpływ roztoczy (Acarina) na gęstość populacji o- głodków (Scolytinae). Zesz. Probl. Post. Nauk Roln. 35: 133-135. Kiełczewski B., Wiśniewski J. 1977 a. Morphological changes of the females of the genus Trichouropoda (Trichouropodini, Uropodinae). Acarologia 18: 404-406. Kiełczewski B., Wiśniewski J. 1977 b. Notes on larval development of the mites of the genus Trichouropoda (Trichouropodini, Uropodinae). Acarologia 18: 407-409. Kiełczewski B., Wiśniewski J. 1983. Bark beetle acarofauna in different types of forest habitat. Part I and II. Introduction and Mesostigmata. Fol. For. Pol. Ser. A 25: 129-162. Krasucki A. 1927. Oscinis frit L. (Ploniarka, Zbożówka czarna, Mucha szwedzka), w południowo-wschodniej Polsce w latach 1923-25. Pozna´n. Majewski T., Wiśniewski J. 1978. New species of parasitic fungi occurring on mites (Acarina). Acta Mycol. 14, 1-2: 3-12. Michalski J. Kaczmarek S., Ratajczak E. 1992 a. Roztocze (Acari, Mesostigmata) wys- tępujące w żerowiskach korników (Coleoptera, Scolytidae) Gorcza´nskiego Parku Narodowego. Pol. Pis. Entomol. 61: 137-142. Michalski J., Kaczmarek S., Ratajczak E. 1992 b. Z bada´nnad roztoczami (Acari, Mesostigmata) występującymi w żerowiskach korników (Coleoptera, Scolytidae). Pol. Pis. Entomol. 61: 143-151. Michalski J., Ratajczak E. 1989. Korniki (Coleoptera: Scolytidae) wraz z towarzyszącą im fauną w Górach Świętokrzyskich. Fragm. Faun. 32: 279-318. Michalski J., Ratajczak E. 1994. Korniki (Coleoptera: Scolytidae) wraz z fauną to- warzyszącą w Roztocza´nskim Parku Narodowym. Fragm. Faun. 37, 11: 291-313. Michalski J., Ratajczak E., Wiśniewski J. 1985. Roztocze (Acarina: Mesostigmata) to- warzyszące kornikom (Coleoptera: Scolytidae) Gór Świętokrzyskich. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 60: 85-92. Ruszkowski J. 1927. Ploniarka czyli Mucha Szwedzka (Oscinis frit L.). Pozna´n. Strojny W. 1952. Rzemlik topolowiec i rzemlik osikowiec. Pol. Pis. Entomol. 22: 22. Strojny W. 1954. Krytoryjek olszowiec. Pol. Pismo Entom. 24: 2. Wiśniewski J. 1977. Stadium einer neuen Trichouropoda-Art aus Polen (Trichouropo- dini, Uropodinae). Acarologie 23: 72-73. Wiśniewski J. 1979 a. Zwei neue mit Proctolaelaps xyloteri Sams. (Mesostigmata, Blat- tisociidae) verwandte Proctolaelaps-Arten aus Polen. Acarologia 21, 1: 3-8. Wiśniewski J. 1979 b. Vier neue Arten von heteromorphen Dendrolaelaps-M¨annchen (Acarina, Rhodacaridae) in Borkenk¨aferg¨angen aus Polen. Acarologia 21, 2: 149-162. 95

Wiśniewski J. 1979 c. Das M¨annchen von Trichouropoda stammerisimilis Hirschmann 1978 aus Polen (Trichouropodini, Uropodinae). Acarologie 25: 38-39. Wiśniewski J. 1979 d. Zur Kenntnis der Uropodiden-Fauna Polens. Acarologie 26: 68-74. Wiśniewski J. 1979 e. Uroobovella hirschmanni sp. n. (Acari, Uropodinae) aus Polen. Ann. Zool. 34, 17: 475-479. Wiśniewski J., Hirschmann W. 1983 a. Teilgang, Stadien von 3 neuen Dendrolaelaps- -Arten aus Polen. Acarologie 30: 103-110. Wiśniewski J., Hirschmann W. 1983 b. Neuer Teilgang und neue Stadien bekannter Dendrolaelaps- und Polyaspis-Arten aus Polen. Acarologie 30: 118-126. Wiśniewski J., Hirschmann W. 1984. Teilgang einer neuen Trichouropoda-Art aus Borkenk¨aferg¨angen in Polen (Trichouropodini, Uropodinae). Acarologie 31: 71-73. Wiśniewski J., Hirschmann W. 1991. Erg¨anzungsangaben ¨uber Verbreitung und Leben- sr¨aume der Trichouropoda-Arten (Acarina, Uropodina). Fragm. Faun. 35 (11): 173-178.

MESOSTIGMATID MITES (ACARI) ASSOCIATED IN NESTS OF FORMICIDAE IN POLAND

Dariusz J. Gwiazdowicz

Pozna´nUniversity of Life Sciences, Department of Forest Protection ul. Wojska Polskiego 71c, 60-625 Pozna´n, Poland, e-mail: [email protected]

Introduction

Ants are attributed with a particularly great role in forest ecosystems, espe- cially in the context of reducing the number of harmful insects. This is why studies of forest ants have been one of the major research trends in broadly interpreted forest protection. Thus far 97 species, of which 41 in forest areas, have been reported in Poland. Some of them, for instance Formica polyctena or Formica rufa, build anthills made of needles and twigs, others such as Lasius flavus build nests in the ground while Camponotus herculeanus can be found in rotting stumps. The bi- ological diversity of selected ant species and the various places in which they occur and build their nests affect the species composition and the number of arthropods, also including mites which accompany ants. The species composition of mites found in ant nests is very diverse as apart from mirmecophilous species one may find a large number of specimens occurring accidentally and which are common in such microenvironments as the litter and forest soil. Due to the fact that they are tiny and move slowly their presence in anthills is tolerated by ants. The number of mites in anthills is very diverse. Wiśniewski (1965) estimates it approximately at 2825 specimens in 1 dcm3 of the anthill material, although significant deviations from this value occur. Table 1 presents the list of mesostigmatid mites that have thus far been re- ported in ant nests in Poland. 98

Table 1 List of mesostigmatid mites associated in nests of Formicidae Camponotus herculeanus (Linnaeus, 1758) Arctoseius dendrophilus Karg, 1969 Wiśniewski 1983 Dendrolaelaps camponoti Wiśniewski et Hirsch- Wiśniewski and Hirschmann 1983a mann, 1983 Dendrolaelaps cornutulus Hirschmann, 1960 Wiśniewski 1983, 1984a Dendrolaelaps eichhorni Wiśniewski, 1980 Wiśniewski 1980b, 1983 Dendrolaelaps zwoelferi Hirschmann, 1960 Wiśniewski 1983, 1984a Dinychus camponoti Wiśniewski et Hirschmann, Wiśniewski and Hirschmann 1983c 1983 Dinychus perforatus Kramer, 1886 Wiśniewski 1983 Gamasellus montanus (Willmann, 1936) Wiśniewski 1983 Geholaspis mandibularis (Berlese, 1904) Kiełczewski et al. 1970 Geholaspis sp. Wiśniewski 1983 Hypoaspis cuneifer (Canestrini, 1883) Wiśniewski 1982b, 1983 Hypoaspis sp. Kiełczewski et al. 1970 Pergamasus sp. Kiełczewski et al. 1970 Prozercon traegardhi (Halbert, 1923) Wiśniewski 1979b, 1979e Sejus togatus C.L. Koch, 1836 Wiśniewski 1983 Trachytes pauperior (Berlese, 1914) Wiśniewski 1983 Trichouropoda beckwithi Wiśniewski, 1980 Wiśniewski 1980c Trichouropoda dialveolata Hirschmann et Zirn- Wiśniewski 1979b, 1979e, 1983 giebl-Nicol, 1961 Trichouropoda obscura (C.L. Koch, 1836) Wiśniewski 1983 Trichouropoda ovalis (C.L. Koch, 1839) Wiśniewski 1983 Trichouropoda sociata (Vitzthum, 1923) Wiśniewski 1983 Uroobovella obovata Canestrini et Berlese, 1884 Wiśniewski 1979b, 1979e, 1983 Uroobovella pulchella (Berlese, 1904) Wiśniewski 1979b, 1979e, 1983 Uroobovella vinicolora (Vitzthum, 1926) Wiśniewski 1983 Uroobovella sp. Kiełczewski et al. 1970 Veigaia sp. Kiełczewski et al. 1970 Camponotus ligniperda Latreille, 1802 Uroobovella pulchella (Berlese, 1904) Wiśniewski 1979b, 1979e Formica cinerea Mayr, 1853 Trachyuropoda coccinea (Michael, 1891) Wiśniewski 1983 Formica fusca Linnaeus, 1758 Dendrolaelaps euepistomus Hirschmann, 1960 Wiśniewski 1983, 1984a Dendrolaelaps latior (Leitner, 1949) Wiśniewski 1983, 1984a Dendrolaelaps spinosus Hirschmann, 1960 Wiśniewski 1983 Dendrolaelaps trapezoides Hirschmann, 1960 Wiśniewski 1983, 1984a Dendrolaelaps wengrisae Wiśniewski, 1979 Wiśniewski 1983, 1984a Hypoaspis vacua (Michael, 1891) Wiśniewski 1983 Oplitis schmitzi (Kneissl, 1908) Wiśniewski 1983 Oplitis wasmanni (Kneissl, 1907) Skorupski and Gwiazdowicz 1996, 2002 Rhodacarus clavulatus Athias-Henriot, 1961 Wiśniewski 1983 Trachyuropoda coccinea (Michael, 1891) Wiśniewski 1983 Trichouropoda ovalis (C.L. Koch, 1839) Wiśniewski 1983 99

Table 1 – cont. Trichouropoda spatulifera (Moniez, 1892) Wiśniewski 1983 Uroobovella obovata Canestrini et Berlese, 1884 Wiśniewski 1983 Uroobovella pulchella (Berlese, 1904) Wiśniewski 1983 Uroobovella similiobovata Hirschmann et Zirn- Wiśniewski 1983 giebl-Nicol, 1962 Vulgarogamasus kraepelini (Berlese, 1904) Wiśniewski 1983 Formica polyctena Foerster, 1850 Alloparasitus sardoa (Berlese, 1911) Wiśniewski 1965 Amblyseius sp. Skorupski and Gwiazdowicz 1996, 2002, Skorupski 2001 Androlaelaps casalis (Berlese, 1887) Skorupski and Gwiazdowicz 1996, 2002 Arctoseius cetratus (Sellnick, 1940) Wiśniewski 1983 Asca aphidioides (Linnaeus, 1758) Wiśniewski 1966, 1983 Celaenopsis badius C.L. Koch, 1836 Wiśniewski 1966, Gwiazdowicz 2000, 2001 Dendrolaelaps cornutulus Hirschmann, 1960 Wiśniewski 1983, 1984a Dendrolaelaps foveolatus (Leitner, 1949) Wiśniewski 1983, 1984a Dendrolaelaps latior (Leitner, 1949) Wiśniewski 1983, 1984a Dendrolaelaps nikoolai Shcherbak, 1978 Wiśniewski 1983, 1984a Dendrolaelaps punctatulus Hirschmann, 1960 Wiśniewski 1983, 1984a, Skorupski 2001 Dendrolaelaps rotundus Hirschmann, 1960 Wiśniewski 1983, 1984a Dendrolaelaps querci Hirschmann, 1960 Wiśniewski 1983, 1984a Dendrolaelaps sellnicki Hirschmann, 1960 Skorupski and Gwiazdowicz 1996, 2002 Dendrolaelaps sellnickiformis Hirschmann et Wiś- Wiśniewski 1983, 1984a niewski, 1982 Dendrolaelaps strenzkei Hirschmann, 1960 Wiśniewski 1983, 1984a Dendrolaelaps wengrisae Wiśniewski, 1979 Wiśniewski 1979a, 1983, 1984a Dinychus arcuatus (Tr¨agardh, 1943) Gwiazdowicz 2000, 2001 Dinychus carinatus Berlese, 1903 Wiśniewski 1965 Dinychus perforatus Kramer, 1886 Gwiazdowicz 2000, 2001 Eviphis ostrinus (C.L. Koch, 1836) Wiśniewski 1965, 1983, Gwiazdo- wicz 2000, 2001 Gamasellodes bicolor (Berlese, 1918) Skorupski and Gwiazdowicz 1996, 2002, Skorupski 2001 Geholaspis longispinosus (Kramer, 1876) Gwiazdowicz 2000, 2001 Haemogamasus sp. Kiełczewski and Wiśniewski 1966 Holoparasitus calcaratus (C.L. Koch, 1839) Wiśniewski 1965, 1980a, 1983 Hypoaspis aculeifer (Canestrini, 1883) Wiśniewski 1983, Gwiazdowicz 2000, 2001 Hypoaspis berlesei Hirschmann, 1969 Skorupski 2001 Hypoaspis cuneifer (Michael, 1891) Wiśniewski 1965, 1983, Kiełczewski and Wiśniewski 1966, Gwiazdowicz 2000, 2001 Hypoaspis equitans (Michael, 1891) Wiśniewski 1965 Hypoaspis heselhausi Oudemans, 1912 Gwiazdowicz 2001 100

Table 1 – cont. Hypoaspis isotricha (Kolenati, 1858) Wiśniewski 1965, Skorupski and Gwiazdowicz 1996, 2002, Skorupski 2001 Hypoaspis montana Berlese, 1904 Skorupski and Gwiazdowicz 1996, 2002, Gwiazdowicz 2000, 2001, Sko- rupski 2001 Hypoaspis neocuneifer Evans et Till, 1966 Skorupski and Gwiazdowicz 1996, 2002 Hypoaspis subterranea Willmann, 1952 Gwiazdowicz 2001 Hypoaspis vacua (Michael, 1891) Wiśniewski 1965, 1983, Skorup- ski and Gwiazdowicz 1996, 2002, Gwiazdowicz 2000, 2001, Skorupski 2001 Lasioseius fimetorum Karg, 1971 Wiśniewski 1983 Lasioseius ometes (Oudemans, 1903) Wiśniewski 1980a Macrocheles montanus (Willmann, 1951) Wiśniewski 1983 Macrocheles recki Bregetova et Koroleva, 1960 Skorupski and Gwiazdowicz 1996, 2002 Macrocheles rotundiscutis Bregetova et Koroleva, Skorupski and Gwiazdowicz 1996, 1980 2002 Ololaelaps placentula (Berlese, 1887) Skorupski and Gwiazdowicz 1996, 2002 Oplitis minutissima (Berlese, 1903) Kiełczewski and Wiśniewski 1962, Wiśniewski 1965, 1979e, 1983 Oplitis paradoxa (Canestrini et Berlese, 1884) Wiśniewski 1979e, 1980a, Gwiazdo- wicz 2000, 2001 Pachylaelaps fuscinuliger Oudemans, 1903 Skorupski and Gwiazdowicz 1996, 2002 Pachylaelaps ineptus Hirschmann et Krauss, 1965 Skorupski and Gwiazdowicz 1996, 2002 Pachylaelaps sculptus Berlese, 1920 Wiśniewski 1983 Paragamasus digitulus Karg, 1963 Skorupski and Gwiazdowicz 1996, 2002 Paragamasus robustus (Oudemans, 1902) Kiełczewski and Wiśniewski 1962, Wiśniewski 1965 Paragamasus runcatellus (Berlese, 1903) Skorupski and Gwiazdowicz 1996, 2002 Paragamasus vagabundus (Karg, 1968) Wiśniewski 1983 Parasitus coleoptratorum (Linnaeus, 1758) Skorupski and Gwiazdowicz 1996, 2002 Parasitus consanguineus Oudemans et Voigts, Gwiazdowicz 2001 1904 Parazercon radiatus (Berlese, 1914) Gwiazdowicz 2000, 2001 Pergamasus brevicornis Berlese, 1903 Kiełczewski and Wiśniewski 1962, 1966, Wiśniewski 1965, 1983 Pergamasus quisquiliarum (Canestrini, 1882) Wiśniewski 1983 Pergamasus septentrionalis (Oudemans, 1902) Wiśniewski 1966, 1983 Pergamasus sp. Bałazy and Wiśniewski 1984 Pleuronectocelaeno austriaca Vitzthum, 1926 Wiśniewski 1980a 101

Table 1 – cont. Proctolaelaps juradeus (Schweitzer, 1949) Gwiazdowicz 2001 Proctolaelaps pygmaeus (M¨uller, 1860) Wiśniewski 1966, Skorupski and Gwiazdowicz 1996, 2002 Proctolaelaps rotunda (Hirschmann, 1963) Wiśniewski 1983 Pseudoparasitus myrmophilus (Michael, 1891) Kiełczewski and Wiśniewski 1962, Wiśniewski 1965 Pseudoparasitus laevis (Michael, 1891) Wiśniewski 1965 Schizocyrtillus josefinae Gwiazdowicz, 2002 Gwiazdowicz 2002 Sejus togatus C.L. Koch, 1836 Wiśniewski 1965, 1983, Gwiazdo- wicz 2000, 2001 Trachytes aegrota (C.L. Koch, 1841) Wiśniewski 1979e, 1983, Skorup- ski and Gwiazdowicz 1996, 2002, Gwiazdowicz 2000, 2001 Trachytes montana Willmann, 1953 Wiśniewski 1982a, 1983 Trachytes pauperior (Berlese, 1914) Wiśniewski 1983 Trachyuropoda coccinea (Michael, 1891) Kiełczewski and Wiśniewski 1962, Wiśniewski 1965, 1979e, 1983, Ba- łazy and Wiśniewski 1982, 1984, 1986, Skorupski and Gwiazdowicz 1996, 2002, Gwiazdowicz 2000, 2001, Skorupski 2001 Trachyuropoda formicaria (Lubbock, 1881) Skorupski and Gwiazdowicz 1996, 2002 Trichouropoda elegans (Kramer, 1882) Wiśniewski 1979bce, 1983 Trichouropoda janeti (Berlese, 1904) Kiełczewski and Wiśniewski 1962, Wiśniewski 1965 Trichouropoda querceti Hirschmann, 1972 Wiśniewski 1979be, 1983, Skorup- ski and Gwiazdowicz 1996, 2002 Trichouropoda spatulifera (Moniez, 1892) Wiśniewski 1979c, Bałazy and Wiś- niewski 1986, Skorupski and Gwiaz- dowicz 1996, 2002, Gwiazdowicz 2000, 2001 Trichouropoda obscura (C.L. Koch, 1836) Wiśniewski 1983 Trichouropoda ovalis (C.L. Koch, 1839) Wiśniewski 1979e, 1980a, 1983, Gwiazdowicz 2000, 2001, Skorupski 2001 Trichouropda polyctenaphila Wiśniewski Hirschmann and Wiśniewski 1986 et Hirschmann, 1986 Trichouropoda spatulifera (Moniez, 1892) Wiśniewski 1983, Gwiazdowicz 2001, Skorupski 2001 Uroobovella carinata (Berlese, 1888) Wiśniewski 1979e Uroobovella fimicola (Berlese, 1903) Skorupski and Gwiazdowicz 1996, 2002 Uroobovella pulchella (Berlese, 1904) Wiśniewski 1979e, 1980a, 1983 Uroobovella pyriformis (Berlese, 1920) Wiśniewski 1966, 1979e, 1980a, 1983, Skorupski and Gwiazdowicz 1996, 2002, Gwiazdowicz 2000, 2001, Skorupski 2001 Uropoda cassidea (Hermann, 1804) Kiełczewski and Wiśniewski 1962, Wiśniewski 1979e 102

Table 1 – cont. Uropoda hamulifera Michael, 1894 Wiśniewski 1965, 1979e, 1983 Uropoda minima Kramer, 1882 Wiśniewski 1979e, 1980a Uropoda orbicularis (M¨uller, 1776) Wiśniewski 1983, Skorupski and Gwiazdowicz 1996, 2002 Polyaspinus cylindricus Berlese, 1916 Wiśniewski 1983 Uroseius myrmecophilus Wiśniewski, 1979 Wiśniewski 1979d, 1979e Veigaia cervus (Kramer, 1876) Wiśniewski 1966, Gwiazdowicz 2001 Veigaia nemorensis (C.L. Koch, 1839) Wiśniewski 1965, 1983, Gwiazdo- wicz 2000, 2001 Zercon fageticola Halaˇskova, 1970 Skorupski and Gwiazdowicz 1996, 2002 Zercon peltatus C.L. Koch, 1836 Wiśniewski 1965 Zercon triangularis C.L. Koch, 1836 Wiśniewski 1980a, Skorupski 2001 Zercon vacuus C.L. Koch, 1839 Kiełczewski and Wiśniewski 1962, Wiśniewski 1965 Zerconopsis michaeli Evans et Hyatt, 1960 Wiśniewski 1980a Formica pratensis Retzius, 1783 Asca aphidioides (Linnaeus, 1758) Wiśniewski 1983 Dendrolaelaps sellnickiformis Hirschmann et Wiś- Wiśniewski 1983, 1984a niewski, 1982 Eviphis ostrinus (C.L. Koch, 1836) Wiśniewski 1983 Hypoaspis cuneifer (Michael, 1891) Wiśniewski 1983 Pergamasus septentrionalis (Oudemans, 1902) Wiśniewski 1983 Paragamasus vagabundus (Karg, 1968) Wiśniewski 1983 Sejus togatus C.L. Koch, 1836 Wiśniewski 1983 Trachyuropoda coccinea (Michael, 1891) Wiśniewski 1983 Trichouropoda ovalis (C.L. Koch, 1839) Wiśniewski 1983 Trichouropoda spatulifera (Moniez, 1892) Wiśniewski 1983 Veigaia nemorensis (C.L. Koch, 1839) Wiśniewski 1983 Formica rufa Linnaeus, 1761 Ameroseius corbiculus (Sowerby, 1806) Wiśniewski 1983 Ameroseius longitrichus Hirschmann, 1963 Wiśniewski 1980a Arctoseius cetratus (Sellnick, 1940) Wiśniewski 1980a Celaenopsis badius C.L. Koch, 1839 Wiśniewski 1983 Dendrolaelaps brevipilis (Leitner, 1949) Wiśniewski 1983, 1984a Dendrolaelaps cornutulus Hirschmann, 1960 Wiśniewski 1983, 1984a Dendrolaelaps latior (Leitner, 1949) Wiśniewski 1983, 1984a Dendrolaelaps latus Hirschmann, 1969 Kiełczewski and Wiśniewski 1973 Dendrolaelaps punctatulus Hirschmann,1960 Wiśniewski 1983, 1984a Dendrolaelaps sellnickiformis Hirschmann et Wiś- Wiśniewski 1983, 1984a niewski, 1982 Dendrolaelaps strenzkei Hirschmann, 1960 Wiśniewski 1983, 1984a Dendrolaelaps wengrisae Wiśniewski, 1979 Wiśniewski 1983, 1984a Dinychus woelkei Hirschmann et Zirngiebl-Nicol, Błoszyk and Olszanowski 1986 1969 Epicriopsis horridus Kramer, 1876 Wiśniewski 1980? Eviphis ostrinus (C.L. Koch, 1836) Wiśniewski 1983 Gamasellodes bicolor (Berlese, 1918) Wiśniewski 1983 103

Table 1 – cont. Geholaspis longispinosus (Kramer, 1876) Wiśniewski 1983 Holoparasitus calcaratus (C.L. Koch, 1839) Kiełczewski and Wiśniewski 1973, Wiśniewski 1980a Hypoaspis aculeifer (Canestrini, 1883) Kiełczewski and Wiśniewski 1973, Wiśniewski 1983 Hypoaspis heselhausi Oudemans, 1912 Kiełczewski and Wiśniewski 1973 Hypoaspis vacua (Michael, 1891) Wiśniewski 1983 Lasioseius ometes (Oudemans, 1903) Wiśniewski 1980a Oplitis paradoxa (Canestrini et Berlese, 1884) Błoszyk and Olszanowski 1986 Pachylaelaps laeuchlii Schweizer, 1922 Kiełczewski and Wiśniewski 1973 Paragamasus misellus (Berlese, 1903) Wiśniewski 1980a Paragamasus resinae (Karg, 1968) Kiełczewski and Wiśniewski 1973 Paragamasus runcatellus (Berlese, 1903) Wiśniewski 1983 Paragamasus runciger (Berlese, 1903) Wiśniewski 1980a Paragamasus vagabundus (Karg, 1968) Wiśniewski 1980a Parasitus sp. Kiełczewski and Wiśniewski 1973 Pergamasus crassipes (Linnaeus, 1758) Kiełczewski and Wiśniewski 1966, Wiśniewski 1980a Pergamasus mediocris Berlese, 1904 Kiełczewski and Wiśniewski 1966, Wiśniewski 1980a Pergamasus sp. Bałazy and Wiśniewski 1984 Pseudoparasitus myrmophilus (Michael, 1891) Kiełczewski and Wiśniewski 1962, 1966 Sejus togatus C.L. Koch, 1836 Wiśniewski 1983 Trachytes aegrota (C.L. Koch, 1841) Wiśniewski 1983, Błoszyk and Ol- szanowski 1986 Trachyuropoda coccinea (Michael, 1891) Kiełczewski and Wiśniewski 1962, 1966, Wiśniewski 1979e, 1983, Bło- szyk and Olszanowski 1986 Trichouropada calcarata Hirschmann et Zirngiebl- Błoszyk and Olszanowski 1986 -Nicol, 1961 Trichouropoda elegans (Kramer, 1882) Wiśniewski 1979b Trichouropoda janeti (Berlese, 1904) Kiełczewski and Wiśniewski 1966 Trichouropoda karawaiewi (Berlese, 1904) Błoszyk and Olszanowski 1986 Trichouropoda obscura (C.L. Koch, 1836) Wiśniewski 1983 Trichouropoda ovalis (C.L. Koch, 1839) Wiśniewski 1979e, 1980a, 1983, Błoszyk and Olszanowski 1986 Trichouropada sociata (Vitzthum, 1923) Błoszyk and Olszanowski 1986 Trichouropoda spatulifera (Moniez, 1892) Wiśniewski 1979e, 1983, Błoszyk and Olszanowski 1986 Uroobovella pulchella (Berlese, 1904) Wiśniewski 1979b, 1979e, 1980a, 1983 Uroobovella pyriformis (Berlese, 1920) Wiśniewski 1983, Błoszyk and Ol- szanowski 1986 Uropoda minima Kramer, 1882 Wiśniewski 1979e, 1980a Uroseius koehleri Wiśniewski, 1979 Wiśniewski 1979d, 1979e Oplitis conspicua (Berlese, 1903) Błoszyk and Olszanowski 1986 Veigaia nemorensis (C.L. Koch, 1839) Kiełczewski and Wiśniewski 1973, Wiśniewski 1983 104

Table 1 – cont. Zercon peltatus C.L. Koch, 1836 Kiełczewski and Wiśniewski 1973 Zercon vacuus C.L. Koch, 1839 Kiełczewski and Wiśniewski 1962, 1966 Formica sanguinea Latreille, 1798 Eviphis ostrinus (C.L. Koch, 1836) Wiśniewski 1983 Hypoaspis cuneifer (Michael, 1891) Wiśniewski 1983 Paragamasus similis (Willmann, 1953) Wiśniewski 1983 Trichouropoda ovalis (C. L. Koch, 1839) Wiśniewski 1983 Veigaia nemorensis (C.L. Koch, 1839) Wiśniewski 1983 Formica truncorum Fabricius, 1804 Dendrolaelaps cornutulus Hirschmann, 1960 Wiśniewski 1983, 1984a Formica sp. Celaenopsis badius C.L. Koch, 1839 Wiśniewski 1983 Dendrolaelaps latior (Leitner, 1949) Wiśniewski 1983 Dendrolaelaps wengrisae Wiśniewski, 1979 Wiśniewski 1983, 1984a Hypoaspis cuneifer (Michael, 1891) Wiśniewski 1983 Oplitis minutissima (Berlese, 1903) Wiśniewski 1983 Pergamasus septentrionalis (Oudemans, 1902) Wiśniewski 1983 Trachyuropoda coccinea (Michael, 1891) Bałazy and Wiśniewski 1982, Wiś- niewski 1983 Trichouropoda ovalis (C.L. Koch, 1839) Wiśniewski 1983 Trichouropoda spatulifera (Moniez, 1892) Wiśniewski 1983 Uroobovella pyriformis (Berlese, 1920) Wiśniewski 1983 Veigaia cervus (Kramer, 1976) Wiśniewski 1983 Veigaia nemorensis (C.L. Koch, 1839) Wiśniewski 1983 Lasius alienus (Foerster, 1850) Trachyuropoda coccinea (Michael, 1891) Skorupski 2001 Lasius flavus (Fabricius, 1781) Amblyseius sp. Skorupski and Gwiazdowicz 1996, 2002 Antennophorus boveni Wiśniewski et Hirschmann, Wiśniewski and Hirschmann 1992b 1992 Antennophorus goesswaldi Wiśniewski Wiśniewski and Hirschmann 1992b et Hirschmann, 1992 Antennophorus sp. Wiśniewski 1983, Skorupski and Gwiazdowicz 1996, 2002 Androlaelaps casalis (Berlese, 1887) Skorupski 2001 Asca aphidioides (Linnaeus, 1758) Skorupski and Gwiazdowicz 1996, 2002 Asca bicornis (Canestrini et Fanzago, 1876) Skorupski 2001 Cheiroseius unguiculatus (Berlese, 1887) Skorupski and Gwiazdowicz 1996, 2002 Dendrolaelaps punctatulus Hirschmann, 1960 Wiśniewski 1983, 1984a Dendrolaelaps sp. Skorupski and Gwiazdowicz 1996, 2002 Gamasellodes bicolor (Berlese, 1918) Skorupski and Gwiazdowicz 1996, 2002 Hypoaspis cuneifer (Michael, 1891) Majewski 1983 Hypoaspis vacua (Michael, 1891) Skorupski 2001 105

Table 1 – cont. Ololaelaps placentula (Berlese, 1887) Skorupski and Gwiazdowicz 1996, 2002 Oplitis minutissima (Berlese, 1903) Wiśniewski 1983, Skorupski and Gwiazdowicz 1996, 2002, Skorupski 2001 Oplitis paradoxa (Canestrini et Berlese, 1884) Wiśniewski 1983 Oplitis philoctena (Trouessart, 1902) Wiśniewski 1982a, 1983 Oplitis schmitzi (Kneissl, 1908) Wiśniewski 1982a, 1983 Oplitis wasmanni (Kneissl, 1907) Skorupski and Gwiazdowicz 1996, 2002 Paragamasus digitulus Karg, 1963 Skorupski and Gwiazdowicz 1996, 2002 Pergamasus septentrionalis (Oudemans, 1902) Wiśniewski 1983 Trachytes aegrota (C.L. Koch, 1841) Skorupski and Gwiazdowicz 1996, 2002 Trachyuropoda formicaria (Lubbock, 1881) Skorupski and Gwiazdowicz 1996, 2002 Trachyuropoda poppi Hirschmann et Zirngiebl- Wiśniewski 1982a, 1983 -Nicol, 1969 Trachyuropoda wasmanniana Berlese, 1903 Wiśniewski 1982a, 1983 Trichouropoda spatulifera (Moniez, 1892) Wiśniewski 1983 Uroobovella obovata (Canestrini et Berlese, 1884) Wiśniewski 1983 Uropoda hamulifera Michael, 1894 Skorupski and Gwiazdowicz 1996, 2002 Uropoda minima Kramer, 1882 Skorupski and Gwiazdowicz 1996, 2002 Uropoda spinosula (Kneissl, 1916) Wiśniewski 1980d, 1983 Zercon athiasi Vincze, 1965 Skorupski 2001 Zercon fageticola Halaˇskova, 1970 Skorupski and Gwiazdowicz 1996, 2002 Zercon peltatus C.L. Koch, 1836 Skorupski and Gwiazdowicz 1996, 2002 Lasius fuliginosus (Latreille, 1798) Celaenopsis badius C.L. Koch, 1836 Skorupski and Gwiazdowicz 1996, 2002, Skorupski 2001 Dendrolaelaps arvicolus (Leitner, 1949) Wiśniewski 1983, 1984a Dendrolaelaps cornutulus Hirschmann, 1960 Skorupski 2001 Dendrolaelaps punctatulus Hirschmann, 1960 Skorupski 2001 Dendrolaelaps querci Hirschmann, 1960 Skorupski 2001 Dendrolaelaps spinosus Hirschmann, 1960 Skorupski 2001 Dendrolaelaps zwoelferi Hirschmann, 1960 Skorupski 2001 Dinychus woelkei Hirschmann et Zirngiebl-Nicol, Skorupski 2001 1969 Gamasellodes bicolor (Berlese, 1918) Skorupski 2001 Holoparasitus calcaratus (C.L. Koch, 1839) Skorupski 2001 Hypoaspis aculeifer (Canestrini, 1883) Skorupski 2001 Hypoaspis berlesei Hirschmann, 1969 Skorupski 2001 Hypoaspis cuneifer (Michael, 1891) Wiśniewski 1983, Skorupski 2001 Hypoaspis glabrosimilis Hirschmann, 1969 Skorupski 2001 106

Table 1 – cont. Hypoaspis grandiporus Hirschmann, 1969 Skorupski 2001 Hypoaspis isotricha (Kolenati, 1858) Skorupski 2001 Hypoaspis lubrica Voigts et Oudemans, 1904 Skorupski and Gwiazdowicz 1996, 2002 Hypoaspis oblonga (Halbert, 1915) Skorupski 2001 Hypoaspis vacua (Michael, 1891) Skorupski 2001 Hypoaspis (Pneumolaelaps) sp. Skorupski and Gwiazdowicz 1996, 2002 Lasioseius muricatus (C.L. Koch, 1839) Skorupski 2001 Lasioseius ometes (Oudemans, 1903) Skorupski 2001 Leptogamasus belligerens Witali´nski, 1973 Skorupski 2001 Microsejus truncicola Tr¨agardh, 1942 Skorupski 2001 Paragamasus runcatellus (Berlese, 1903) Skorupski 2001 Pergamasus crassipes (Linnaeus, 1758) Skorupski 2001 Polyaspis criocephali Wiśniewski, 1980 Wiśniewski and Hirschmann 1983b, Skorupski 2001 Proctolaelaps pygmaeus (M¨uller, 1860) Skorupski 2001 Prozercon traegardhi (Halbert, 1923) Skorupski 2001 Sejus togatus C.L. Koch, 1836 Skorupski 2001 Trachytes aegrota (C.L. Koch, 1841) Skorupski 2001 Trichouropoda ovalis (C.L. Koch, 1839) Skorupski 2001 Trichouropoda polytricha (Vitzthum, 1923) Skorupski 2001 Trichouropoda struktura Hirschmann et Zirngiebl- Skorupski 2001 -Nicol, 1961 Uroobovella pyriformis (Berlese, 1920) Skorupski 2001 Uropoda minima Kramer, 1882 Skorupski 2001 Veigaia cervus (Kramer, 1876) Wiśniewski 1983 Veigaia decurtata Athias-Henriot, 1961 Skorupski and Gwiazdowicz 1996, 2002 Veigaia nemorensis (C.L. Koch, 1839) Wiśniewski 1983, Skorupski and Gwiazdowicz 1996, 2002, Skorupski 2001 Vulgarogamasus oudemansi (Berlese, 1903) Skorupski 2001 Zercon peltatus C.L. Koch, 1836 Skorupski 2001 Zerconopsis apodius Karg, 1969 Skorupski 2001 Zerconopsis michaeli Evans et Hyatt, 1960 Skorupski 2001 Lasius niger (Linnaeus, 1758) Ameroseius longitrichus Hirschmann, 1963 Skorupski 2001 Androlaelaps casalis (Berlese, 1887) Skorupski 2001 Anthoseius sp. Skorupski 2001 Arctoseius cetratus (Sellnick, 1940) Wiśniewski 1983 Celaenopsis badius C.L. Koch, 1836 Skorupski 2001 Dendrolaelaps brevipilis (Leitner, 1949) Wiśniewski 1983, 1984a Dendrolaelaps cornutulus Hirschmann, 1960 Wiśniewski 1983, 1984a, Skorupski 2001 Dendrolaelaps cornutus (Kramer, 1886) Skorupski 2001 Dendrolaelaps punctatulus Hirschmann, 1960 Skorupski 2001 Dendrolaelaps zwoelferi Hirschmann, 1960 Skorupski 2001 Dinychus woelkei Hirschmann et Zirngiebl-Nicol, Wiśniewski 1983, Skorupski 2001 1969 107

Table 1 – cont. Eviphis ostrinus (C.L. Koch, 1836) Wiśniewski 1983 Gamasellodes bicolor (Berlese, 1918) Skorupski 2001 Gamasolaelaps tuberculatus Bregetova, 1961 Skorupski 2001 Hypoaspis aculeifer (Canestrini, 1883) Skorupski 2001 Hypoaspis berlesei Hirschmann, 1969 Skorupski 2001 Hypoaspis cuneifer (Michael, 1891) Wiśniewski 1983 Hypoaspis curtipilus Hirschmann, 1969 Skorupski 2001 Hypoaspis grandiporus Hirschmann, 1969 Skorupski 2001 Hypoaspis oblonga (Halbert, 1915) Skorupski 2001 Hypoaspis vacua (Michael, 1891) Skorupski 2001 Lasioseius muricatus (C.L. Koch, 1839) Skorupski 2001 Lasioseius ometes (Oudemans, 1903) Skorupski 2001 Paragamasus runcatellus (Berlese, 1903) Skorupski 2001 Paragamasus wasmanni (Oudemans, 1902) Skorupski 2001 Pergamasus septentrionalis (Oudemans, 1902) Wiśniewski 1983 Polyaspis criocephali Wiśniewski, 1980 Skorupski 2001 Proctolaelaps fiseri Samˇsinak, 1960 Skorupski 2001 Prozercon kochi Sellnick, 1943 Skorupski 2001 Rhodacarellus silesiacus Willmann, 1936 Skorupski 2001 Sejus togatus C.L. Koch, 1836 Wiśniewski 1983, Skorupski 2001 Trichouropoda ovalis (C.L. Koch, 1839) Wiśniewski 1983, Skorupski 2001 Uroobovella ipidisimilis Hirschmann et Zirngiebl- Skorupski 2001 -Nicol, 1962 Uroobovella obovata (Canestrini et Berlese, 1884) Wiśniewski 1983, Skorupski 2001 Uroobovella pulchella (Berlese, 1904) Wiśniewski and Skorupski 2001 Uroobovella pyriformis (Berlese, 1920) Skorupski 2001 Uroobovella similiobovata Hirschmann et Zirn- Wiśniewski 1982a, 1983 giebl-Nicol, 1962 Uropoda hamulifera Michael, 1894 Wiśniewski 1983, Skorupski 2001 Uropoda minima Kramer, 1882 Wiśniewski 1983 Veigaia cervus (Kramer, 1876) Wiśniewski 1983 Vulgarogamasus kraepelini (Berlese, 1904) Wiśniewski 1983 Zercon spatulatus C.L. Koch, 1839 Skorupski 2001 Zerconopsis decemremiger Evans et Hyatt, 1960 Skorupski 2001 Zerconopsis michaeli Evans et Hyatt, 1960 Skorupski 2001 Lasius umbratus (Nylander, 1846) Hypoaspis aculeifer (Canestrini, 1883) Wiśniewski 1983 Hypoaspis cuneifer (Michael, 1891) Kiełczewski and Wiśniewski 1966, Oplitis paradoxa (Canestrini et Berlese, 1884) Wiśniewski 1983 Pachylaelaps holothyroides (Leonardi, 1896) Wiśniewski 1983 Rhodacarellus silesiacus Willmann, 1936 Wiśniewski 1983 Rhodacarus sp. Wiśniewski 1983 Trichouropoda dialveolata Hirschmann et Zirn- Wiśniewski 1983 giebl-Nicol, 1961 Uroobovella ipidisimilis Hirschmann et Zirngiebl- Wiśniewski 1981, 1983 -Nicol, 1962 Uroobovella pulchella (Berlese, 1904) Wiśniewski 1983 Uropoda hamulifera Michael, 1894 Wiśniewski 1983 Hypoaspis cuneifer (Michael, 1891) Kiełczewski and Wiśniewski 1966 108

Table 1 – cont. Lasius sp. Antennophorus pavani Wiśniewski et Hirsch- Wiśniewski and Hirschmann 1992b mann, 1992 Celaenopsis badius C.L. Koch, 1836 Majewski 1984 Dendrolaelaps cornutulus Hirschmann, 1960 Wiśniewski 1983, 1984a Dinychus woelkei Hirschmann et Zirngiebl-Nicol, Wiśniewski 1982a 1969 Hypoaspis cuneifer (Michael, 1891) Wiśniewski 1983 Nenteria pallida (Vitzthum, 1925) Wiśniewski and Hirschmann 1991b Nenteria stylifera (Berlese, 1904) Wiśniewski 1983 Nenteria sp. Wiśniewski 1983 Oplitis alophora (Berlese, 1903) Wiśniewski 1982a, 1983, 1984b Trachyuropoda formicaria (Lubbock, 1881) Wiśniewski and Hirschmann 1992a Trachyuropoda myrmecophila Wiśniewski Wiśniewski and Hirschmann 1992a et Hirschmann, 1992 Trichouropoda elegans (Kramer, 1882) Wiśniewski and Hirschmann 1991a Uropoda hamulifera Michael, 1894 Wiśniewski 1983 Leptothorax muscorum (Nylander, 1864) Hypoaspis vacua (Michael, 1891) Skorupski 2001 Leptothorax sp. Veigaia nemorensis (C.L. Koch, 1839) Skorupski and Gwiazdowicz 1996, 2002 Myrmica rubra Linnaeus, 1758 Dendrolaelaps querci Hirschmann, 1960 Skorupski 2001 Dendrolaelaps spinosus Hirschmann, 1960 Skorupski 2001 Dendrolaelaps wengrisae Wiśniewski, 1979 Wiśniewski 1983, 1984a Eviphis ostrinus (C.L. Koch, 1836) Wiśniewski 1983 Gamasolaelaps excisus (C.L. Koch, 1879) Wiśniewski 1983 Geholaspis longispinosus (Kramer, 1876) Wiśniewski 1983 Geholaspis mandibularis (Berlese, 1904) Skorupski 2001 Hypoaspis vacua (Michael, 1891) Skorupski 2001 Paragamasus lapponicus (Tr¨agardh, 1910) Skorupski 2001 Paragamasus misellus (Berlese, 1903) Skorupski 2001 Paragamasus puerilis Karg, 1963 Skorupski 2001 Pergamasus septentrionalis (Oudemans, 1902) Wiśniewski 1983 Sejus togatus C.L. Koch, 1836 Skorupski 2001 Trachytes aegrota (C.L. Koch, 1841) Wiśniewski 1983 Trachyuropoda coccinea (Michael, 1891) Wiśniewski 1983 Trichouropoda ovalis (C.L. Koch, 1839) Wiśniewski 1983, Skorupski 2001 Trichouropoda spatulifera (Moniez, 1892) Wiśniewski 1983 Urodiaspis tecta (Kramer, 1876) Wiśniewski 1983 Uroobovella fimicola (Berlese, 1903) Skorupski 2001 Uroobovella pulchella (Berlese, 1904) Skorupski 2001 Uropoda hamulifera Michael, 1894 Wiśniewski 1983 Uropoda minima Kramer, 1882 Wiśniewski 1983 Veigaia nemorensis (C.L. Koch, 1839) Wiśniewski 1983, Skorupski 2001 Vulgarogamasus kraepelini (Berlese, 1904) Wiśniewski 1983 109

Table 1 – cont. Myrmica sp. Androlaelaps casalis (Berlese, 1887) Skorupski and Gwiazdowicz 1996, 2002 Oplitis stammeri Hirschmann et Zirngiebl-Nicol, Skorupski and Gwiazdowicz 1996, 1961 2002 Trichouropoda obscura (C.L. Koch, 1836) Wiśniewski 1983 Trichouropoda spatulifera (Moniez, 1892) Wiśniewski 1983 Myrmica ruginodis Nylander, 1846 Pergamasus sp. Kiełczewski and Wiśniewski 1966 Tetramorium caespitum (Linnaeus, 1758) Vulgarogamasus kraepelini (Berlese, 1904) Wiśniewski 1983

Conclusion

Thus far the acarofauna of mesostigmatid mites from nests of 22 ant species has been studied in Poland. 189 mite species have been reported in nests of these ant species. The most common species included: Hypoaspis cuneifer (in nests of 11 ant species), Trichouropoda ovalis (10), Trichouropoda spatulifera (9), Hypoaspis vacua (8), Trachyuropoda coccinea (8), Uroobovella pulchella (8), Dendrolaelaps cornutulus (7) and Sejus togatus (7). As many as 114 mite species have been reported in the nest of just one ant species, and most of them have been reported only once. This would indicate that many accidental mite species are present in ant nests. These mites usually inhabit the litter, soil or rotting wood and get into the nests by accident for instance with the structural material. The investigation of this microenvironment resulted in the collection of a ma- terial which was the basis for the description of species new to science such as Antennophorus boveni, A. goesswaldi, A. pavani, Dendrolaelaps camponoti, Diny- chus camponoti, Trachyuropoda myrmecophila, Trichouropoda beckwithi. The total of reported mites included representatives of 22 families and 54 gen- era. The most numerous families were: Parasitidae (24 species), Digamasellidae (23), Laelaptidae (22), Trematuridae (17), Ascidae (16), Urodinychidae (15) and Trachyuropodidae (13). It is noteworthy that mites which dominated here were representatives of a few genera such as Dendrolaelaps (23 species), Hypoaspis (17) and Trichouropoda (15). The ant species whose nests featured the highest number of mesostigmatid mite species were: Formica polyctena (95 mite species), Formica rufa (53), Lasius niger (44), Lasius fuliginosus (43), Lasius flavus (33), Camponotus herculeanus (26) and Myrmica rubra (24). However, it must be emphasized that nests of the aforementioned ant species were the most frequently investigated ones. 110

Acknowledgements

I would like to extend my great thanks to Prof. Dr. Habil. J. Wiśniewski for kind comments upon the reading of the MS. This work is the result of grant (No 2 P06L 048 28) sponsored by the Ministry of Sciences.

References

Bałazy S., Wiśniewski J. 1982. Two species of entomopathogenic fungi on the myrme- cophilic mite Trachyuropoda coccinea (Michael, 1891) (Acari: Uropodina). Bull. Pol. Acad. Sci. Biol. Sc. 30, 1-12: 81-84. Bałazy S., Wiśniewski J. 1984. Records on some lower fungi occurring in mites (Acarina) from Poland. Acta Mycol. 20, 2: 159-172. Bałazy S., Wiśniewski J. 1986. Two new species of Hirsutella infecting mites in Poland. Trans. Br. Mycol. Soc. 86, 4: 629-635. Błoszyk J., Olszanowski Z. 1986. Przyczynek do znajomości fauny roztoczy mrowisk w Polsce. Acari: Uropodina. Przegl. Zool. 30, 2: 191-196. Gwiazdowicz D. J. 2000. Mites (Acari, Gamasida) of the Białowieża National Park. Forestry 3: 3-37. Gwiazdowicz D. J. 2001. Roztocze (Acari, Gamasida) występujące w mrowiskach Formi- ca polyctena F¨orster na terenie Białowieskiego Parku Narodowego. Par. Nar. Rez. Przyr. 20, 1: 97-101. Gwiazdowicz D. J. 2002. Schizocyrtillus josefinae n.sp. of the family Celaenopsidae (Acari, Antennophorina) from Poland. Acarologia 42: 21-27. Hirschmann W., Wiśniewski J. 1986. Weltweite Revision der Ganggattung Trichouropo- da Berlese 1916. I. Die ovalis-Gruppe (Trichouropodini, Uropodinae). Acarologie 33: 1-81. Kiełczewski B., Nawrot J., Wiśniewski J. 1970. Roztocze występujące na gmachówce (Campanotus Mayr: , Formicidae) i w jej gniazdach. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 30: 17-26. Kiełczewski B., Wiśniewski J. 1962. Z bada´nnad akarofauną gniazd Formica rufa L. i Formica polyctena F¨orst. na tle pozostałych stawonogów towarzyszących. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 13, 1: 3-14. Kiełczewski B., Wiśniewski J. 1966. Akarozy mrówek. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 21, 1: 117-121. Kiełczewski B., Wiśniewski J. 1973. Fauna roztoczy wymarłych gniazd mrówek z grupy Formica rufa w Nadleśnictwie Doświadczalnym Zielonka. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 31: 33-38. Majewski T. 1983. Rare and new Laboulbeniales from Poland. 8. Acta Mycol. 19, 2: 183-191. Majewski T. 1984. Rare and new Laboulbeniales from Poland. 9. Acta Mycol. 20, 2: 231-242. Skorupski M. 2001. Mites (Acari) from the order Gamasida in the Wielkopolski National Park. Fragm. Faun. 44: 129-167. Skorupski M., Gwiazdowicz D. J. 1996. Roztocze (Acari, Mesostigmata) Pienin. Fragm. Faun. 39, 16: 223-243. 111

Skorupski M., Gwiazdowicz D. J. 2002. Roztocze (Acari, Gamasida) występujące w gniazdach mrówek w Pieninach. Pieniny Przyr. Czł. 7: 105-107. Wiśniewski J. 1965. Pajęczaki towarzyszące mrowiskom Formica polyctena F¨orst. (Hym. Formicidae) w Nadleśnictwie Doświadczalnym WSR Zielonka. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 17, 3: 537-584. Wiśniewski J. 1966. Wyniki dalszych bada´nnad roztoczami towarzyszącymi mrowiskom Formica polyctena F¨orst. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 21, 1: 253-261. Wiśniewski J. 1979 a. Dendrolaelaps wengrisae sp. n. (Acarina: Rhodacaridae). Ann. Zool. 35, 4: 53-57. Wiśniewski J. 1979 b. F¨ur die Fauna Polens neue Uropodina (Acari: Parasitiformes). Fragm. Faun. 25, 5: 73-76. Wiśniewski J. 1979 c. Die Wander- und Dauernymphe von Trichouropoda elegans (Kramer 1882) und die Dauernymphe von Trichouropoda spatulifera (Moniez 1892) aus Polen (Trichouropodini, Uropodinae). Acarologie 25: 37-38. Wiśniewski J. 1979 d. Stadien von 2 neuen Uroseius (Uroseius) – Arten aus Ameisen- nestern Polens (Uropodini, Uropodinae). Acarologie 25: 43-46. Wiśniewski J. 1979 e. Zur Kenntnis der Uropodiden-Fauna Polens. Acarologie 26: 68-74. Wiśniewski J. 1980 a. Roztocze (Acarina, Parasitiformes) dotychczas nie wykazane z gni- azd mrówek z grupy Formica rufa (Hym., Formicidae) w Polsce. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 50: 165-168. Wiśniewski J. 1980 b. Teilgang einer neuen mit Dendrolaelaps fallax (Leitner 1949) ver- wandten Art aus Ameisennestern Polens (Mesostigmata, Rhodacaridae). Acarolo- gie 27: 7-8. Wiśniewski J. 1980 c. Gang einer neuen mit Trichouropoda spatulifera (Moniez 1892) verwandten Art aus Ameisennestern Polens (Trichouropodini, Uropodinae). Ac- arologie 27: 8-10. Wiśniewski J. 1980 d. Erg¨anzung der Deutonymphenbeschreibung von Uropoda (Phau- lodinychus) spinosula (Kneissl 1916) (Uropodini, Uropodinae). Acarologie 27: 15. Wiśniewski J. 1981. Die Larve von Uroobovella ipidisimilis Hirschmann u. Zirngiebl- -Nicol 1962 aus Ameisennest in Polen (Dinychini, Uropodinae). Acarologie 28: 86-87. Wiśniewski J. 1982 a. F¨ur die Fauna Polens neue Uropodina (Acari: Parasitiformes). Teil II. Fragm. Faun. 27, 10: 143-147. Wiśniewski J. 1982 b. Zmiana w budowie morfologicznej samca Hypoaspis cuneifer (Michael) (Acarina; Parasitiformes). PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 54: 163-165. Wiśniewski J. 1983. Studies on a biological complex of factors regulating forest ant pop- ulations. Final Report FG-PO-366, (Manuscript). Wiśniewski J. 1984 a. Fauna roztoczy z rodzaju Dendrolaelaps Halbert 1915 (Acarina) w gniazdach mrówek (Hymenoptera, Formicidae). PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 58: 153-157. Wiśniewski J. 1984 b. Die Deutonymphe von Oplitis alophora (Berlese 1903) aus Polen (Trachyuropodini, Oplitinae). Acarologie 31: 123-124. Wiśniewski J., Hirschmann W. 1983 a. Teilgang, Stadien von 3 neuen Dendrolaelaps- -Arten aus Polen. Acarologie 30: 103-110. Wiśniewski J., Hirschmann W. 1983 b. Neuer Teilgang und neue Stadien bekannter Dendrolaelaps- und Polyaspis-Arten aus Polen. Acarologie 30: 118-126. Wiśniewski J., Hirschmann W. 1983 c. Studium einer neuen Dinychus-Art aus Ameisen- nest in Polen (Dinychini, Uropodinae). Acarologie 30: 133-135. 112

Wiśniewski J., Hirschmann W. 1991 a. Erg¨anzungsangaben ¨uber Verbreitung und Le- bensr¨aume der Trichouropoda-Arten (Acarina, Uropodina). Fragm. Faun. 35, 11: 173-178. Wiśniewski J., Hirschmann W. 1991 b. Erg¨anzungsbeschreibung von Nenteria pallida (Vitzthum 1925) aus Polen (Acarina, Uropodina). Bull. Pol. Acad. Sci. Biol. Sci. 39, 4: 409-415. Wiśniewski J., Hirschmann W. 1992 a. Die Deutonymphe von Trachyuropoda formicaria (Lubbock 1881) und Stadien von T. myrmecophila nov. spec. (Acarina, Uropodina) aus Polen. Acarologia 33, 1: 5-15. Wiśniewski J., Hirschmann W. 1992 b. Gangsystematische Studie von 3 neuen An- tennophorus-Arten aus Polen (Mesostigmata, Antennophorina). Acarologia 33, 3: 233-244. MITES ASSOCIATED WITH INSECTS IN POLAND

Ryszard Haitlinger

Wrocław University of Environmental and Life Sciences, Department of Zoology and Ecology ul. Kożuchowska 5b, 51-631 Wrocław e-mail: [email protected]

Introduction

Even though studies of the correlations between insects and mites boast a long history and have produced a wealth of literature the knowledge about these corre- lations is not yet sufficient. The first information about mites found on insects in Poland was a publication by Kozłowski (1958). Many other studies discussing the correlations between mites and insects that belong to different taxonomic groups were published in the years that followed. The mite found on Carabidae was discussed by Ignatowicz (1974), Haitlinger (1985, 1987 b, 1988 b, d, 1991, 2004 a) and Gwiazdowicz (2000); the mite found on Scolytidae was mentioned by Kiełczewski and Michalski (1962), Okołów (1970), Kiełczewski and Seniczak (1972), Kiełczewski et al. (1972), Lipa and Chmielewski (1977), Kiełczewski et al. (1983), Michalski et al. (1985), Skorupski and Gwiazdowicz (1996); the mite found on Scarabaeidae was studied by Haitlinger (1988 a, d, 2002 b, 2004 a), Bajerlein and Błoszyk (2004); on Silphidae Starzyk (1968), Ignatowicz, (1974), Gwiazdowicz (2000), Haitlinger (2004 a); on Geotrupidae Micherdzi´nski (1969), Chmielewski (1983), Haitlinger (1985, 1987 b, e, 1990, 1993, 1999 a, 2001) and Gwiazdowicz (2000); on Aphodidae Chmielewski (1983), Bajerlein and Błoszyk (2004); on Lucanidae Haitlinger (1988, 1991, 2004 a); on Histeridae Chmielewski (1983); on Hydrophilidae Bajerlein and Przewoźny (2005); on Staphylinidae Ig- natowicz (1974); on Tenebrionidae Chmielewski (1983 b) and Haitlinger (1987 c, 1992, 2004 a); on Chrysomelidae Haitlinger (1987 c, 1991 c, 1999 b, 2004 a); on Apidae Chmielewski (1971, 1991) and Tomaszewska (1988); on Diptera Ignatowicz (1974), Chmielewski (1983 a), Haitlinger 1987 c, 1991 c); on Formicidae Wiśniewski (1965), Kiełczewski et al. (1970), Skorupski and Gwiazdowicz (1996); on Lepi- doptera Ignatowicz (1974), Chmielewski (1983 b), Haitlinger (1987 c, 1991 c), Gabryś and Haitlinger (1986). Moreover, information about mites found on insects 114 from different taxonomic groups was given by Kiełczewski and Śliży´nski (1969), Ignatowicz (1974), Chmielewski (1977), Haitlinger (1978, 1987 a, d, 1991 c, 2004 a, b), Southcott (1992), Gwiazdowicz (2000) and Webberley et al. (2004). The first report on the progress of research on the correlations between mites and insects was published by Haitlinger (1991 a). The present study, which is based on the entire Polish literature, is a summary of the current knowledge about the correla- tions between these two groups of arthropods (with the exception of Hydracarina). Despite the fact that the knowledge about these correlations in Poland has signif- icantly expanded the studies remain far from completion. Mites have so far been found on fewer than 1% of insects in Poland (Haitlinger 2004). These correla- tions have primarily been learned from representatives of Carabidae, Geotrupidae, Aphodidae, Scarabaeidae, Silphidae, Scolytidae, Apidae and Formicidae. There is scanty information from many other families of beetles and single representatives of Diptera, Hymenoptera, Homoptera, Heteroptera, Thysanura, Thysanoptera, Or- thoptera and Lepidoptera. In the majority of very small insects mites surely never occur or their presence is rare and in most cases accidental.

Material and methods

The present study is a compilation based on Polish publications until 2006 inclusive. Mites were collected from 144 insect species from 49 families (22 from Coleoptera, 8 from Lepidoptera, 6 from Diptera, 4 from Hymenoptera, 2 from Orthoptera, 2 from Homoptera, 2 from Siphonaptera, 1 from Heteroptera, 1 from Thysanura, 1 from Thysanoptera and 1 from Dermaptera). They were reported with 154 mite species from 45 families (20 from Mesostigmata, 8 from Prostigmata, 5 from Heterostigmata, 11 from Astigmata and 1 from Oribatida).

A list of mite species collected from insects in Poland

Mesostigmata: Parasitidae: Poecilochirus carabi G. et R. Canestrini, 1882, P. necrophori Vitzthum, 1930, P. austroasiaticus Vitzthum, 1930, P. belovae Davydova, 1975, P. mrciaki Maˇsan, 1999, P. subterraneus (J. M¨uller, 1776), P. davydovae Hyatt, 1980, Parasitus coleoptratorum (Linne, 1758), P. fimetorum (Berlese, 1904), P. geotrupidis Makarova, 1996, P. consaguineus (Oudemans et Voigts, 1904), P. mustelarum Oudemans, 1903, Parasitellus fucorum (De Geer, 1778); Macrochelidae: Macrocheles glaber (M¨uller, 1860), M. mammifer Berlese, 1918, M. scutatus (Berlese, 1904), M. merdarius (Berlese, 1889), M. muscado- mesticae (Scopoli, 1772), M. insignitus (Berlese, 1918), M. matrius (Hull, 1925), Neopodocinum meridionalis (Sellnick, 1931), Glyptholaspis americana (Berlese, 1888), Gamasodes bispinosus (Halbert, 1916); Eviphididae: Iphidosoma fimetar- ium (M¨uller, 1859), Alliphis halleri (G. et R. Canestrini, 1881), A. necrophilus Christie, 1983, Eviphis ostrinus (C.L. Koch, 1836); Scamaphis equestris (Berlese, 1911), Scarabaspis inexpectatus (Oudemans, 1903), Pelethiphis opacus Koyumdi- 115 jeva, 1981, Pelethiphis sp.; Ameroseiidae: Ameroseius ulmi Hirschmann, 1963, Ameroseius sp.; Ascidae: Proctolaelaps fiseri Samˇsinak, 1960, Antennoseius bulli- tus Karg, 1969, A. masoviae Sellnick, 1943, Blattisocius tarsalis (Berlese, 1918), La- sioseius ometes (Oudemans, 1903); Otopheidomenidae: Hemipteroseius adleri Costa, 1967; Laelapidae: Hypoaspis (Hypoaspis) integer Berlese, 1911, H. (Geo- laelaps) aculeifer (Canestrini, 1883), H. (Cosmolaelapas) cuneifer (Michael, 1891), H. (Pneumolaelaps) grandiporus Hirschmann, Bernhard, Greim et G¨otz, 1969, Striatolaelaps miles (Berlese, 1892), Hypoaspis (Pneumolaelaps) lubrica Voigts et Oudemans, 1904, Cosmolaelaps vacua (Michael, 1891); Haemogamasidae: Haemogamasus nidi Michael, 1892; Halolaelapidae: Halolaelaps exclavata (Oude- mans, 1902); Pachylaelapidae: Pachylaelaps hispanus Berlese, 1908; Diga- masellidae: Dendrolaelaps quadrisetosimilis Hirschmann, 1960, Dendrolaelaps sp.; Hirstionyssidae: Echinonyssus sunci (Wang, 1962); Zerconidae: Zercon hungar- icus Sellnick, 1958, Prozercon traegardhi (Halbert, 1923): Celaenopsidae: Pleu- ronectocelaeno austriaca (Vitzthum, 1926); Trematuridae: Trichouropoda pol- ysetosa Maˇsan, 1999, T. bipilis (Vitzthum, 1921), T. ovalis (C.L. Koch, 1839), Urodinychidae: Urobovella marginata (C.L. Koch, 1839), U. nova (Oudemans, 1902), U. ipidis (Vitzthum, 1923); Uropodidae: U. orbicularis (M¨uller, 1776), U. copridis (Oudemans, 1916); Nenteriidae: Nenteria floralis Karg, 1986; Diny- chidae: Dinychus perforatus (Kramer, 1886); Varroidae: Varroa destructor An- derson et Trueman, 2000; Prostigmata: Cheyletidae undet.; Erythraeidae: Lep- tus ignotus (Oudemans, 1903), L. machilidis Southcott, 1992, L. mariae Haitlinger, 1987, L. slivovi Bron, 1975, L. trimaculatus (Rossi, 1794), Charletonia cardi- nalis (C.L. Koch, 1837), Balaustium unidentatus (Berlese, 1886); Abrolophus pseudolongicollis (Haitlinger, 1987), Hauptmannia brevicollis Oudemans, 1910, Rudaemannia rudaensis (Haitlinger, 1986), Erythraeus kuyperi (Oudemans, 1910); Trombidiidae: Trombidium holosericeum (Linnaeus, 1758); Eutrombidiidae: Eutrombidium trigonum (Hermann, 1804); Neothrombiidae: Neothrombium ne- glectum (Bruyant, 1909); Cunaxidae: Cunaxa sp.; Calyptosomatidae: Calypto- soma velutinus (M¨uller, 1776); Trombiculidae: Hirsutiella zachvatkini (Schluger, 1948). Heterostigmata: Pyemotidae: Pyemotes dryas (Vitzthum, 1927), P. ven- tricosus (Newport, 1850), P. herfsi (Oudemans, 1936), P. scolyti (Oudemans, 1936); Scutacaridae: Scutacarus acarorum (Goeze, 1780), S. tackei Willmann, 1941, S. rotundus Berlese, 1903, Imparipes robustus Karafiat, 1959, I. hystrici- nus Berlese, 1903, Pediculaster mesembrinae (R. Canestrini, 1881); Tarsonemi- dae: Iponemus gaebleri (Schaarschmidt, 1959), Acarapis woodi (Rennie, 1921); Acarophenacidae: Aethiophenax ipidarius (Redikortsev, 1947); Podapolipidae: Eutarsopolipus acanthomus Regenfuss, 1968, Coccipolipus hippodamiae (Mclaniel et Morrill, 1969). Astigmata: Canestriniidae: Canestrinia sellnicki (Samˇsinak, 1965), C. mahunkai Samˇsinak, 1971, C. dorcicola Berlese, 1881, Photia chryso- carabi Cooreman, 1950, P. hejniana Samˇsinak, 1971, P. bardoica Haitlinger, 1988, P. hermengildae Haitlinger, 1988, P. polymorpha Samˇsinak, 1971, Dicanestrinia knobi Samˇsinak, 1971, D. huberti Haitlinger, 1994, Procericola bourgognei (Oude- mans, 1923), Coleopterophagus megnini (Berlese, 1881), C. albini Haitlinger, 1990, Percanestrinia blaptis (Canestrini et Berlese, 1880); Acaridae: Acarus nidicolous Griffiths, 1970, A. farris (Oudemans, 1905), A. siro Linnaeus, 1758, Tyrophagus pu- 116 trescienatae (Schrank, 1781), Michaelopus corticalis (Michael, 1885), Tyreophagus berlesiana Zachvatkin, 1941, Sancassania geotruporum (Zachvatkin, 1941), S. che- lonae Oudemans, 1916, Schwiebea nesbitti E. Turk et R. Turk, 1957, S. scheucherae (E. Turk et F. Turk, 1957), S. nova (Oudemans, 1905), Schwiebea sp., Viedelanttia schmitzi (Oudemans, 1929), Acotyledon sp., Fessonia wasmanni (Moniez, 1894), Rhizoglyphus echinopus (Foumose et Robin, 1868), Kuzinia laevis (Dujardin, 1849), Histiogaster carpio (Kramer, 1881), H. arborsignum Woodring, 1963, Boletoglyphus boletophagi (F. Turk et E. Turk, 1952), Suidasiidae: Suidasia medanensis Oude- mans, 1924; Lardoglyphidae: Lardoglyphus konoi (Sasa et Asanuma, 1951), Gly- cyphagidae: Lepidoglyphus destructor (Schrank, 1781), L. michaeli Oudemans, 1903, G. domesticus (De Geer, 1778); Carpoglyphidae: Carpoglyphus lactis (Lin- naeus, 1758); Saproglyphidae: Calvolia fraxini (E. Turk et F. Turk, 1957), Calvo- lia sp.; Winterschmitiidae: Vidia sp., Hemisarcoptidae: Linobia coccinel- lae (Scopoli, 1763); Algophagidae: Hericia georgei Michael, 1903; Histiostom- atidae: Pelzneria necrophori (Dujardin, 1849), P. crenulata (Oudemans, 1909), Spinanoetus pelznerae Scheucher, 1957, S. weingaertnerae Scheucher, 1957, His- tiostoma feroniarum (Dufour, 1839), H. sapromyzarum (Dufour, 1839), H. myrmi- carum Scheucher, 1959, Myianoetus muscarum (Linnaeus, 1758), Probonomoia pini (Scheucher, 1957), Rhopalanoetus fimetarius (Canes trini et Berlese, 1882), Anoetus sp., Prowichmannia spinifera (Michael, 1901). Oribatida: Trhypochthoniidae: Trhypochthonius sp.

A list of insects and mites found on them

Insecta

Coleoptera Carabidae: Carabus arcensis Herbst, 1784: Iphidosoma fimeterium, Cosmo- laelaps vacua, Michaelopus corticalis, Histiostomatidae g. sp., Uropodida g. sp. C. auratus Linnaeus, 1761: I. fimetarium, Poecilochirus carabi, Acaridae g. sp.; C. auronitens Fabricius, 1792: I. fimetarium, P. carabi, Photia chrysocarabi, Pyg- mephoridae g. sp., Acaridae g. sp.; C. cancellatus Illiger, 1798: I. fimetarium, Parasitus geotrupidis, Poecilochirus carabi, Canestrinia sp., Pygmephoridae g. sp., Acaridae g. sp.; C. convexus Fabricius, 1775: I. fimetarium, Canestrinia sp.; C. coriaceus Linnaeus, 1758: I. fimetarium, Alliphis halleri, Macrocheles glaber, P. carabi, Canestrinia sellnicki, C. mahunkai, Procericola bourgognei, T. corti- calis, Sancassania geotruporum, Histiostoma sp.; C. fabricii Duftschmid, 1812: Rhizoglyphus echinopus; C. glabratus Paykull, 1790: I. fimetarium, P. carabi, Photia polymorpha, Schwiebea nesbitti, Histiostoma sp.; C. granulatus Linnaeus, 1758: I. fimetarium, P. carabi, T. corticalis, Histiostoma sp.; C. hortensis Lin- naeus, 1758: I. fimetarium, A. halleri, M. glaber, P. carabi, Zercon hungaricus, S. geotruporum, Schwiebea scheucherae, Podapolipidae g. sp., Uropodida g. sp.; C. intricatus Linnaeus, 1761: I. fimetaruium, P. carabi, Antennoseius bullitus, Hypoaspis aculeifer; C. linnaei Duftschmid, 1812: I. fimetarium, P. carabi, Pho- tia hermengildae, Histiosoma sp., Pygmephoridae g. sp.; C. marginalis Fabricius, 117

1794: A. bullitus, Acaridae g. sp.; C. nemoralis O.F. M¨uller, 1764: I. fimetarium, A. halleri, Photia bardoica; C. obsoletus Sturm, 1815: I. fimetarium; C. problem- aticus Herbst, 1786: I. fimetarium, P. carabi, Viedebantia schmitzi, Acaridae g. sp.; C. scheidleri Panzer, 1799: P. carabi, M. glaber, Histiostoma sp., Canestriniidae g. sp., Acaridae g. sp., Pygmephoridae g. sp.; C. ulrichi Germar, 1824: I. fimetar- ium, A. halleri, P. carabi, Abrolpohus pseudolongicollis, Calyptosoma velutinus, Uropodida g. sp.; C. variolosus Fabticius, 1787: Dicanestrinia knobi, D. huberti; C. violaceus Linnaeus, 1758: I. fimetarium, A. halleri, P. carabi, Canestrinia sell- nicki, Photia hejniana, V. schmitzi, Histiostoma sp.; Pterostichus niger (Schaller, 1783): I. fimetarium; Pterostichus melanarius (Illiger, 1798): I. fimetarium, P. carabi, Histiostoma sp.; P. oblongopunctatus (Fabricius, 1787); I. fimetarium, Histiostoma sp.; Pterostichus sp.: P. carabi, Parasitus coleoptretarum, M. glaber, A. halleri; Pterostichinae g. sp.: Antennoseius masoviae, A. bullitus; Broscus (Linnaeus, 1758): Eutarsopolipus acanthomus; Cychrus rostratus (Lin- naeus, 1758): I. fimetarium, P. carabi, P. necrophori, V. schmitzi, R. echino- pus, Acaridae g. sp.; C. attenuatus (Fabricius, 1792): V. schmitzi, Cheyletidae g. sp.; Harpalus hirtips (Panzer, 1797): Urobovella marginata. Scarabaeidae: Melolontha melolontha (Linmaeus, 1758): Sancassania chelone, Sancassania sp., Trombidium holosericeum; Oryctes nasicornis (Linnaeus, 1758): Macrocheles sp., Urobovella marginata, Uropodida g. sp., R. echinopus; Polyphylla fullo (Linnaeus, 1758): Hypoaspis integer; Cetonia aurata (Linnaeus, 1758): I. fimetarium, A. hal- leri, Poecilochirus carabi, Parasitus coleoptratorum, U. marginata, Coleopteropha- gus megnini, Siteroptes sp., Hericia georgei, Acarus siro, Vidia sp., Acaridae g. sp., Prowichmannia spinifera; Protaetia cuprea metallica (Herbst, 1786): Macrocheles insignitus, A. halleri, Melichares sp.; Proctolaelaps fiseri, Pneumolaelaps lubrica, C. megnini, H. georgei, Trhypochthonius sp., Acaridae g. sp.; P. aeruginosa (Drury, 1770): Coleopterophagus albini; Oxythyrea funesta Poda, 1761: M. glaber, M. insignitus, M. mammifer, Glyptholaspis americana, Parasitus sp., Halolae- laps exclavata, Halolaelaps sp., Nenteria floralis, U. marginata, Acaridae g. sp.; Gnorimus nobilis (Linnaeus, 1758): Scarabaspis inexpectata; Amphimallon solsi- tialis (Linnaeus, 1758): Sancassania sp.; Onthophagus coenobita (Herbst, 1783) U. otrbicularis; O. fracticornis (Preyssler, 1790): U. orbicularis; O. nuchicor- nis (Linnaeus, 1758): U. orbicularis; O. ovatus (Linnaeus, 1767): U. orbicularis; O. similis (Scriba, 1790): U. orbicularis; Copris lunaris (Linnaeus, 1758): S. inex- pectatus, Pelethiphis opacus, M. glaber, M. merdarius, P. geotrupidis, Pachylaelaps hispanus, Uropoda copridis, S. geotruporum, Rhopalanoetus fimetorum. Aphodi- dae: Aphodius niger (Panzer, 1797): Uropodida g. sp., A. ater (De Geer, 1774): U. orbicularis; A. coenosus (Panzer, 1798), U. orbicularis; A. depressus (Kuge- lann, 1792): U. orbicularis; A. distinctus (O.F. M¨uller, 1776): U. orbicularis; A. er- raticus (Linnaeus, 1758): U. orbicularis; A. fimetarius (Linnaeus, 1758): U. or- bicularis; A. foetens (Fabricius, 1787): U. orbicularis; A. fossor (Linnaeus, 1758): U. orbicularis; A. granaries (Linnaeus, 1767): U. orbicularis; A. haemorrhoidalis (Linnaeus, 1758): U. orbicularis; A. prodromus (Brahm, 1790): U. orbicularis; A. pusillus (Herbst, 1789): U. orbicularis; A. rufipes (Linnaeus, 1758): U. orbicu- laris; A. rufus (Moll, 1782): U. orbicularis; A. sordidus (Fabricius, 1775): U. or- bicularis; A. subterraneus (Linnaeus, 1758): U. orbicularis; Oxyomus sylvestris 118

(Scopoli, 1763): U. orbicularis. Geotrupidae: Trypocopris vernalis (Linnaeus, 1758): I. fimetarium, A. halleri, Scamaphis equestris, M. glaber, Neopodocinum meridionalis, P. carabi, P. coleoptretarum, P. geotupidis, S. geotruporum, Histio- somatidae g. sp., U. orbicularis, Uropodina g. sp.; Anoplotrupes stercorosus (Hart- mann, 1791): P. carabi, P. subterraneus, P. davydovae, Parasitus coleoptratorum, P. geotrupidis, Parasitus sp., M. glaber, M. merdarius, M. scutatus, M. mammifer, G. americana, A. halleri, I. fimetarium, Eviphis ostrinus, S. equestris, Uropoda orbicularis, Echinonyssus sunci, Uropodida g. sp., Rhizoglyphus sp., Acaridae g. sp., Histiostomatidae g. sp.; Geotrupes mutator (Marsham, 1802): M. glaber, A. halleri, P. coleoptratorum, P. geotrupidis, S. inexpectatum, S. geotruporum, Uropodina g. sp.; G. stercorarius (Linnaeus, 1758): I. fimetarium, A. halleri, S. equestris, S. inexpectatus, M. glaber, M. merdarius, M. scutatus, P. coleoptre- tarum, P. geotrupidis, P. fimetorum, P. mustelarum, P. consanguineus, P. carabi, Uropodina g. sp., S. geotruporum, Histiosomatidae g. sp.; G. spiniger (Marsham, 1802): A. halleri, S. equestris, S. inexpectatus, M. glaber, M. scutatus, M. matrius, G. americana, P. coleoptratorum, P. fimetorum, P. geotrupidis, P. carabi, Pachy- laelaps sp., U. orbicularis, Uropodina g. sp., S. geotruporum; Typhaeus typhoeus (Linnaeus, 1758): A. halleri, M. glaber, Canestrinia sellnicki, S. geotruporum, Pyg- mephoridae g. sp. Silphidae: Silpha carinata Herbst, 1783: M. glaber, I. fimetar- ium, P. necrophori, P. belovae; S. obscura Linnaeus, 1758: I. fimetarium, Alliphis necrophilus, A. halleri, P. carabi, P. necrophori; Silpha sp.: Hypoaspis grandi- porus, Trichouropoda ovalis; Phosphuga atrata Linnaeus, 1758: P. carabi, P. belo- vae, Dinychus perforatus, Hirsutiella zachvatkini; Silpha rugosa Linnaeus, 1758: Poecilochirus austroasiaticus, P. carabi, Urobovella nova, Spinanoetus pelznerae; S. sinuata Fabricius, 1775: A. halleri, P. necrophori, P. carabi, S. pelznerae; Silpha thoracica (Linnaeus, 1758): I. fimetarium, A. necrophilus, M. glaber, P. coleop- tratorum, Poecilochirus mrciaki, P. austroasiaticus, P. davydovae, P. subterra- neus, P. carabi, P. necrophori, Ameroseius sp., Haemogamasus nidi, Urobovella nova, Hirsutiella zachvatkini, Hericia georgei, Pelzneria necrophori, P. crenu- lata, S. pelznerae, S. weingaertnerae; Necrodes littoralis Linnaeus, 1758: M. mer- darius, P. subterraneus, P. carabi, P. belovae, P. necrophori, Uropodina g. sp., P. crenulata, Pelzneria sp.; Nicrophorus humator (Gleditsch, 1767), 1790: M. glaber, N. meridionalis, I. fimetorum, A. halleri, A. necrophilus, E. ostri- nus, P. austroasiaticus, P. davydovae, P. subterraneus, P. carabi, P. necrophori, Urobovella nova, Pelzneria necrophori, Anoetus sp.; N. vespillo (Linnaeus, 1758): M. glaber, P. carabi, U. nova; N. vespilloides Herbst, 1783: P. carabi, P. subter- raneus, P. necrophori, U. nova; N. interruptus (Stephens, 1830) (= N. fossor): P. carabi; N. germanicus (Linnaeus, 1768): U. nova; N. investigator (Zatterst- edt, 1824): P. austroasiaticus; Nicrophorus sp.: P. coleoptratorum, P. austroasi- aticus, P. carabi, P. davydovae, P. subterraneus, A. halleri, U. nova, Histios- toma sapromyzarum. Cerambycidae: Rosalia alpine (Linnaeus, 1758): P. fis- eri, Ameroseius ulmi, Pygmephoridae g. sp., Probonomoia pini, Schwiebea sp., Calvolia sp.; Cerambyx cerdo Linnaeus, 1758: Trichouropoda polysetosa, Vidia sp.; Aromia moschata (Linnaeus, 1758): Trombidium holosericeum, Schwiebea nova, Acaridae g. sp.; Spondylus buprestoides (Linnaeus, 1758): I. fimetarium, P. fiseri, Dendrolaelaps sp., Cheyletidae g. sp., Glycyphagus sp.; Cerambycidae 119 g. sp.: Histiogaster arborsignis, H. carpio. Cleridae: Trichodes apiarius (Lin- naeus, 1758): A. necrophilus, P. carabi, P. crenulata; Necrobia rufipes (De Geer, 1775): Lordoglyphus konoi. Tenebrionidae: Blaps lethifera Marsham, 1802: Per- canestrinia blaptis; Bolitophagus reticulates (Linnaeus, 1767): Leptus echinopus, Boletoglyphus boletophagi; Tribolium confusum Jacquelin du Val, 1862: Blatti- socius tarsalis (Berlese, 1918), Pyemotes ventriculosus; T. castaneum (Herbst, 1797): P. ventriculosus; T. destructor Uyttenboogaart, 1933: P. ventriculosus; Lagria hirta (Linnaeus, 1758): Trombididae g. sp., Erotylidae: Dacne bipus- tulata (Thunberg, 1781): Acotyledon sp. Cicindellidae: Cicindela hybrida Lin- naeus, 1758: Trombidium holosericeum, Tyrophagus sp. Catopidae: Catopus sp.: P. subterraneus, P. carabi, Pelethiphis sp., Trombidium holosericeum, Pyg- mephoridae g. sp., Spinanoetus pelznerae. Chrysomelidae: Oreina speciosis- sima (Scopoli, 1763): S nova; Chrysolina lichenis (Richter, 1820): R. echinopus, S. nova; Chrysomela populi Linnaeus, 1758: Linobia coccinellae; Phyllotreta un- dulate (Kutschera, 1860): Charletonia cardinalis; Lochmaea capreae (Linnaeus, 1758): Leptus mariae, Acanthoscelides obtectus (Say, 1831): Pyemotes ventriculo- sus. Histeridae: Hister fimetarium Mannerheim, 1830: Uropodida g. sp.; H. uni- color Linnaeus, 1758: Uropodida g. sp.; H. quadrimaculatus Linnaeus, 1758: Uropodida g. sp.; Histeridae g. sp.: Macrocheles sp. Laemophloeidae: Cryp- tolestes ferrugineum (Stephens, 1830): Histiostomatidae g. sp. Lucanidae: Dor- cus paralellopipedus (Linnaeus, 1758): Striatolaelaps miles, Canestrinia dorcicola. Staphylinidae: Staphylinus erythropterus Linnaeus, 1758: P. carabi; Staphylinus sp.: U. marginata, Uropodida g. sp.; Staphylinidae g. sp.: Macrocheles sp. Cur- culionidae: Calandra oryzae (Linnaeus, 1763): Macrocheles sp., Melichares sp.; C. granaria (Linnaeus, 1758): Blattisocius tarsalis, Melichares sp.; Phyllobius ur- ticae (De Geer, 1775): Leptus mariae; Hylobius sp.: R. echinopus. Dermestidae: Dermestes frischi Kuglann, 1792: Lardoglyphus konoi. Bostrychidae: Rizopertha dominica (Fabricius, 1792): B. tarsalis, P. ventriculosus. Scolytidae: Pityok- teines vorontzovi (Jacobson, 1895): Parasitus sp., Dendrolaelaps sp.; P. curvi- dens (Germar, 1824): P. fiseri, Pleuronectocelaeno austriaca, Trichouropoda bip- ilis, Urobovella ipidis; P. spinidens (Reitter, 1894): T. bipilis, U. ipidis; Pityogenes chalcographus (Linnaeus, 1761): Pyemotes dryas, Iponemus gaebler; P. bidenta- tus (Herbst, 1783): P. dryas; Dryocetes autographus (Ratzenburg, 1837): P. fiseri; Cryphalus piceae (Ratzenburg, 1837): Lasioseius sp.; Ips acuminatus Gyllenhal, 1827: Dendrolaelaps quadrisetum, Pleuronectocelaeno austriaca; I. typographus (Linnaeus, 1758): Aethiophenax ipidarius; I. sexdentatus (Boerner, 1776): A. ip- idarius; Tomicus piniperda (Linnaeus, 1758): D. quadrisetum, Pyemotes herfsi; T. minor Hartig, 1834: T. bipilis, P. herfsi; T. ovalis: T. bipilis; Thamiocolus sig- natus (Gyllenhal, 1837): Lasioseius ometes; Polygraphus polygraphus (Linnaeus, 1758): T. bipilis, P. dryas; Hylesinus crenatus (Fabricius, 1878): Pyemotes scolyti, H. orni Fuchs, 1906: C. fdraxini; Cryphalus abietis (Ratzenburg, 1837): P. scolyti; Leperisinus fraxini Panzer, 1779: Calvolia fraxini; Scolytus pygmaeus (Fabricius, 1787): P. scolyti; S. scolytus (Fabricius, 1775): P. scolyti, P. herfsi; S. multistria- tum (Marsham, 1802): P. scolyti; S. intricatus Ratzenburg, 1873: P. scolyti; S. en- sifer Eichhoff, 1881: P. scolyti; Scolytidae g. sp.: Tyreophagus berlesiana, H. car- pio. Hydrophilidae: Cercyon lateralis (Marsham, 1802): Uropoda orbicularis; 120

Sphaeridium lunatum Fabricius, 1792: U. orbicularis; S. scarabeoides (Linnaeus, 1758): U. orbicularis; S. marginatum Fabricius, 1787: U. orbicularis; S. bipus- tulatum Fabricius, 1781: U. orbicularis. Coccinellidae: Adalia bipunctata Lin- naeus, 1758: Coccipolipus hippodamiae; A. decempunctata Linnaeus, 1758: C. hip- podamiae; Synharmonia conglobata (Linnaeus, 1758): C. hippodamiae; Calvia 14guttata (Linnaeus, 1758): C. hippodamiae.

Siphonaptera Hystrichopsyllidae: Ctenophthalmus solutus Jordan et Rothschild, 1920: Acarus nidicolous; C. assimilis (Taschenberg, 1880): A. nidicolous; C. agyrtes (Heller, 1896): A. nidicolous. Ceratophyllidae: Monopsyllus sciurorum (Schrank, 1803): A. nidicolous; Amalareus penicilliger (Grube, 1851): A. nidi- colous; Ceratophyllus sp.: Sancassania sp.

Dermaptera Forficulidae: Forficula auricularia Linnaeus, 1758: R. echinopus, Histiostom- atidae g. sp.

Orthoptera Acridiidae: Chorthippus biguttulus (Linnaeus, 1758): Eutrombidium trigo- num; C. mollis (Charpentier, 1825): E. trigonum; C. brunneus (Thunberg, 1815): E. trigonum; C. apicarius (Linnaeus, 1758): E. trigonum; Omocestus viridulus (Linnaeus, 1758): E. trigonum. Gryllotalpidae: Gryllotalpa vulgaris (Linnaeus, 1758): Neothrombium neglectum.

Lepidoptera Tineidae: Tinea sp.: Tyreophagus putrescientae; Tineidae g. sp.: Suida- sia medanensis. Arctidae: Arctia caja (Linnaeus, 1758): Balaustium unidenta- tum, Leptus slivovi. Geometridae: Ematurga atomaria (Linnaeus, 1758): Lep- tus ignotus; Satyridae: Agapetes galathea Linnaeus, 1758: L. slivovi; Gelechi- dae: Sitotraga cerealella Olivier, 1819: B. tarsalis; Zygaenidae: Zygaena sp.: L. slivovi; Pyralididae: Achroea grisella (Fabricius, 1794): B. tarsalis; Galleria mellonella (Linnaeus, 1758): B. tarsalis, Lepidoglyphus michaeli; Plodia inter- punctella (H¨ubner, 1813): B. tarsalis; Ephestia kuehniella Zeller, 1879: B. tarsalis, P. ventriculosus, T. putrescentiae; E. elutella (H¨ubner, 1796): B. tarsalis; Oe- cophoridae: Hofmannophila pseudospretella (Stainton, 1841): P. ventriculosus. Thysanoptera g. sp.: Hauptmannia brevicollis, Rudaemannia rudaensis.

Diptera Muscidae: Musca domestica Linnaeus, 1758: Macrocheles muscadomesticae, M. glaber, Veigaia sp., Parasitellus fucorum, Parasitus sp., Tydeidae g. sp., Uropo- dida g. sp., Trombidiidae g. sp. P. mesembrinae, Rhizoglyphus sp., R. echino- pus, Acarus farris, Sancassania sp., Carpoglyphus lactis, Histiostoma ferroniarum, H. sapromyzarum, Myianoetus muscarum; Stomoxys calcitrans (Linnaeus, 1758): M. muscadomesticae, Veigaia sp., P. fucorum, P. mesembrinae, H. feroniarum, 121

M. muscarum, Myianoetus sp., Anoetus sp., Trombiddiae g. sp., Tydeidae g. sp; Anthomyiidae: Delia antique (Meigen, 1826): M. muscadomesticae, Tydeidae g. sp; Delia sp.: Veigaia sp., P. fucorum, P. mesemnbrinae, Anoetus sp., Myia- noetus sp.; Sphaeroceridae: Leptocera fulscipennis (Haliday, 1833): Gamasodes bispinosus. Tabanidae: Haemaotopota pluvialis (Linnaeus, 1758): Leptus ignotus. Calliphoridae: Lucilla sp.: P. mesembrinae, Myianoetus muscarum. Drosophil- idae: Drosophila melanogaster Meigen, 1830: Trombidiidae g. sp.

Hymenoptera Apidae: Apis mellifera Linnaeus, 1758: Varroa destructor, Uropodida g. sp., Acarapis woods; Bombus lapidarius (Linnaeus, 1758): P. fucorum, Ameroseius plumosus, Scutacarus acarorum, K. laevis; B. terrestris (Linnaeus, 1758): P. fu- corum, Proctolaelaps sp., S. acarorum, C. lactis, K. laevis; B. agrorum (Fabricius, 1787): P. fucorum, S. acarorum; B. ruderarius (M¨uller, 1776): P. fucorum; B. hyp- norum (Linnaeus, 1758): P. fucorum; B. lucorum (Linnaeus, 1761): P. fucorum; B. pratorum (Linnaeus, 1761): P. fucorum; Bombus sp.: T. putrescientae, K. lae- vis; B. rupestris (Fabricius, 1793): P. fucorum, S. acarorum, K. laevis; Psithyrus vestalis (Geoffroy, 1785): P. fucorum, S. acarorum, K. laevis; Psithyrus sp.: S. acarorum. Formicidae: Myrmica laevinodis Nylander, 1846: Pergamasus sp.; M. rugnodis Nylander, 1846: Pergamasus sp.: M. scabrinodis Nylander, 1846: His- tiostomtidae g. sp.; Lasius umbratus (Nylander, 1846): Hypoaspis cuneifer, Anoe- tus sp., Histiostoma sp.; L. niger (Linnaeus, 1758): Uropodida g. sp., Scutacarus rotundus, H. myrmicarum; L. fuliginosus (Latreille, 1798): Cunaxa sp., Forcellinia wasmanni; L. flavus (Fabricius, 1782): R. echinopus; Formica polyctena Foer- ster, 1850): Scutacarus tackei, Imparipes hystricinus, I. robustus; F. rufa (Lin- naeus, 1761): I. hystricinus, Histiostoma sp.; Camponotus herculeana (Linnaeus, 1758): Prozercon tragardhi, Urodinychus sp., F. wasmanni, H. feroniarum, Myia- noetus sp.; Chalcididae: Brachymeria sp.: A. farris. Ichneumonidae: Nemeri- tis canescens (Gravenhorst, 1829): C. lactis; Diadrornus sp.: A. farris.

Thysanura Machilidae: Machilis sp.: Leptus machilidis Southcott, 1992.

Homoptera Lecanidae: Lecanium sp.: Monieziella berlesiana; Aphididae g. sp.: L. igno- tus; Homoptera g. sp.: L. ignotus, H. brevicollis, Charletonia tridentatus, Ery- thraeus kuyperi.

Heteroptera Pyrrhoceridae: Pyrrhoceris apterus (L., 1758): Hemipteroseius adleri Costa, 1967. 122

Conclusion

The mutual correlations between insects and mites are in many cases of great significance. They assume various forms. The most commonly distinguished forms are parasitism, predation and commensalism, which can be manifested as clean- ing, protecting and masking, transporting commensalism i.e. phoresy (Croll 1977). Mites, which are often found in high numbers on insects, may cause serious dis- eases, death of the host or they can hamper their movement thus significantly reducing the number of insects (Bałazy 1966; Kiełczewski et al. 1972). Owing to insects mites can be transported, often long distances, and they can use the food found on insect bodies. For instance, bees while cleaning their nests remove the litter from the hive along with the mites and spread them at the radius of even a few hundred meters from the apiary (Chmielewski 1983). There are very few parasite species in Poland (parasites at all stages of development or at only one stage, for instance as larvae). The monoxenic species include: Varroa destructor, Canestrinia sellinicki, C. mahunkai, C. dorcicola, Procericola bourgognei, Pho- tia chrysocarabi, P. bardoica, P. hejniana, P. hermengildae, P. polymorpha, Di- canestrinia knobi, D. huberti, Percanestrinia blaptis, Coleopterophagus megnini, C. albini, Eutarsopolipus acanthomus, Neothrombium neglectum, Linobia coccinel- lae and Acarapis woodi. The oligoxenic species, usually associated with a few insect species from one family, include: Pyemotes scolyti, P. ventriculosus, P. dryas and P. herfsi, Coccipolipus hippodamiae and Eutrombidium trigonum. The remaining mite species form phoretic relations with insects. There are also predatory mites among them. These include all species found on insects from families: Macrocheli- dae, Veigaiaidae, Ascidae, Cheyletidae and some Parasitidae. Generally, they are rarely found on insects and their number is low, except for Macrocheles glaber and Neopodocinum meridionalis. Among mites one can distinguish between species connected with one insect species, a limited number of transporting species (for instance from one to three families) or found on a large group of insects from different families or orders. Finally, there are species whose presence on insects is accidental and they are connected with completely different hosts (for instance Hirsutiella zachvatkini, Echinonyssus sunci, Haemogamasus nidi). Usually there is one mite species, especially on small insects. More than 5 mite species have been reported from a small group of insect species. Among Cara- bidae these include Carabus coriaceus 10 mite species, C. arcensis 9, C. hortensis 9, C. violaceus 7, C. cancellatus 6, C. scheidleri 6, C. ullrichi 6, Cychrus rostratus 6; Scarabaeidae: Cetonia aurata 12, Oxytherea funesta 10, Potosia cuprea metal- lica 9; Geotrupidae: Geotrupes stercorosus 21, G. stercorarius 16, G. spiniger 14, G. vernalis 11, G. mutator 7, Copris lunaris 9; Silphidae: Oiecoptoma tho- racica 19, Nicrophorus humator 14, Necrodes littoralis 8; Cerambycidae: Rosalia alpina 6; Muscidae: Musca domestica 15; Formicidae: Camponotus herculeanum 6. Mites which have been found on more than 5 insect species include: Poecilochirus carabi 34 (from Carabidae species, 10 Silphidae, 4 Geotrupidae, 1 Scarabaeidae, 1 Staphylinidae, 1 Catopidae, 1 Cleridae), Uropoda orbicularis 31 (3 Geotrupidae, 17 Aphodidae, 5 Scarabaeidae, 6 Hydrophilidae), Iphidosoma fimetarium 28 (19 Cara- bidae, 4 Silphidae, 3 Geotrupidae, 1 Scarabaeidae, 1 Cerambycidae), Macrocheles 123 glaber 17 (7 Geotrupidae, 4 Silphidae, 4 Carabidae, 1 Scarabaeidae, 1 Muscidae), Alliphis halleri 17 (6 Geotrupidae, 5 Carabidae, 4 Silphidae, 2 Scarabaeidae), Par- asitellus fucorum 12 (8 Bombidae, 2 Muscidae, 1 Anthomyiidae, 1 Apidae), Blatti- socius tarsalis 11 (5 Pyralididae, 1 Gelechidae, 1 Tenebrionidae, 1 Curculionidae, 1 Bostrychidae, 1 Dermestidae), Parasitus coleptratorum 9 (5 Geotrupidae, 2 Sil- phidae, 1 Scarabaeidae, 1 Carabidae), Poecilochirus necrophori 7 (Silpidae).

References

Bajerlein D., Błoszyk J. 2004. Phoresy of Uropoda orbicularis (Acari: Mesostigmata) by beetles (Coleoptera) associated with cattle dung in Poland. Eur. J. Entomol. 101: 185-188. Bajerlein D., Przewoźny M. 2005. Coprophagous hydrophilid beetles (Coleoptera: Hy- drophilidae) as carriers of phoretic deutonymphs of Uropoda orbicularis (Acari: Mesostigmata) in Poland. Eur. J. Entomol. 102: 119-122. Bałazy S. 1966. Organizmy żywe jako regulatory liczebności populacji korników w drze- wostanach świerkowych ze szczególnym uwzględnieniem owadobójczych grzybów. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 21: 3-50. Chmielewski W. 1971. The mites (Acarina) found on bumble-bees (Bombus Latr.) and in their nests. Ekol. Pol. 19: 57-71. Chmielewski W. 1977. Wyniki obserwacji powiąza´nroztoczy z owadami (Acari – In- secta). Pol. Pis. Entomol. 47: 59-78. Chmielewski W. 1983 a. Wyniki bada´nnad występowaniem roztoczy (Acarina) na musze domowej (Musca domestica L.). Zesz. Probl. Post. Nauk Roln. 252: 161-175. Chmielewski W. 1983 b. Przypadki występowania roztoczy na owadach. Zesz. Probl. Post. Nauk Roln. 252: 179-188. Chmielewski W. 1991. Roztocze (Acari) pszczoły miodnej (Apis mellifera L.) w Polsce. Wiad. Parazyt. 37: 91-94. Chmielewski W. 2006. Occurence of Hemipteroseius adleri (Acarina: Mesostigmata: Otopheidomenidae) infesting Pyrrhoceris apterus (Insecta: Heteroptera: Pyrrho- ceridae) in Puławy and other localities in Poland and Lithuania. Biol. Lett. 43: 157-161. Croll N. A. 1977. Pasożytnictwo i inne związki. PWN, Warszawa. Gabryś G., Haitlinger R. 1986. New and rare mites (Acari, Calyptostomatidae, Ery- thraeidae, Trombidiidae) from the fauna of Poland. Pol. Pis. Entomol. 56: 471-474. Gwiazdowicz D. J. 2000. Mites (Acari, Gamasida) associated with insects in the Biało- wieża National Park. Acta Parasit. 45: 43-47. Haitlinger R. 1978. Występowanie w Polsce Acarus nidicolous Griffiths, 1970 (Acarina: Sarcoptiformes) (hypopus) forezyjnie związanego z Siphonaptera. Wiad. Parazyt. 24: 491-493. Haitlinger R. 1985. Roztocze (Acari: Podapolipidae, Eviphididae, Macrochelidae, Asci- dae) nowe lub rzadkie dla fauny Polski, zebrane z chrząszczy (Carabidae) i gryzoni (Rodentia). Pol. Pis. Entomol.: 611-614. Haitlinger R. 1987 a. Dalsze informacje o występowaniu gatunków rodzaju Hauptmannia Oudemans, 1910 (Acari, Prostigmata, Erythraeidae) w Polsce. Przegl. Zool. 31: 159-164. 124

Haitlinger R. 1987 b. Roztocze (Acari) nowe lub rzadkie w faunie Polski, uzyskane z drob- nych ssaków i owadów. Fragm. Faun. 30: 313-320. Haitlinger R. 1987 c. The genusa Leptus Latreille, 1796 and Charletonia Oudemans, 1910 (Acari, Prostigmata, Erythraeidae) in Poland (larvae). Pol. Pis. Entomol. 57: 339-349. Haitlinger R. 1987 d. The genus Erythraeus Latreille, 1806 (Acari, Prostigmata, Ery- thraeidae) in Poland (larvae). Pol. Pis. Entomol. 57: 725-734. Haitlinger R. 1987 e. Roztocze (Acari) występujące na Copris lunaris Linnaeus, 1758 (Insecta, Scarabaeidae) w Polsce. Przegl. Zool. 31: 471-475. Haitlinger R. 1988 a. Two new species Photia genus Oudemans, 1904 (Acari, Astigmata, Canestriniidae) from Poland. Wiad. Parazyt. 34: 320-328. Haitlinger R. 1988 b. Roztocze (Acari) występujące w Polsce na chrząszczach z rodzaju Carabus Linnaeus, 1758 (Insecta, Coleoptera, Carabidae). Wiad. Parazyt. 34: 329-346. Haitlinger R. 1988 c. Canestrinia dorcicola Berlese, 1881 i Neomyobia chiropteralis (Michael, 1884) (Acari: Canestriniidae, Myobiidae) dwa nowe gatunki roztoczy dla fauny Polski. Przegl. Zool. 32: 41-45. Haitlinger R. 1988 d. Dicanestrinia knobi Samśinak, 1971 i Coleopterophagus megnini (Berlese, 1881) (Acari, Astigmata, Canestriniidae) dwa gatunki roztoczy nowe dla fauny Polski. Przegl. Zool. 32: 535-540. Haitlinger R. 1990. Mites (Acari) occurring on Geotrupes vernalis (Linnaeus, 1758) (In- secta, Scarabaeidae) in Poland. Wiad. Parazyt. 36: 137-143. Haitlinger R. 1991 a. List of mites occurring on insects in Poland. Wiad. Parazyt. 37: 85-90. Haitlinger R. 1991 b. Nowe dla fauny Polski i rzadkie w kraju gatunki roztoczy z rodzin Ameroseiidae, Laelapidae i Antennoseiidae (Acari, Mesostigmata). Przegl. Zool. 35: 273-275. Haitlinger R. 1991 c. New data on distribution of larvae from the genus Leptus Latreille, 1796 (Acari, Prostigmata, Erythraeidae) in Poland with the description of Leptus miromiri n. sp. Wiad. Parazyt. 37: 499-506. Haitlinger R. 1992. The genus Percanestrinia Berlese, 1911 (Acari, Astigmata, Canestri- niidae) with descriptions of three new species. Zool. Jb. Syst. 119: 535-542. Haitlinger R. 1993. Mites (Acari) occurring on Geotrupes spiniger Marsh. and G. ster- corarius (L.) (Insecta, Scarabaeidae) in Poland. Wiad. Parazyt. 39: 415-424. Haitlinger R. 1999 a. Mites (Acari) occurring on Geotrupes stercorosus, G. mutator and Typhoeus typhoeus (Coleoptera: Scarabaeidae) in Poland. Pol. Pis. Entomol. 68: 319-336. Haitlinger R. 1999 b. Linobia coccinellae (Scopoli, 1763) (Acari: Astigmata: Hemis- arcoptidae) nowy gatunek dla fauny Polski, związany z Chrysomela populi L. (Coleoptera: Chrysomelidae: Chrysomelinae). Przegl. Zool. 43: 181-182. Haitlinger R. 2001. Parasitus geotrupidis Makarova, 1996 (Mesostigmat: Parasitidae) i Podothrombium roari Haitlinger, 2000 (Prostigmata: Trombidiidae) dwa nowe gatunki roztocze (Acari) nowe dla fauny Polski. Przegl. Zool. 45: 83-85. Haitlinger R. 2002 a. Roztocze (Acari: Prostigmata: Erythraeoidea, Trombidioidea, Ta- naupodoidea, Trombidioidea bez Trombiculidae) Sudetów. Przyr. Sudetów Zach. 5: 147-152. Haitlinger R. 2002 b. Mites (Acarina associated with Cetoniinae and Trichiinae (Insecta: Coleoptera: Scarabaeidae) in Poland. In: Postępy polskiej akarologii. Wyd. SGGW, Warszawa. 125

Haitlinger R. 2004 a. Mites (Acari) occurring on some Coleoptera (Insecta) in Poland. Pol. Pis. Entomol. 73: 3-24. Haitlinger R. 2004 b. Distribution and hosts of Eutrombidium trigonum (Hermann, 1804) (Acari: Prostigmata: Eutrombidiidae) in Poland. Wiad. Parazyt. 50: 723-726. Ignatowicz S. 1974. Nowe dane o występowaniu roztoczy (Acarina) na owadach w Polsce. Pol. Pis. Entomol. 44: 705-713. Kiełczewski B., Bałazy S., Seniczak S., 1973. Rola drapieżnych roztoczy w ograniczaniu liczenbości szkodników w lesie. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 144: 131-138. Kiełczewski B., Michalski J. 1962. Wpływ roztoczy (Acarina) na gęstość populacji o- głodków (Scolytidae). Zesz. Probl. Post. Nauk Roln. 35: 133-135. Kiełczewski B., Moser J., Wiśniewski J. 1983. Surveying the acarofauna associated with Polish Scolytidae. Bull. Soc. Amis Sci. Lattr. 22: 151-159. Kiełczewski B., Nawrot J., Wiśniewski J. 1970. Roztocze występujące na gmachówce (Camponotus Mayr. Hym., Formicidae) i w jej gniazdach. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 30: 17-26. Kiełczewski B., Seniczak S. 1972. Cykl rozwojowy drapieżnego roztocza Calvolia fraxini E. Turk et F. Turk (Tyroglyphidae, Acarina). PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 34: 83-88. Kiełczewski B., Śliży´nski K. 1969. Występowanie hypopusów Acarus farris (Oud.) na błonkówkach pasożytniczych. Przegl. Zool. 13: 329-331. Kiełczewski B., Wiśniewski J. 1968. Akarozy mrówek. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 31: 117-121. Kozłowski S. 1958. Pierwsze doniesienia na temat akarozy owadów. Wiad. Parazyt. 4: 747-749. Lipa J. J., Chmielewski W. 1977. Pasożytnicze roztocza – Pyemotes scolyti Oud. (Aca- rina: Pyemotidae) na ogłodku – Scolytus pygmaeus Fabr. (Coleoptera: Scolytidae). Pol. Pis. Entomol. 47: 345-349. Michalski J., Ratajczak E., Wiśniewski J. 1985. Roztocze (Acarina: Mesostigmata) to- warzyszące kornikom (Coleoptera: Scolytidae) Gór Świętokrzyskich. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 60: 85-92. Micherdzi´nski W. 1969. Die Familie Parasitidae Oudemans, 1901 (Acarina, Mesostig- mata). PWN, Kraków. Okołów C. 1970. Jeśniak czarny (Hylesinus crenatus, Fabr.) jego morfologia, biologia, wrogowie oraz znaczenie gospodarcze. Fol. For. Pol. Ser. A 16: 171-200. Skorupski M., Gwiazdowicz D. J. 1996. Roztocze (Acari, Mesostigmata) Pienin. Fragm. Faun. 39: 223-243. Southcott R. V. 1992. Revision of the larvae of Leptus Latreille (Acarina: Erythraeidae) of Europe and North America, with descriptions of post-larval instars. Zool. J. Linn. Soc. 105: 1-153. Starzyk J. R. 1968. Interesujący przypadek forezy roztoczy Poecilochirus necrophori Vitzth. (Parasitiformes, Parasitidae) na grabarzu Necrophorus fossor Er. (Cole- optera, Silphidae). Przegl. Zool. 11: 51-53. Tomaszewska B. 1988. Roztocze jako pasożyty pszczoły miodnej (Apis mellifera L.) oraz współmieszka´ncy ula. Wiad. Parazyt. 34: 177-184. Webberley K. M., Hurst D. D., Husband R. W., Hinrich J., Sxchulenburg G. V., Sloggett J., Isham V., Buszko J., Majerus E. N. 2004. Host reproduction and a sexually transmitted disease: causes and consequences of Coccipolipus hippodamiae distri- bution on coccinellid beetles. J. Anim. Ecol., 73: 1-10. Wiśniewski J. 1965. Pajęczaki towarzyszące mrowiskom Formica polyctena F¨orst. (Hym., Formicidae) w Nadleśnictwie Doświadczalnym WSR Zielonka. PTPN Pr. Kom. Nauk Roln. Kom. Nauk Leśn. 17: 537-584.