Connection Is at the Heart of Everything We Do

Total Page:16

File Type:pdf, Size:1020Kb

Connection Is at the Heart of Everything We Do ANNUAL REPORT 2020 Connection is at the heart of everything we do. To Our Shareholders Silicon Labs thrived in 2020 despite a tumultuous In 2020, the market embraced Silicon Labs’ expand- macro environment that impacted both supply and ing portfolio of Bluetooth Low Energy solutions. Our demand across our industry. We increased our ability Bluetooth revenue grew 23 percent and design win to support customers, develop products, and collab- expected lifetime revenue grew 58 percent for the orate across global sites, and did so with incredible year. We expect accelerating growth rates for dedication and focus throughout the year. Our global Bluetooth in 2021. team rallied around the company’s vision and values In April, we expanded the company's wireless portfo- to uplift and support one another, our partners, cus- lio with the acquisition of Redpine Signals, a leader in tomers, and the communities we live in. Ultimately, we low-power Wi-Fi connectivity solutions. The Red- closed out the year with numerous industry-leading pine acquisition brought a culturally aligned team of achievements and innovations that helped our world approximately 200 employees in Hyderabad, which is stay connected. one of the most talent-rich locations in India. We plan Total revenue for 2020 was a record $887 million, an to continue to grow this site to scale our R&D efforts increase of 6 percent from 2019, with growth both in more efficiently across the board, from software and IoT and Infrastructure and Automotive. IoT wireless silicon to the cloud. growth led the way and our Infrastructure and Auto- We are leading the way in IoT security with Secure motive business also flourished, propelled by strong Vault, which was awarded a 2020 LEAP Awards gold economic activity in the data center, solar energy, and medal for secure connectivity. Secure Vault products electric vehicle markets. were also the first wireless SoCs and modules to earn We had record design win expected lifetime reve- PSA Level 2 security certification. nue in 2020 at $2.5 billion, which was a 10 percent Infrastructure and Automotive revenue was $373 increase from 2019. We ended the year with the million, up 7 percent from 2019. Our isolation products largest opportunity funnel in our history at $15 billion, saw strong growth in 2020 and timing revenue was with IoT making up 65 percent of the funnel at approx- slightly up despite 5G delays and a government-im- imately $10 billion. posed shipment ban on our largest Timing customer. We believe our increasing demand trends are durable Our expanded timing portfolio which addresses the and the result of an acceleration of the digital trans- wireless infrastructure, industrial, data center and formation of our economy by several years, mean- automotive markets, now represents approximately ing there will be a greater need for semiconductors 50 percent of our overall timing revenue, up from 40 going forward. We see clear evidence of accelerating percent in 2019, and we expect the trend to continue demand in our 2021 bookings, especially in the smart into 2021. The success of this strategy combined with home, portable medical, retail, industrial automation, accelerating bandwidth demands is reflected in our solar energy, and electric vehicle markets. Timing revenue and record design wins. IoT revenue grew 5 percent from 2019. Wireless We have established ourselves as a leading provider continues to be our fastest growing product category of digital isolation technology for the data center, and represents two thirds of total IoT revenue. As IoT solar, and electric vehicle markets. Our isolation prod- continues to evolve, we see increased traction with ucts continue to replace traditional optocouplers and Bluetooth® and Wi-Fi® in addition to the already ramp- outperform competing digital isolators, which resulted ing proprietary, 15.4, and Z-Wave protocols. in strong isolation revenue growth. In 2020, we delivered GAAP gross margins of 59 In 2020, we received numerous industry awards, under- percent and non-GAAP gross margins of 60 percent. scoring our commitment to technology innovation, our GAAP operating margin was 4 percent of revenue workplace environment, and our communities. Awards in 2020, while non-GAAP operating margin was 17 included recognition for leadership in wireless con- percent. GAAP diluted earnings per share declined nectivity, IoT security, community engagement, and 35 percent to $0.28. Non-GAAP diluted earnings per continuing to be a great place to work. share declined 7 percent from 2019 to $3.01. We had We believe we are uniquely positioned with the full year operating cash flow of $136 million and ended broadest portfolio of IoT wireless products and strong the year with $730 million in cash, cash equivalents isolation and timing solutions. We also believe the and investments. During fiscal 2020, we retired increasing demand trends we experienced in 2020 are approximately $259 million of our 2022 convertible durable as a result of the acceleration of the digital notes and issued a redemption notice in the first transformation of our economy by several years. quarter of 2021 to fully redeem the remaining balance Going forward, this means there will be a greater need of $141 million. We expect to complete the redemption for semiconductors, and we have seen clear evidence process by the end of March 2021. of accelerating demand in our 2021 bookings to-date. 2020 was also a defining year for equity and social 2020 was filled with many challenges and also signifi- justice, ideals embedded in Silicon Labs’ culture. cant achievements. Our business is stronger than ever During the year we launched a variety of new diversity, with sustained secular market growth drivers fueling equity, and inclusion (DEI) initiatives focused on build- our increasing momentum in 2021 and beyond. ing a strong foundation and making Silicon Labs a great place to work for everyone. We have formalized We appreciate your investment in Silicon Labs. a set of corporate DEI goals as part of our executive bonus metrics, and our leadership team is fully com- mitted and accountable for driving long-term change. In 2020, we disclosed additional information around Silicon Labs’ environmental, social and governance (ESG) efforts, including energy and water use, air emissions, water waste, and work-related safety statistics. We will be expanding our disclosure efforts in 2021, continuing our commitment to support our environment and the communities in which we live. Nav Sooch Tyson Tuttle Founder and President and Chairman Chief Executive Officer Revenue in Millions FY16 FY17 FY18 FY19 FY20 IoT $315 $395 $464 $488 $514 Infrastructure & Automotive 383 374 404 349 373 Total $698 $769 $868 $838 $887 Silicon Labs 2020 Annual Report | 1 UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-K (Mark One) ፤ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended January 2, 2021 or អ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from to Commission file number: 000-29823 SILICON LABORATORIES INC. (Exact name of registrant as specified in its charter) Delaware 74-2793174 (State or other jurisdiction of (I.R.S. Employer incorporation or organization) Identification No.) 400 West Cesar Chavez, Austin, Texas 78701 (Address of principal executive offices) (Zip Code) (512) 416-8500 (Registrant’s telephone number, including area code) Securities registered pursuant to Section 12(b) of the Act: Title of each class Trading Symbol(s) Name of each exchange on which registered Common Stock, $0.0001 par value SLAB The NASDAQ Stock Market LLC Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. Ye s No Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. Ye s No Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Sections 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. Ye s No Indicate by check mark whether the registrant has submitted electronically every Interactive Data File required to be submitted pursuant to Rule 405 of Regulation S-T (§232.405 of this chapter) during the preceding 12 months (or for such shorter period that the registrant was required to submit such files). Ye s No Indicate by check mark whether the registrant is a large accelerated filer, an accelerated filer, a non-accelerated filer, a smaller reporting company, or an emerging growth company. See the definitions of ‘‘large accelerated filer,’’ ‘‘accelerated filer,’’ ‘‘smaller reporting company’’ and ‘‘emerging growth company’’ in Rule 12b-2 of the Exchange Act. Large accelerated filer ፤ Accelerated filer អ Non-accelerated filer អ Smaller reporting company អ Emerging growth company អ If an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards provided pursuant to Section 13(a) of the Exchange Act. អ Indicate by check mark whether the registrant has filed a report on and attestation to its management’s assessment of the effectiveness of its internal control over financial reporting under Section 404(b) of the Sarbanes-Oxley Act (15 U.S.C. 7262(b)) by the registered public accounting firm that prepared or issued its audit report.
Recommended publications
  • Bluetooth Low Energy Software Release Notes
    BLUEGIGA BLUETOOTH LOW ENERGY SOFTWARE RELEASE NOTES Wednesday, 2 December 2020 Version 6.1 Table of Contents 1 Changes: 1.10.0 (Build 153) compared to 1.9.0 (Build 150) ______________________________________ 4 2 Changes: 1.9.0 (Build 150) compared to 1.8.0 (Build 143) _______________________________________ 5 3 Changes: 1.8.0 (Build 143) compared to 1.7.0 (Build 142) _______________________________________ 6 4 Changes: 1.7.0 (Build 142) compared to 1.6.0 (Build 140) _______________________________________ 7 5 Changes: 1.6.0 (Build 140) compared to 1.5.0 (Build 137) _______________________________________ 8 6 Changes: 1.5.0 (Build 137) compared to 1.4.2 (Build 130) _______________________________________ 9 7 Changes: 1.4.2 (Build 130) compared to 1.4.1 (Build 128) ______________________________________ 10 8 Changes: 1.4.1 (Build 128) compared to 1.4.0 (Build 127) ______________________________________ 11 9 Changes: 1.4.0 (Build 127) compared to 1.3.2 (Build 122) ______________________________________ 12 10 Changes: 1.3.2 (Build 122) compared to 1.3.1 (Build 119) _____________________________________ 13 11 Changes: 1.3.1 (Build 119) compared to 1.3.1 (Build 118) _____________________________________ 14 12 Changes: 1.3.1 (Build 118) compared to 1.3.0 Beta (Build 110) _________________________________ 15 13 Changes: 1.3.0 Beta (Build 110) compared to 1.2.2 (Build 100) _________________________________ 16 14 Changes: 1.2.2 (Build 100) compared to 1.2.1 (Build 91) ______________________________________ 17 15 Changes: 1.2.1 (Build 91) compared
    [Show full text]
  • Learning the Superior Techniques of the Barbarians China’S Pursuit of Semiconductor Independence
    JANUARY 2019 Learning the Superior Techniques of the Barbarians China’s Pursuit of Semiconductor Independence AUTHOR James A. Lewis A joint project of the CSIS TECHNOLOGY POLICY PROGRAM and the CSIS FREEMAN CHAIR IN CHINA STUDIES China Innovation Policy Series JANUARY 2019 Learning the Superior Techniques of the Barbarians China’s Pursuit of Semiconductor Independence AUTHOR James A. Lewis A joint project of the CSIS Technology Policy Program and the CSIS Freeman Chair in China Studies About CSIS Established in Washington, D.C., over 50 years ago, the Center for Strategic and International Studies (CSIS) is a bipartisan, nonprofit policy research organization dedicated to providing strategic insights and policy solutions to help decisionmakers chart a course toward a better world. In late 2015, Thomas J. Pritzker was named chairman of the CSIS Board of Trustees. Mr. Pritzker succeeded former U.S. senator Sam Nunn (D-GA), who chaired the CSIS Board of Trustees from 1999 to 2015. CSIS is led by John J. Hamre, who has served as president and chief executive officer since 2000. Founded in 1962 by David M. Abshire and Admiral Arleigh Burke, CSIS is one of the world’s preeminent international policy in¬stitutions focused on defense and security; regional study; and transnational challenges ranging from energy and trade to global development and economic integration. For the past seven years consecutively, CSIS has been named the world’s number one think tank for international security by the University of Pennsylvania’s “Go To Think Tank Index.” The Center’s over 220 full-time staff and large network of affiliated scholars conduct research and analysis and develop policy initiatives that look to the future and anticipate change.
    [Show full text]
  • Qualcomm-Snapdragon-Integrated
    QUALCOMM® SNAPDRAGON™ INTEGRATED FABLESS MANUFACTURING 2 Executive Summary Assembly and Test Services (OSATS) companies as well. The new mobile age has brought with it a new approach to solve the performance and power effi- Although QTI is fabless, it is still invested in ciency problems of modern processors. As a leader advancing manufacturing technology. QTI helps in the mobile industry, Qualcomm Technologies, drive and influence semiconductor innovations Inc. (QTI) implemented the Integrated Fabless through alliances and cooperation with industry Manufacturing (IFM) model to address the changes organizations. In 2013, QTI became a core member in the evolving mobile ecosystem to deliver the of the CMOS Program at the global semiconduc- best user experiences. IFM allows Qualcomm tor research program, IMEC, to extend the group’s Technologies to work closely with selected found- collaboration into advance CMOS process tech- ries, test and assembly vendors to provide nologies. Prior to QTI’s core membership, the two cutting edge solutions that can be manufactured organizations collaborated for several years on 3D in high volume while also meeting the perfor- stacking technologies. Also in 2010, QTI became mance, power, size, and cost requirements of the the first integrated, fabless chip manufactures to mobile industry. join SEMATECH, also with the intent to advance CMOS scaling and collaborate on new technologies. Technical Engagement Flexible Foundries The QTI IFM builds tight technical interfaces among all parties in the semiconductor develop- IFM uniquely positions QTI to adjust demand ment cycle. As a technology leader in the mobile across foundries and select the most cost effective ecosystem, QTI collaborates closely with the process nodes for the various components of a foundries and other services, on virtually every mobile system chipset.
    [Show full text]
  • EPIC Consortium Members Directory:198 Members
    EPIC Consortium Members Directory: 198 members This directory is updated every month. Latest revision: 20 February 2015 Acal BFi is a European leader in advanced technology solutions, providing marketing, engineering, design, manufacturing and custom services and the only such provider with an infrastructure to deliver a broad complementary range of specialist products and bespoke solutions across Europe. Acal BFi Photonics business unit is one of the eight technology business units in the company and operates across Europe including the UK, Germany, France, Benelux, Italy, Spain and the Nordic region. It supplies a range of products that address the Photonics market including: lasers & laser diode modules, scanning technologies and marking heads, optical components & filters, spectrometers and spectrophotometers/colorimeters, laser beam diagnostic and detection modules. Acal BFi Photonics has the capability to supply stand alone units as well as OEM components or sub- modules to meet specific customer needs. Proof of concept & demonstrations, training, installations, repair and calibrations are also part of the custom services Acal BFi offers. www.acalbfi.com Acreo Swedish ICT provides cutting edge resources and technologies within Sensors and Actuators, Power Electronics, Digital Communication and Life Science. Expertise areas include fiber optics, nanoelectronics, broadband technologies, printed electronics and sensor systems. Acreo Swedish ICT has 145 employees in Kista, Gothenburg, Norrköping and Hudiksvall. Acreo is a part of Swedish
    [Show full text]
  • TS10: Ember Em35x NCP Host (STM32)
    TS10 ® EMBER EM35X NCP HOST (STM32) MODULE TECHNICAL SPECIFICATION When combined with an Ember EM35x NCP Breakout Board, the Ember STM32 NCP Host Module offers a complete ZigBee wireless solution for development and deployment of a low-data-rate, low-power ZigBee application. The STM32 microprocessor is part of the two-layer (FR4-based) host module that connects to the EM35x NCP Breakout Board through the board-to-board connectors. This document provides the technical specification for the STM32 EM35x NCP Host Module. It describes the board- level interfaces as well as the key performance parameters. In addition, it provides the necessary information for developer to validate their application designs using the STM32 EM35x NCP Host Module. New in This Revision Document renumbering. Contents 1 STM32 Host Module Features ......................................................................................................................... 2 2 Components ................................................................................................................................................... 3 2.1 STM32 Microcontroller ............................................................................................................................. 4 2.2 EM35x NCP Breakout Board interface connector (J1-J2) .......................................................................... 4 2.3 JTAG Programming and Debug Connector (J3)........................................................................................ 6 2.4 Unused STM32 GPIO
    [Show full text]
  • North American Company Profiles 8X8
    North American Company Profiles 8x8 8X8 8x8, Inc. 2445 Mission College Boulevard Santa Clara, California 95054 Telephone: (408) 727-1885 Fax: (408) 980-0432 Web Site: www.8x8.com Email: [email protected] Fabless IC Supplier Regional Headquarters/Representative Locations Europe: 8x8, Inc. • Bucks, England U.K. Telephone: (44) (1628) 402800 • Fax: (44) (1628) 402829 Financial History ($M), Fiscal Year Ends March 31 1992 1993 1994 1995 1996 1997 1998 Sales 36 31 34 20 29 19 50 Net Income 5 (1) (0.3) (6) (3) (14) 4 R&D Expenditures 7 7 7 8 8 11 12 Capital Expenditures — — — — 1 1 1 Employees 114 100 105 110 81 100 100 Ownership: Publicly held. NASDAQ: EGHT. Company Overview and Strategy 8x8, Inc. is a worldwide leader in the development, manufacture and deployment of an advanced Visual Information Architecture (VIA) encompassing A/V compression/decompression silicon, software, subsystems, and consumer appliances for video telephony, videoconferencing, and video multimedia applications. 8x8, Inc. was founded in 1987. The “8x8” refers to the company’s core technology, which is based upon Discrete Cosine Transform (DCT) image compression and decompression. In DCT, 8-pixel by 8-pixel blocks of image data form the fundamental processing unit. 2-1 8x8 North American Company Profiles Management Paul Voois Chairman and Chief Executive Officer Keith Barraclough President and Chief Operating Officer Bryan Martin Vice President, Engineering and Chief Technical Officer Sandra Abbott Vice President, Finance and Chief Financial Officer Chris McNiffe Vice President, Marketing and Sales Chris Peters Vice President, Sales Michael Noonen Vice President, Business Development Samuel Wang Vice President, Process Technology David Harper Vice President, European Operations Brett Byers Vice President, General Counsel and Investor Relations Products and Processes 8x8 has developed a Video Information Architecture (VIA) incorporating programmable integrated circuits (ICs) and compression/decompression algorithms (codecs) for audio/video communications.
    [Show full text]
  • AN669: Integrating Silicon Labs Sim3xxxx Devices Into the Keil Μvision®
    AN669 INTEGRATING SILICON LABS SiM3XXXX DEVICES INTO THE KEIL µVISION® IDE 1. Introduction This application note describes how to configure and use the Keil µVision® Integrated Development Environment (IDE) with Silicon Laboratories Precision32™ 32-bit microcontrollers (SiM3xxxx). 2. Key Points Key points described in this application note include: Generating a blank project in Keil µVision Configuring a µVision project for use with Silicon Laboratories SiM3xxxx devices Using the µVision IDE to build, download, run, and debug a project Using the System Viewer Windows and Debug (Print) Viewer 3. Creating a Project A project is necessary in order to build an example and download the firmware image to the MCU. To create a project in µVision: 1. Under the Project menu, select New µVision Project. After naming your new project, select SiLabs SiM3x Devices in the Select a CPU Data Base File dialog and click OK. 2. Expand the Silicon Laboratories data base to open a list of supported MCUs, select the appropriate MCU, and click OK. Figure 1. Selecting a SiM3x Device After creating your blank project, there will be an empty project in the Project Window. The next step is to configure the project options. Rev. 0.1 2/12 Copyright © 2012 by Silicon Laboratories AN669 AN669 4. Configuring Options for Target Specific configurations are required in order to communicate with the MCU using µVision. Some of the options are preconfigured after selecting a device under the Device tab, but some modifications are required. This section describes the required settings in all of the configuration tabs within the ProjectOptions for Target dialog; tabs that do not require any changes are explicitly noted.
    [Show full text]
  • Si106x Development Kits User's Guide
    Si106x-DK Si106X DEVELOPMENT KITS USER’S GUIDE 1. Kits Overview This user's guide describes the development kits of the Si106x Wireless MCU family. The latest version of this user guide is available online at http://www.silabs.com/products/wireless/wirelessmcu/Pages/default.aspx. Each kit contains two RF nodes based on the Wireless Motherboard to support evaluation and development of sub-GHz RF links with the different Wireless MCUs. WMCU pico board content of the different kits is listed in Table 1, and content common to all the kits is listed in Table 2. Table 1. WMCU Pico Boards of the Si106x Development Kits Qty Description Part Number Si1060 490 MHz Wireless MCU Development Kit 1060-490-DK 2 Si1060 490 MHz PICO Board 1060-PCE20C490 Si1060 915 MHz Wireless MCU Development Kit 1060-915-DK 2 Si1060 915 MHz PICO Board 1060-PCE20C915 Si1062 868 MHz Wireless MCU Development Kit 1062-868-DK 2 Si1062 868 MHz PICO Board 1062-PCE13D868 Si1064 434 MHz Wireless MCU Development Kit 1064-434-DK 2 Si1064 434 MHz PICO Board 1064-PCE10D434 Si1064 868 MHz Wireless MCU Development Kit 1064-868-DK 2 Si1064 868 MHz PICO Board 1064-PCE10D868 Si1064 915 MHz Wireless MCU Development Kit 1064-915-DK 2 Si1064 915 MHz PICO Board 1064-PCE10D915 Table 2. Common Kit Content Qty Description Part Number 2 Wireless Motherboard MSC-WMB912 2 USB cable (USBA-USB mini) 2 Antenna with SMA connection MSC-AT50-XXX 4 AA Battery 1 Si106x Development Kit User’s Guide Rev. 0.4 12/17 Copyright © 2017 by Silicon Laboratories Si106x-DK Si106x-DK 2.
    [Show full text]
  • A Study of the Foundry Industry Dynamics
    A Study of the Foundry Industry Dynamics by Sang Jin Oh B.S. Industrial Engineering Seoul National University, 2003 SUBMITTED TO THE MIT SLOAN SCHOOL OF MANAGEMENT IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MANAGEMENT STUDIES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARCHVES JUNE 2010 MASSACHUSETTS INSTiUTE OF TECHNOLOGY © 2010 Sang Jin Oh. All Rights Reserved. The author hereby grants MIT permission to reproduce JUN 082010 and to distribute publicly paper and electronic LIBRARIES copies of this thesis document in whole or in part in any medium now known and hereafter created. Signature of Author Sang Jin Oh Master of Science in Management Studies May 7, 2010 Certified by (7 Michael A. Cusumano SMR Distinguished Professor of Management Thesis Supervisor Accepted by (I Michael A. Cusumano Faculty Director, M.S. in Management Studies Program MIT Sloan School of Management A Study of the Foundry Industry Dynamics By Sang Jin Oh Submitted to the MIT Sloan School of Management On May 7, 2010 In Partial Fulfillment of the Requirements for the Degree of Master of Science in Management Studies Abstract In the process of industrial evolution, it is a general tendency that companies which specialize in a specific value chain have emerged. These companies should construct a business eco-system based on their own platform to compete successfully with vertically integrated companies and other specialized companies. They continue to sustain their competitive advantage only when they share their ability to create value with other eco-system partners. The thesis analyzes the dynamics of the foundry industry.
    [Show full text]
  • Albert Shih ASSOCIATE
    Albert Shih ASSOCIATE Litigation Palo Alto [email protected] 650-849-3022 FOCUS AREAS EXPERIENCE Albert Shih is an associate in the Palo Alto office of Wilson Sonsini Goodrich & Rosati, Litigation where his practice focuses on intellectual property litigation and counseling. He has litigated Patent Litigation more than 25 patent cases before federal district courts, the International Trade Commission, and Judicial Arbitration and Mediation Services, including a $31 million judgment obtained for his client in the field of telecommunication protocol. He also regularly advises clients on company intellectual property strategy, technology transactions, licensing negotiation, FRAND-rate setting for standard-essential patents, and patent prosecution matters. Prior to law school, Albert was a design engineer at Intel, where he taught courses at Intel University on chipset design. His field experience and knowledge allow him to understand and appreciate the unique business and technical perspective associated with leaders and innovators in the field of mobile telecommunication protocol, baseband processor, liquid crystal display, semiconductor fabrication, digital signal processors, digital receivers and tuners, image sensors, Internet security software, and various digital and analog circuit designs. Educated in Taiwan and Singapore in his early years, Albert is fluent in Mandarin Chinese. CREDENTIALS Education J.D., Loyola Law School, Los Angeles B.S., Electrical Engineering, University of Michigan, Ann Arbor Associations and Memberships Member, American Bar Association, Intellectual Property Section Member, American Intellectual Property Law Association Member, Asia Pacific Intellectual Property Association Member, International Trade Commission Trial Lawyer Association Honors Named to the 2015-2018 editions of the "Rising Stars" list published by Northern California Super Lawyers Admissions State Bar of California U.S.
    [Show full text]
  • ARM® Cortex® -M3 & M4 MCU Architecture
    ARM® Cortex ® -M3 & M4 MCU Architecture Introduction Many embedded developers are familiar with the ARM Cortex processor architecture, but few have the opportunity to become intimately acquainted enough of this popular architecture to take full advantage of its unique features and capabilities. This is especially true for the new ARM Cortex-M4 processor, which boasts an improved architecture, native digital signal processing (DSP) capabilities and an optional floating-point accelerator, which a savvy programmer or hardware engineer can exploit to their ad- vantage. Let’s take a closer look at some of the more interesting (and often-overlooked) features found in Cortex-M3 based microcontrollers (MCUs) as well as new M4 variants. Since many target applications for Cortex-M based MCUs are portable and derive their power from bat- teries or energy harvesting systems, most of the ideas we will explore involve techniques for reducing a design’s overall energy consumption. In many cases, however, these energy conservation techniques are also helpful tools for designing processor-optimized applications that provide: • More cost-effective solutions • More processing margin available for upgrades and new features • Performance and features that help products stand out in crowded markets. ARM Cortex Basics Much like the original 16-bit processor cores created by Advanced RISC Machines (ARM) in the 1980s, the ARM Cortex series is based on a Harvard-style RISC machine with a modest silicon footprint that en- ables high performance as well as code
    [Show full text]
  • Advanced Micro Devices (AMD)
    Strategic Report for Advanced Micro Devices, Inc. Tad Stebbins Andrew Dialynas Rosalie Simkins April 14, 2010 Advanced Micro Devices, Inc. Table of Contents Executive Summary ............................................................................................ 3 Company Overview .............................................................................................4 Company History..................................................................................................4 Business Model..................................................................................................... 7 Market Overview and Trends ...............................................................................8 Competitive Analysis ........................................................................................ 10 Internal Rivalry................................................................................................... 10 Barriers to Entry and Exit .................................................................................. 13 Supplier Power.................................................................................................... 14 Buyer Power........................................................................................................ 15 Substitutes and Complements............................................................................ 16 Financial Analysis ............................................................................................. 18 Overview ............................................................................................................
    [Show full text]