Sepro Blackhawk 100 Cone Crushers

Total Page:16

File Type:pdf, Size:1020Kb

Sepro Blackhawk 100 Cone Crushers 1 SEPRO BLACKHAWK 100 CONE CRUSHERS APPLICATIONS OPTIMIZED DESIGN PAIRED WITH PROVEN DURABILITY Mining ■ Ball mill feed, pebble crushing The Sepro Blackhawk 100 Cone Crusher is a modern, Aggregates hydraulically operated cone crusher designed to be simple, ■ Road, concrete, asphalt, mining haul roads rugged and effective for heavy duty mining and aggregate ■ Secondary or tertiary crushing applications applications. The combination of the speed and eccentric KEY ADVANTAGES throw of the crusher provides fine crushing capability and high capacity in a very compact design. The Blackhawk is ■ High quality components ■ Durable and compact design capable of being applied as a secondary or tertiary crusher ■ Readily available spare parts as well as a pebble crusher. ■ Fast delivery schedule ■ High capacity for small head diameter (690 mm) The Blackhawk 100 is driven directly via a flexible coupling ■ High speed, eccentric throw to the electric drive motor. This arrangement eliminates ■ High horsepower motor (90 kW) the need for sheaves and v-belts, allowing for simplified ■ Does not require sheaves and v-belts operation and maintenance. A variable speed drive ■ Simplified operation and maintenance package is included to optimize the speed of the machine ■ Variable speed drive included to the given liner profile, feed and production conditions. ■ Patented (pending) tension lock bolt arrangement creates tension around top bolt for liner retention The patented (pending) lock bolt design for holding the ■ Dual action hydraulic cylinder and hydraulic adjustment cone liner in place eliminates the need for a torch or burning ring. Any potential for damage during liner changes is also eliminated. In the event of tramp material entering the crusher, the hydraulic cylinder allows for the release of the material. For larger material the cylinder may be engaged to clear the chamber. SEPRO BLACKHAWK 100 CONE CRUSHERS BLACKHAWK 100 SPECIFICATIONS CLOSED SETTING (mm) TONNES / 8 10 13 16 19 22 25 32 POWER WEIGHT HOUR (5/16") (3/8") (1/2") (5/8") (3/4") (7/8") (1") (1¼") (kW) (Kg) Mtph 45-65 50-75 55-85 65-95 70-100 75-105 80-115 95-145 90 7700 Feed MAXIMUM MINIMUM Opening CRUSHER FEED DISCHARGE CAVITY OPENING SETTING SELECTION (mm) (mm) FINE 105 8 MEDIUM 119 10 COARSE 142 16 Discharge Note: Specifications are job/project dependent and/or application Setting specific. Please check with Sepro sales representative. Sepro Mineral Systems Corp. 9850 201 Street, Langley, British Columbia, Canada V1M 4A3 Office: +[1] 604.888.5568 • Fax: +[1] 604.888.5521 • Toll free: +[1] 800.990.5568 North America [email protected] • www.seprosystems.com REV 03 • 08/12/2015 2 SEPRO TYRE DRIVE SCRUBBERS APPLICATIONS FEED SIZE UP TO 600 MM WITH A SUPERIOR MECHANICAL DRIVE SYSTEM ■ Processing of wet tropical laterites prior to recovery of nickel and cobalt Sepro Tyre Drive Scrubbers feature a rugged, simple ■ Washing of laterites to liberate fine precious metals for design and incorporate robust components to give low gravity recovery capital and operating costs combined with high availability. ■ Removal of clay from hard rock ores prior to crushing Operating in many applications on feeds with high clay ■ Washing of crushed aggregate, gravel and sand to remove contents, Sepro Scrubbers are well proven as the optimum clay contamination choice for difficult ore and stone washing duties. The variable ■ Cleaning of contaminated soil and rubble frequency drive (VFD) package accompanying each unit KEY ADVANTAGES allows you to fine tune the operation of the scrubber based on the application. No auxiliary drive is required to perform ■ Short delivery times maintenance. Sepro Scrubber shells are manufactured in ■ Low installation costs with no heavy foundation requirements one piece to high quality standards and are thermally stress ■ No critical components such as ring gears, chain drive, steel relieved to eliminate localized high stress areas. wheels or trunnion bearings ■ Standard, off-the-shelf major components to minimize The machine utilizes the Sepro Pneumatic Tyre Drive System any downtime (PTD) which provides an alternative to standard chain and ■ Commercial heavy truck tyres that can easily be sourced locally gear drive systems. This system of rubber tyres mounted ■ Units are all pre-assembled and shop tested on independent gear boxes provides excellent serviceability ■ Rubber shell liners and lifters for long life and ease of replacement and reliability, having been well proven in numerous difficult ■ Shell supported design allows for quick and efficient maintenance applications. An instrumental feature accompanying Sepro’s tyre driven equipment is the tyre pressure monitoring system (TPMS) which comes standard with each Sepro rotary control console. Sepro operates pilot scale facilities, which generate reliable data for scale up to commercial operation. Pilot scale machines are also supplied for field test purposes. SEPRO TYRE DRIVE SCRUBBERS STANDARD SCRUBBER SIZES DIA. X L (m) INSTALLED POWER (kW) 1.2 x3.0 15 1.5 x 3.6 30 1.8 x 3.6 44 2.1 x 4.0 75 2.1 x 5.0 90 8 ft. x 14 ft. (2.4 x 4.2) 110* 2.5 x 6.0 135 – 165 3.0 x 8.0 220 – 300 2.4 x 4.2 Sepro Scrubber Sepro Pneumatic Tyre Drive System (PTD) 3.6 x 10.0 450 – 550 3.6 x 12.0 540 – 660 *Engineered replacement for North American built 8 ft. x 14 ft. Scrubber. Heavy Duty Rubber Thrust Rings Segmented Liner and Lifter bar Discharge Feed Chute Assembly Throat Liners Heavy Duty One (1) Piece Shell Weldment. Thermally Stress Relieved. Rubber Lined Conventional Discharge Cone High Efficiency Electric Motor Rinse Water Hydraulic Jacking Cradle Commercial Bevel / Heavy Structural Heavy Duty Custom Engineered Optional Trommel Helical Gear Box Base Frame Commercial Rim and Hub Screen Discharge Pneumatic Tyres Assembly Sepro Mineral Systems Corp. 9850 201 Street, Langley, British Columbia, Canada V1M 4A3 Office: +[1] 604.888.5568 • Fax: +[1] 604.888.5521 • Toll free: +[1] 800.990.5568 North America [email protected] • www.seprosystems.com 3 SEPRO TYRE DRIVE GRINDING MILLS APPLICATONS SHORT DELIVERIES AND LOW CAPITAL COST ■ Small tonnage plants – primary grinding Sepro Tyre Drive Grinding Mills are a reliable solution ■ Regrinding mills for small and medium capacity grinding applications, ■ Reagent prep and are suitable for Ball, Rod and Pebble charges. Mills ■ Lime slaking come complete with a variable frequency drive (VFD) KEY ADVANTAGES package which allows you to fine tune the operation of the mill based on the charge and application. No auxiliary ■ Short delivery times drive is required to perform maintenance, which is done ■ Low installation costs with no heavy foundation requirements ■ No critical components such as ring gears, chain drive, steel quickly with minimal heavy lifting due to the simple wheels or trunnion bearings removal of the grate or discharge head to access the ■ Standard, off-the-shelf major components to minimize mill internals. Sepro Mill shells are manufactured in one any downtime piece to high quality standards and are thermally stress ■ Commercial heavy truck tyres that can easily be sourced locally relieved to eliminate localized high stress areas. ■ Units are all pre-assembled and shop tested ■ Rubber shell liners and lifters for long life and ease of replacement The machine utilizes the Sepro Pneumatic Tyre Drive ■ Shell supported design allows for quick and efficient maintenance System (PTD) which provides an alternative to standard ■ Various configurations available (overflow or grate discharge) trunnion supported mills. This system of rubber tyres mounted on independent gear boxes provides excellent serviceability and reliability, having been well proven in numerous difficult applications. An instrumental feature accompanying Sepro’s tyre driven equipment is the tyre pressure monitoring system (TPMS) which comes standard with each Sepro rotary control console. Pilot scale mills are also available for pilot plant and laboratory use. SEPRO TYRE DRIVE GRINDING MILLS STANDARD MILL SIZES DIA. X L (m) INSTALLED POWER (kW) 1.05 x 1.4 18 1.2 x 2.3 37 1.5 x 3.0 75 1.8 x 3.6 150 2.1 x 4.0 220 2.1 x 6.0 330 1.8 x 3.6 Sepro Ball Mill Sepro Pneumatic Tyre Drive System (PTD) Feed Chute Heavy Duty Rubber Thrust Liner and Lifter bar Rings Assembly Heavy Duty One (1) Piece Shell Weldment. Thermally Rubber Lined Stress Relieved. Discharge Cone Conventional High Efficiency Inspection Electric Motor Manhole OVERFLOW VERSION Discharge Grate Commercial Bevel / Helical Gear Box Heavy Structural Heavy Duty Custom Engineered Base Frame Commercial Rim and Hub Pneumatic Tyres Assembly Sepro Mineral Systems Corp. 9850 201 Street, Langley, British Columbia, Canada V1M 4A3 Office: +[1] 604.888.5568 • Fax: +[1] 604.888.5521 • Toll free: +[1] 800.990.5568 North America [email protected] • www.seprosystems.com 4 FALCON SEMI-BATCH (SB) CONCENTRATORS APPLICATIONS COARSE AND FINE PRECIOUS METAL RECOVERY ■ Recovery of gold, silver and platinum group metals Falcon SB Concentrators are known as “Semi-Batch” ■ Recovery of gold from cyclone feed, underflow or overflow because they continually accept feed during the run cycle, within the grinding circuit but only produce concentrate during the periodic rinse ■ Recovery of gold in alluvial gold operations cycles. Run times span from five minutes to several hours, ■ Recovery of gold from aggregate plants depending on the application. Rinse times are generally less KEY ADVANTAGES than a minute as Falcon Concentrators utilize a dynamic braking system to quickly slow the bowl down, rinse out ■ Unit capacities up to 400 t/h the concentrate, and then return to full operational speed. ■ The variable frequency drive (VFD) and a dynamic breaking Equipped with a variable frequency drive, this gravity system are used to greatly reduce offline time for concentrate concentrator can operate anywhere from 50 to 200 G’s. flushing ■ Flat lid modular design increases wear life and reduces downtime The typical application for a Falcon SB Concentrator is as well as maintenance costs recovering liberated precious metals (Au, Ag, Pt, etc.) within ■ Upgraded standard fluidization control results in a higher degree a grinding circuit.
Recommended publications
  • How to Recover Ultra-Fine Particles
    How to Recover Ultra-Fine Particles 1. BACKGROUND There is no controversy around the fact that mineral processing keeps getting harder and harder. Mineral deposits are getting more challenging and complex as mining companies are forced to bring new, low quality mines into production and try to squeeze as much as they can out of the long- neglected nether regions of existing ore bodies. Increasingly there is also a mandate to get more out of each tonne of ore processed and the focus often falls on fine (-75 micron) and ultra-fine (-38 micron) particles that historically might have been sent straight to the tailings dam. Why send these particles straight to the tailings dam? There are several problems that fine and ultra- fine particles can cause depending on the process. In gold leaching operations they can cause carbon fouling or interfere with Merrill-Crowe. Fines are notorious for being difficult to selectively float as well as degrading the selective flotation of coarser particles when they are intermixed. Filtration capacity is dramatically decreased when fines are present. With the exception of cyanide leaching for gold, fine and ultra-fines have traditionally proven to be very difficult to selectively recovery. Combining the process issues with challenges in selective recovery, many mines simply make the decision to remove the fines early in the process and send them straight to tailings. In fact, we have seen tin, tungsten and tantalum mines reject more than 10% of the target mineral in slime reject streams. ide Recovery (%) Recovery ide ph l Su Particle Size (microns) Figure 1: Sulphide flotation on 2 different ores (Feng & Aldrich, 1999) 2.
    [Show full text]
  • Gravity Concentration in Artisanal Gold Mining
    minerals Review Gravity Concentration in Artisanal Gold Mining Marcello M. Veiga * and Aaron J. Gunson Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; [email protected] * Correspondence: [email protected] Received: 21 September 2020; Accepted: 13 November 2020; Published: 18 November 2020 Abstract: Worldwide there are over 43 million artisanal miners in virtually all developing countries extracting at least 30 different minerals. Gold, due to its increasing value, is the main mineral extracted by at least half of these miners. The large majority use amalgamation either as the final process to extract gold from gravity concentrates or from the whole ore. This latter method has been causing large losses of mercury to the environment and the most relevant world’s mercury pollution. For years, international agencies and researchers have been promoting gravity concentration methods as a way to eventually avoid the use of mercury or to reduce the mass of material to be amalgamated. This article reviews typical gravity concentration methods used by artisanal miners in developing countries, based on numerous field trips of the authors to more than 35 countries where artisanal gold mining is common. Keywords: artisanal mining; gold; gravity concentration 1. Introduction Worldwide, there are more than 43 million micro, small, medium, and large artisanal miners extracting at least 30 different minerals in rural regions of developing countries (IGF, 2017) [1]. Approximately 20 million people in more than 70 countries are directly involved in artisanal gold mining (AGM), with an estimated gold production between 380 and 450 tonnes per annum (tpa) (Seccatore et al., 2014 [2], Thomas et al., 2019 [3], Stocklin-Weinberg et al., 2019 [4], UNEP, 2020 [5]).
    [Show full text]
  • Application of Falcon Centrifuge As a Cleaner Alternative for Complex Tungsten Ore Processing
    minerals Article Application of Falcon Centrifuge as a Cleaner Alternative for Complex Tungsten Ore Processing Yann. Foucaud 1,* , Quentin Dehaine 1,2 , Lev. O. Filippov 1,3,* and Inna V. Filippova 1,3 1 GeoRessources Laboratory CNRS, Université de Lorraine, F54000 Nancy, France 2 Camborne School of Mines, University of Exeter, Penryn Campus, Cornwall TR10 9EF, UK 3 National University of Science and Technology MISIS, 119049 Moscow, Russia * Correspondence: [email protected] (Y.F.); lev.fi[email protected] (L.O.F.) Received: 15 June 2019; Accepted: 17 July 2019; Published: 19 July 2019 Abstract: Scheelite (CaWO4) is one of the main raw material for the production of tungsten. It is usually encountered in skarn deposits where it is commonly associated with other calcium minerals as fluorite, apatite, and calcium silicates. Worldwide, scheelite is upgraded to the chemical grades by direct flotation, but the separation efficiency remains limited due to similar flotation behaviors of scheelite and gangue minerals with fatty acid. The only solutions used to overcome this issue involve high energy consumption or ecotoxic reagents. In the present study, a novel method based on the use of a centrifugal Falcon concentrator was investigated to perform an efficient elimination of gangue minerals and fine particles as well as an acceptable scheelite recovery enabling a decrease of the flotation reagents consumption. The performances of the two types of laboratory Falcon bowls, Falcon UltraFine (UF) and Falcon Semi-Batch (SB), were modeled using the design of experiments (DoE) methodology, which allowed to determine the best operating parameters for each bowl.
    [Show full text]
  • GOLD EXTRACTION As the Discovery Rate and Grades Fall, John Chadwick
    GOLD EXTRACTION Midas mission As the discovery rate and grades fall, John Chadwick looks at ideas and technologies to get the most out of the world’s gold deposits he declining rate of new gold discoveries North America, although with significantly less MDM Engineering Group has signed an EPC contract for the execution of a 2.4 Mt/y gold and grades across the global market new ounces of 290 Moz, and with a much lower plant for African Barrick Gold’s (ABG) Tduring the last decade has accelerated grade of 1.3 g/t. Bulyanhulu Process Plant Expansion project in over the last four years. Data and analysis from Europe had the third most new discoveries Tanzania. ABG is the largest gold producer in Tanzania with a portfolio of four operating IntierraRMG reveals that the two-year period with 240 Moz but with a higher grade than North mines and is the owner and operator of from 2003 to 2004 was the best in the study America of 2.0 g/t. South America recorded 188 Bulyanhulu Gold Mine. MDM successfully range, with over 400 Moz of new gold Moz, whilst Australasia saw 74 Moz of new completed the bankable feasibility study in December 2011 followed by value engineering discovered. This includes Inferred, Indicated and discoveries with an average grade of 1.4 g/t. in March and April 2012. MDM is now executing Measured ounces with an average grade of 1.65 Glen Jones, Western Hemisphere Director for the project which includes construction of a g/t. In contrast, 2005 and 2006 had the lowest IntierraRMG concluded, “With global drilling new 2.4 Mt/y CIL (carbon in leach) facility to process tailings reclaimed from the historical number, with just over 150 Moz of new gold activity waning, IntierraRMG forecasts that the tailings concurrently with current flotation discovered - albeit with a similar grade.
    [Show full text]
  • Dense Media Separation – a Valuable Process for Preconcentration
    1 Dense Media Separation – a Valuable Process for Preconcentration M Lundt1, I Grewal 2 1. Senior Process Engineer, Sepro Mineral Systems, 101A – 9850 – 201 Street, Langley, British Columbia, Canada V1M 4A3, [email protected] 2. President, Met-Solve Laboratories Inc. 101B – 9850 – 201 Street, Langley, British Columbia, Canada V1M 4A3, [email protected] ABSTRACT Dense medium separation (DMS) is one of several preconcentration methods used for early waste rejection from run-of-mine ores at relatively coarse particle sizes prior to additional milling and beneficiation. DMS has been used extensively in the coal, diamond, mineral sands, base metals and iron ore industries to produce either a final product or as a preconcentration step. Laboratory scale and pilot test work at the Met-Solve laboratory in Canada has demonstrated successful separation and upgrading of other minerals such as lead, zinc, copper and lithium based ores using DMS. This paper reviews historical dense media systems, results from the pilot-scale multi-stage DMS Separator “Condor” system, as well as production plants and associated laboratory heavy liquid separation (HLS) test work on various minerals. The mineral systems tested included a lithium bearing ore and a fluorspar ore. Other minerals were tested but are not reported in this paper. Pilot plant test work on a fluorspar ore showed that 41.6% of the mass could be rejected to the tailings stream while 95.3% of the CaF2 was recoverable to the product stream. On a spodumene sample that was tested, it was possible to reject 55% of the mass to tailings while recovering over 90% of the lithium.
    [Show full text]
  • The Potential for Dense Medium Separation of Mineral Fines Using a Laboratory Falcon Concentrator
    Marion et al. The Potential for Dense Medium Separation of Mineral Fines Using a Laboratory Falcon Concentrator The Potential for Dense Medium Separation of Mineral Fines Using a Laboratory Falcon Concentrator C. Marion1, H. Williams1, R. Langlois1, O. Kökkılıç1, F. Coelho2, M. Awais3, N.A. Rowson2, K.E. Waters1* 1: Department of Mining and Materials Engineering, McGill University, 3610 University, Montreal, Quebec H3A 0C5, Canada 2: School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom 3: School of Metallurgy and Materials Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom *Author for Correspondence: [email protected] Abstract Dense medium separation (DMS) is a technique used to separate particles based on specific gravity. Conventional DMS is, however, limited to coarse particle sizes and is not practical when processing fines. To improve the separation efficiency when processing fine particles, centrifugal separators have been employed. This work investigated DMS in a lab centrifuge and a modified Falcon Concentrator, in order to process the slimes of a rare earth ore. It has been shown that centrifugal concentration using a dense medium is possible when recovering values from a slimes fraction. Both the lab centrifuge and modified Falcon Concentrator resulted in a similar performance. Keywords: Dense medium separation; Centrifugal separation; Falcon Concentrator; Fine particle separations 1 Marion et al. The Potential for Dense Medium Separation of Mineral Fines Using a Laboratory Falcon Concentrator 1 Introduction Dense medium separation (DMS) is a process by which particles are separated based on differences in specific gravity (SG). The process can be controlled with a high degree of precision over a wide range of separating densities and is commonly applied as a pre- concentration step for minerals (such as cassiterite) and in the separation of coal from contaminants (Wills and Finch, 2016).
    [Show full text]
  • The Effects of High-Power Microwaves on Comminution and Downstream Processing
    THE EFFECTS OF HIGH-POWER MICROWAVES ON COMMINUTION AND DOWNSTREAM PROCESSING by Adam Edward Olmsted A thesis submitted to the Department of Mining Engineering In conformity with the requirements for the degree of Master of Applied Science Queen’s University Kingston, Ontario, Canada (August, 2021) Copyright © Adam Olmsted, 2021 Abstract The incentive for this research was to assess the potential of microwave treatment to fracture ores and improve surface area to reduce comminution energy consumption and improve downstream recovery. Pilot-scale microwave treatment was performed on two ores: a gold ore and a copper-nickel sulphide ore. Three microwave tests were done for each ore: batch tests at low-power (BB) and high-power (BP), and a continuous belt test at high-power (CP). Treatment variables investigated were heating time, microwave power and particle size. Treated ore was then used to assess the impacts on comminution (ore competency and liberation). Additionally, impacts on leaching (gold ore) and roasting (sulphide ore) were studied. Surface area measurements showed improvements for each gold ore treatment; between a 2.5% and 21% increase in m2/g. The sulphide ore reported marginal increases to surface area, although the CP test showed a 7% improvement. While the differential heating improved surface area, comminution energy consumption was unchanged apart from the CP test, which reported a 19% decrease in SAG work index, WSDT. The treatments did not weaken the ore enough to reduce the energy consumption, but still promoted grinding that enhanced surface area. Liberation analysis confirmed this, showing increases to value sulphide liberation, particularly for the high-power tests.
    [Show full text]
  • 2014 Preliminary Economic Assessment of the Eagle Mountain
    PRELIMINARY ECONOMIC ASSESSMENT OF THE EAGLE MOUNTAIN SAPROLITE GOLD PROJECT, GUYANA for Report No. 977 A.C.A. Howe International Limited Toronto, Ontario, Canada Wm. Douglas Roy, M.A.Sc., P.Eng. Ian D. Trinder, M.Sc., P.Geo. Alex Lum, P.Eng. Mauritz Lundt, B.Eng., P.Eng. Effective Date: June 15, 2014 Signature Date: September 12, 2014 Effective Date: June 15, 2014 Signature Date: September 12, 2014 Report Number: 977 Client Reference: GOLDSOURCE MINES INC. PRELIMINARY ECONOMIC ASSESSMENT OF THE EAGLE MOUNTAIN SAPROLITE GOLD PROJECT, GUYANA Authors: Wm. Douglas Roy, M.A.Sc., P.Eng. “Signed and Sealed” Associate Mining Engineer _____________________ ACA Howe International Ian D. Trinder, M.Sc., P.Geo. “Signed and Sealed” Senior Geologist _____________________ ACA Howe International Alex Lum, P.Eng. “Signed and Sealed” Senior Metallurgist _____________________ Met-Solve Laboratories Inc. Mauritz Lundt, B.Eng., P.Eng. “Signed and Sealed” Senior Process Engineer _____________________ Sepro Mineral Systems 365 Bay Street, Suite 501, Toronto, ON, Canada, M5H2V1 (t) +1.416.368.7041, (f) +1.416.368.2579 Wingbury Courtyard Business Village, Upper Wingbury Farm, Wingrave, Aylesbury, Buckinghamshire, HP22 4LW, U.K. (t) +44.1442.873.398 website: www.acahowe.ca; www.acahowe.co.uk Office Locations: Toronto – London – Halifax TABLE OF CONTENTS 1 SUMMARY ......................................................................................................................................... 1 1.1 General ............................................................................................................................
    [Show full text]
  • Convention Program & Expo Guide
    THE CHANGING FACE OF MINING CONVENTION PROGRAM & EXPO GUIDE PROGRAMME DU CONGRÈS et GUIDE DE L’EXPO LE VISAGE CHANGEANT DE L’INDUSTRIE MINIÈRE ATION • IMPACT • INFORMATION • INNOVATION • INTELLIGENCE • INFLUENCE • APRIL 28–MAY 1, 2019 | 28 AVRIL AU 1ER MAI 2019 PALAIS DES CONGRÈS DE MONTRÉAL | MONTRÉAL, QUÉBEC | CONVENTION.CIM.ORG TECHNICAL PROGRAM MONDAY PROGRAMME TECHNIQUE LUNDI AM (10:50) Innovation, Automation and Optimizing Value 513A Data Managing Innovation 513C Operations: Case Studies and Data Driven Optimization in Mining 514B Best Practices Mining in Perspective and Looking Ahead 515A People and Communities Social License: From 101 to Complex Strategies 516A Sustainable Mining Holistic Mine Water Management 513E From Rocks to Resources Mineral Property Valuation Methods 516D Health and Safety Education and Risk Management 516B 7th North American Iron Ore Iron Ore Resources 516C Symposium PM (14:00) Innovation, Automation and Autonomous Mining 513A Data AI and Mining 513C Operations: Case Studies and Rock Engineering I (Underground) 514B Best Practices Processing 515A People and Communities Canadian Mining Education Forum: Integrating 516A Social Responsibility Sustainable Mining A Fresh Take on Maximizing Value 513E From Rocks to Resources Risk Management for Practitioners 516D Health and Safety J.T. Ryan Award Winners 2017 516B 7th North American Iron Ore Projects Overview 516C Symposium CONVENTION.CIM.ORG | 43 CIM CONVENTION | 2019 | CONGRÈS DE L’ICM MONDAY, APRIL 29 | 10:50 - 12:30 ROOM: 513A OPTIMIZING VALUE INNOVATION,
    [Show full text]
  • 49Th ANNUAL CANADIAN MINERAL PROCESSORS CONFERENCE
    Comminution Circuit Design Considerations 13:00 A New Method for the Stabilization of CANADIAN MINERAL PROCESSORS Paul Staples Arsenic from Enargite Concentrates Improving Concentrate Grade through Smart Design and Piloting Gabriel Garcia Curiel 14:25 Virginia Lawson Use of Functional Performance Models to 10:40 Increase Plant Grinding Efficiency 13:25 Economic Evaluation of Activated Carbon for Rob McIvor Gold Milling Circuits Online Elemental Analysis of Slurry using Mark Somppi Break Laser Induced Breakdown Spectroscopy Lauri Koresaar 11:05 15:20 Mini- 13:50 Selecting the Correct Cyanide Destruction Technical Review and Evaluation of Ore Process for Your Operation Sorting Technology Incorporating Results The Removal of Iron-bearing Silicate Schedule Minerals from a Hard Rock Lithium Ore Anca Nacu from Four Properties Brent Hilscher Charlotte Gibson TUESDAY Lunch 11:30 Break 15:45 GOLD 8:30 Spiral Surface Property Investigation FLOTATION 13:00 OPENING REMARKS Wynand Erasmus 14:45 Selecting the number of increments for Scott Martin 16:10 Improvement of Valuable Mineral Transport daily metallurgical samples: Application to PLENARY PRESENTATION and Gangue Drainage in Froth Flotation Goldcorp Eleonore Gold Ore Concentrator, Flash Flotation Circuit Design Considerations Quebec, Canada 15:10 8:45 Ben Murphy 13:25 Linking Flotation Efficiency to Bubble Size The Need to Innovate: Celebrate the Past.... Day 1 Concludes 16:35 Jose R. Hernandez-Aguilar Assessing the Total Cost of Representativity Look to the Future in Flotation Plants Dominic
    [Show full text]
  • Cutting Waste the Latest in Gravity Techniques, Ore Sorting and Magnetic Separation to Raise Separation Efficiency and Reduce Concentration Costs
    PRECONCENTRATION John Chadwick examines Cutting waste the latest in gravity techniques, ore sorting and magnetic separation to raise separation efficiency and reduce concentration costs “Sensor based automatic ore sorting technology. In bulk tests a very high waste The huge Natalka gold project, owned by Polyus, includes a three-stage gravity circuit; by technologies are used to efficiently remove reject rate of 92.2% was achieved with no gold far the world’s largest – with no less than 52 waste and sub marginal grade material from detected by assay in the waste (98.1% recovery centrifugal gravity concentrators, with sizes up crushed and screened run-of-mine (ROM) ore, assumed based on assay detection limit). As to 42 in. There are multiple concentrators from the two world leaders - FLSmidth’s Knelson producing a coarse (typically 10 mm) upgraded nearly 100% of the gold was recovered, a high > brand and Sepro Mineral Systems’ Falcon preconcentrate at an early stage in the mineral degree of liberation of mineralised quartz reef brand processing circuit. This avoids additional energy from gangue presumably exists at particle sizes intensive downstream processing of this between 25 mm and 60 mm. rejected component of the ROM feed, leading to “The financial modelling confirms robust doubled with ore sorting, from a bulk ROM lower unit operating costs and reduced tailings economics for the project. The base case grade of 0.8 g/t to a mill feed grade of 1.93 g/t disposal volumes.” These are comments from modelling of this potential operation indicates The flow sheet assumes 30% of the crushed and Tony Parry and G van Wyk of Steinert Australia that the grade of plant feed can be more than screened stockpile tonnage prior to sorting is - in their paper Upgrading Low-grade Gold Ore Stockpiles by Preconcentration Using Ore Sorting – an Assessment of the Economic Impact and Viability, presented at the 13th AusIMM Mill Operators’ Conference, October 2016.
    [Show full text]
  • Spreading the WORD
    CANADA ’ S FIRST MINING PUBLICATION CACANADIANNADIAN Mining JournalOctober 2014 Mwww.canadianminingjournal.comining Journal Spreading THE WORD Goldcorp’s Éléonore Mine in Quebec is ‘the place’ to work MINE RUNNER 35 ELGIN STREET, NORTH THORNBURY, ONTARIO 1.519.599.2015 www.rockbreaker.com CANADA, N0H 2P0 Departments 5 Editorial CANADIANCANADIAN This month Editor Russell Noble takes a whimsical look at what it’s like to be Mining Journal driven to near insanity by the swarms of insects that crews must endure while working at remote sites. CONTENTS 6 Investing Columnist Ned Goodman talks about money and the job situation. MINING IN QUEBEC 9 Law Goldcorp goes to great lengths Norton Rose Fulbright Canada’s Crae to help ensure that its Éléonore Garrett and Jean-Philipe Buteau explain Mine in northern Quebec meets Quebec’s Plan Nord program in detail. 10 high standards both in terms of production and accommodations. 44 Leadership Correspondent Carl Friesen discusses why companies need to offer more than mining skills when working on projects in foreign countries. 48 Company Profile Yokohama Tire (Canada) Inc is the sub- ject of this month’s Company Profile. 52 In My Mine(d) Doug Morrison, President of the Centre Stornoway’s Renard Mine for Excellence in Mining Innovations 38 continues on its way to (CEMI) of Sudbury talks about the orga- becoming Quebec’s first nization and its mandate to develop a Diamond mine. comprehensive, multi-disciplinary approach to making mining a safer and environmentally friendly industry. IAMGOLD transitions its 16 Westwood project from 54 Unearthing Trends a development site into a A regular column by Ernst & Young LLP, working mine with an Vancouver.
    [Show full text]