The Trisection of an Arbitrary Angle: a Condensed Classical Geometric Solution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extending Euclidean Constructions with Dynamic Geometry Software
Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015) Extending Euclidean constructions with dynamic geometry software Alasdair McAndrew [email protected] College of Engineering and Science Victoria University PO Box 18821, Melbourne 8001 Australia Abstract In order to solve cubic equations by Euclidean means, the standard ruler and compass construction tools are insufficient, as was demonstrated by Pierre Wantzel in the 19th century. However, the ancient Greek mathematicians also used another construction method, the neusis, which was a straightedge with two marked points. We show in this article how a neusis construction can be implemented using dynamic geometry software, and give some examples of its use. 1 Introduction Standard Euclidean geometry, as codified by Euclid, permits of two constructions: drawing a straight line between two given points, and constructing a circle with center at one given point, and passing through another. It can be shown that the set of points constructible by these methods form the quadratic closure of the rationals: that is, the set of all points obtainable by any finite sequence of arithmetic operations and the taking of square roots. With the rise of Galois theory, and of field theory generally in the 19th century, it is now known that irreducible cubic equations cannot be solved by these Euclidean methods: so that the \doubling of the cube", and the \trisection of the angle" problems would need further constructions. Doubling the cube requires us to be able to solve the equation x3 − 2 = 0 and trisecting the angle, if it were possible, would enable us to trisect 60◦ (which is con- structible), to obtain 20◦. -
Es, and (3) Toprovide -Specific Suggestions for Teaching Such Topics
DOCUMENT RESUME ED 026 236 SE 004 576 Guidelines for Mathematics in the Secondary School South Carolina State Dept. of Education, Columbia. Pub Date 65 Note- I36p. EDRS Price MF-$0.7511C-$6.90 Deseriptors- Advanced Programs, Algebra, Analytic Geometry, Coucse Content, Curriculum,*Curriculum Guides, GeoMetry,Instruction,InstructionalMaterials," *Mathematics, *Number ConCepts,NumberSystems,- *Secondar.. School" Mathematies Identifiers-ISouth Carcilina- This guide containsan outline of topics to be included in individual subject areas in secondary school mathematics andsome specific. suggestions for teachin§ them.. Areas covered inclUde--(1) fundamentals of mathematicsincluded in seventh and eighth grades and general mathematicsin the high school, (2) algebra concepts for COurset one and two, (3) geometry, and (4) advancedmathematics. The guide was written With the following purposes jn mind--(1) to assist local .grOupsto have a basis on which to plan a rykathematics 'course of study,. (2) to give individual teachers an overview of a. particular course Or several cOur:-:es, and (3) toprovide -specific sUggestions for teaching such topics. (RP) Ilia alb 1 fa...4...w. M".7 ,noo d.1.1,64 III.1ai.s3X,i Ala k JS& # Aso sA1.6. It tilatt,41.,,,k a.. -----.-----:--.-:-:-:-:-:-:-:-:-.-. faidel1ae,4 icii MATHEMATICSIN THE SECONDARYSCHOOL Published by STATE DEPARTMENT OF EDUCATION JESSE T. ANDERSON,State Superintendent Columbia, S. C. 1965 Permission to Reprint Permission to reprint A Guide, Mathematics in Florida Second- ary Schools has been granted by the State Department of Edu- cation, Tallahassee, Flmida, Thomas D. Bailey, Superintendent. The South Carolina State Department of Education is in- debted to the Florida State DepartMent of Education and the aahors of A Guide, Mathematics in Florida Secondary Schools. -
A Dynamic Epistemic Logic Analysis of Equality Negation and Other Epistemic Covering Tasks$,$$
A Dynamic Epistemic Logic Analysis of Equality Negation and other Epistemic Covering TasksI,II Hans van Ditmarscha, Eric´ Goubaultb, Marijana Lazi´cc, J´er´emy Ledentd, Sergio Rajsbaume aUniversit´ede Lorraine, CNRS, LORIA, F-54000 Nancy, France bLIX, CNRS, Ecole´ Polytechnique, Institute Polytechnique de Paris, France cTechnical University of Munich, Germany dDepartment of Computer and Information Sciences, University of Strathclyde, UK eInstituto de Matem´aticas, UNAM, Mexico Abstract In this paper we study the solvability of the equality negation task in a simple wait- free model where two processes communicate by reading and writing shared variables or exchanging messages. In this task, the two processes start with a private input value in the set f0; 1; 2g, and after communicating, each one must decide a binary output value, so that the outputs of the processes are the same if and only if the input values of the processes are different. This task is already known to be unsolvable; our goal here is to prove this result using the dynamic epistemic logic (DEL) approach introduced by Goubault, Ledent and Rajsbaum in GandALF 2018. We show that in fact, there is no epistemic logic formula that explains why the task is unsolvable. Furthermore, we observe that this task is a particular case of an epistemic covering task. We thus establish a connection between the existing DEL framework and the theory of covering spaces in topology, and prove that the same result holds for any epistemic covering task: no epistemic formula explains the unsolvability. Keywords: Dynamic Epistemic Logic, distributed computing, equality negation, combinatorial topology, covering spaces. -