3Rd Dimension Veritas Et Visus August 2009 Vol 4 No 7/8
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stereo Capture and Display At
Creation of a Complete Stereoscopic 3D Workflow for SoFA Allison Hettinger and Ian Krassner 1. Introduction 1.1 3D Trend Stereoscopic 3D motion pictures have recently risen to popularity once again following the success of films such as James Cameron’s Avatar. More and more films are being converted to 3D but few films are being shot in 3D. Current available technology and knowledge of that technology (along with cost) is preventing most films from being shot in 3D. Shooting in 3D is an advantage because two slightly different images are produced that mimic the two images the eyes see in normal vision. Many take the cheaper route of shooting in 2D and converting to 3D. This results in a 3D image, but usually nowhere near the quality as if the film was originally shot in 3D. This is because a computer has to create the second image, which can result in errors. It is also important to note that a 3D image does not necessarily mean a stereo image. 3D can be used to describe images that have an appearance of depth, such as 3D animations. Stereo images refer to images that make use of retinal disparity to create the illusion of objects going out of and into the screen plane. Stereo images are optical illusions that make use of several cues that the brain uses to perceive a scene. Examples of monocular cues are relative size and position, texture gradient, perspective and occlusion. These cues help us determine the relative depth positions of objects in an image. Binocular cues such as retinal disparity and convergence are what give the illusion of depth. -
Robust Watermarking for Anaglyph 3D Images Using DWT Techniques
International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-6, June 2015 Robust Watermarking for Anaglyph 3D images Using DWT Techniques Ruchika Patel, Parth Bhatt 3D images section IV deals with proposed method of Abstract— In recent years the trend of 3D movies & watermarking, section V presents proposed method results. projection took a very intensive attention. Anaglyph images are Finally a conclusion will be presented in section VI. easily obtained by super impressive left and right eye images in different color planes of single image for subsequent viewing II. ANAGLYPH 3D IMAGE through colored glasses. Digital watermarking is a popular tool for copyright protection, content authentication, detection of Anaglyph 3D is the name given to the stereoscopic 3D illegal duplication and alteration, and secret communication. In outcome accomplished by means of converting each eye's this paper discrete wavelet transform (DWT) watermarking image using filters of different colors, typically red and cyan. algorithm is used for embedding an image as digital watermark Anaglyph 3D images contain two differently filtered colored on one of the stereo pair images and then combine with the other images, one for each eye. image to form a 3D anaglyph watermarked image. In the reverse process, Deanaglyph is used to separate the two stereoscopic images from which watermark is extracted. Embedding To create an anaglyph image, it is essential to have two watermark either in right image or left image yields more photos taken at the same time the photos should focus the security compared to embedding watermark directly into an same object, moving the camera laterally between 3 and 5 cm anaglyph image. -
Achieve Your Vision
ACHIEVE YOUR VISION NE XT GEN ready CryENGINE® 3 The Maximum Game Development Solution CryENGINE® 3 is the first Xbox 360™, PlayStation® 3, MMO, DX9 and DX10 all-in-one game development solution that is next-gen ready – with scalable computation and graphics technologies. With CryENGINE® 3 you can start the development of your next generation games today. CryENGINE® 3 is the only solution that provides multi-award winning graphics, physics and AI out of the box. The complete game engine suite includes the famous CryENGINE® 3 Sandbox™ editor, a production-proven, 3rd generation tool suite designed and built by AAA developers. CryENGINE® 3 delivers everything you need to create your AAA games. NEXT GEN ready INTEGRATED CryENGINE® 3 SANDBOX™ EDITOR CryENGINE® 3 Sandbox™ Simultaneous WYSIWYP on all Platforms CryENGINE® 3 SandboxTM now enables real-time editing of multi-platform game environments; simul- The Ultimate Game Creation Toolset taneously making changes across platforms from CryENGINE® 3 SandboxTM running on PC, without loading or baking delays. The ability to edit anything within the integrated CryENGINE® 3 SandboxTM CryENGINE® 3 Sandbox™ gives developers full control over their multi-platform and simultaneously play on multiple platforms vastly reduces the time to build compelling content creations in real-time. It features many improved efficiency tools to enable the for cross-platform products. fastest development of game environments and game-play available on PC, ® ® PlayStation 3 and Xbox 360™. All features of CryENGINE 3 games (without CryENGINE® 3 Sandbox™ exception) can be produced and played immediately with Crytek’s “What You See Is What You Play” (WYSIWYP) system! CryENGINE® 3 Sandbox™ was introduced in 2001 as the world’s first editor featuring WYSIWYP technology. -
Realityserver Installation Guide
RealityServer Êc Web Services 3.1 Installation Guide Document version 1.28 December 8, 2010 Installation Guide Copyright Information c 1986, 2011 NVIDIA Corporation. All rights reserved. This document is protected under copyright law. The contents of this document may not be translated, copied or duplicated in any form, in whole or in part, without the express written permission of NVIDIA Corporation. The information contained in this document is subject to change without notice. NVIDIA Corporation and its employees shall not be responsible for incidental or consequential damages resulting from the use of this material or liable for technical or editorial omissions made herein. NVIDIA, the NVIDIA logo, and DiCE, imatter, iray, mental cloud, mental images, mental matter, mental mesh, mental mill, mental queue, mental ray, Metanode, MetaSL, neuray, Phenomenon, RealityDesigner, RealityPlayer, RealityServer, rendering imagination visible, Shape-By-Shading, and SPM, are trademarks and/or registered trademarks of NVIDIA Corporation. Other product names mentioned in this document may be trademarks or registered trademarks of their respective companies and are hereby acknowledged. Installation, doc. 1.28 c 1986, 2011 NVIDIA Corporation. Table of Contents Table of Contents System Requirements 1 Memory 1 Processors 1 Graphics Card 1 Operating System 4 Network 4 RealityServer Web Services Installation 5 Firewalls 5 Network Buffers 5 Software Protection Manager (SPM) 5 RealityServer Web Services Networking Setup 6 Network Setup 6 c 1986,2011NVIDIACorporation. Installation,doc. 1.28 i Table of Contents ii Installation, doc. 1.28 c 1986, 2011 NVIDIA Corporation. System Requirements— Graphics Card System Requirements Memory Memory requirements greatly depend on the size of the 3D scene, and the number of different scenes concurrently loaded. -
Spacespex™ Anaglyph—The Only Way to Bring 3Dtv to the Masses
SPACESPEX™ ANAGLYPH—THE ONLY WAY TO BRING 3DTV TO THE MASSES By Michael Starks © M. Starks 2009 May be reproduced provided nothing is added, omitted or changed-- including this copyright notice. SpaceSpex™ is the name I applied to my versions of the orange/blue anaglyph technique in 1993. In fact the Gang Li/ColorCode and some models of SpaceSpex use amber or orange/brown rather than yellow, but they are on a continuum. Like all the bicolor anaglyph methods it is compatible with all video equipment and displays and I think it’s the best of the methods using inexpensive paper glasses with colored lenses. Until someone comes up with a way to put hundreds of millions of new 3D TV’s in homes which can use polarized glasses or LCD shutter glasses, anaglyph is going to be the only way for mass distribution of full color high quality 3D over cable, satellite, the web or on DVD. However the solution I have proposed for Set Top Boxes, PC’s, TV sets and DVD players for the last 20 years is to have user controls, so those with display hardware that permits polarized or shutter glasses or even autostereo viewing or who want 2D can make that choice from the single 3D video file. This is the method of the TDVision codec, Next3D, and of Peter Wimmer’s famous StereoScopic Player (a new version due end of 2009), (all of which should appear in hardware soon) and probably the best stereoplayer of all in Masuji Suto’s StereoMovie Maker, and is being incorporated in most well known software DVD and media players. -
The Growing Importance of Ray Tracing Due to Gpus
NVIDIA Application Acceleration Engines advancing interactive realism & development speed July 2010 NVIDIA Application Acceleration Engines A family of highly optimized software modules, enabling software developers to supercharge applications with high performance capabilities that exploit NVIDIA GPUs. Easy to acquire, license and deploy (most being free) Valuable features and superior performance can be quickly added App’s stay pace with GPU advancements (via API abstraction) NVIDIA Application Acceleration Engines PhysX physics & dynamics engine breathing life into real-time 3D; Apex enabling 3D animators CgFX programmable shading engine enhancing realism across platforms and hardware SceniX scene management engine the basis of a real-time 3D system CompleX scene scaling engine giving a broader/faster view on massive data OptiX ray tracing engine making ray tracing ultra fast to execute and develop iray physically correct, photorealistic renderer, from mental images making photorealism easy to add and produce © 2010 Application Acceleration Engines PhysX • Streamlines the adoption of latest GPU capabilities, physics & dynamics getting cutting-edge features into applications ASAP, CgFX exploiting the full power of larger and multiple GPUs programmable shading • Gaining adoption by key ISVs in major markets: SceniX scene • Oil & Gas Statoil, Open Inventor management • Design Autodesk, Dassault Systems CompleX • Styling Autodesk, Bunkspeed, RTT, ICIDO scene scaling • Digital Content Creation Autodesk OptiX ray tracing • Medical Imaging N.I.H iray photoreal rendering © 2010 Accelerating Application Development App Example: Auto Styling App Example: Seismic Interpretation 1. Establish the Scene 1. Establish the Scene = SceniX = SceniX 2. Maximize interactive 2. Maximize data visualization quality + quad buffered stereo + CgFX + OptiX + volume rendering + ambient occlusion 3. -
Virtual Reality and Visual Perception by Jared Bendis
Virtual Reality and Visual Perception by Jared Bendis Introduction Goldstein (2002) defines perception as a “conscious sensory experience” (p. 6) and as scientists investigate how the human perceptual system works they also find themselves investigating how the human perceptual system doesn’t work and how that system can be fooled, exploited, and even circumvented. The pioneers in the ability to control the human perceptual system have been in the field of Virtual Realty. In Simulated and Virtual Realities – Elements of Perception, Carr (1995) defines Virtual Reality as “…the stimulation of human perceptual experience to create an impression of something which is not really there” (p. 5). Heilig (2001) refers to this form of “realism” as “experience” and in his 1955 article about “The Cinema of the Future” where he addresses the need to look carefully at perception and breaks down the precedence of perceptual attention as: Sight 70% Hearing 20% Smell 5% Touch 4% Taste 1% (p. 247) Not surprisingly sight is considered the most important of the senses as Leonardo da Vinci observed: “They eye deludes itself less than any of the other senses, because it sees by none other than the straight lines which compose a pyramid, the base of which is the object, and the lines conduct the object to the eye… But the ear is strongly subject to delusions about the location and distance of its objects because the images [of sound] do not reach it in straight lines, like those of the eye, but by tortuous and reflexive lines. … The sense of smells is even less able to locate the source of an odour. -
Game Engines in Game Education
Game Engines in Game Education: Thinking Inside the Tool Box? sebastian deterding, university of york casey o’donnell, michigan state university [1] rise of the machines why care about game engines? unity at gdc 2009 unity at gdc 2015 what engines do your students use? Unity 3D 100% Unreal 73% GameMaker 38% Construct2 19% HaxeFlixel 15% Undergraduate Programs with Students Using a Particular Engine (n=30) what engines do programs provide instruction for? Unity 3D 92% Unreal 54% GameMaker 15% Construct2 19% HaxeFlixel, CryEngine 8% undergraduate Programs with Explicit Instruction for an Engine (n=30) make our stats better! http://bit.ly/ hevga_engine_survey [02] machines of loving grace just what is it that makes today’s game engines so different, so appealing? how sought-after is experience with game engines by game companies hiring your graduates? Always 33% Frequently 33% Regularly 26.67% Rarely 6.67% Not at all 0% universities offering an Undergraduate Program (n=30) how will industry demand evolve in the next 5 years? increase strongly 33% increase somewhat 43% stay as it is 20% decrease somewhat 3% decrease strongly 0% universities offering an Undergraduate Program (n=30) advantages of game engines • “Employability!” They fit industry needs, especially for indies • They free up time spent on low-level programming for learning and doing game and level design, polish • Students build a portfolio of more and more polished games • They let everyone prototype quickly • They allow buildup and transfer of a defined skill, learning how disciplines work together along pipelines • One tool for all classes is easier to teach, run, and service “Our Unification of Thoughts is more powerful a weapon than any fleet or army on earth.” [03] the machine stops issues – and solutions 1. -
Acting for Film + Television Acting Essentials Learn More About the Program: Makeup Design for Film + Television Vfs.Edu/Acting
Acting for 12 Alumni The Flash Film + Television 3D Animation + Visual Effects Acting for Film + Television Acting Essentials Learn more about the program: Makeup Design for Film + Television vfs.edu/acting Connect with a VFS Advisor: vfs.edu/startnow For admission requirements go to: vfs.edu/portfolios 14 Alumni Dead Rising 4 Acting for Film + Television Game Design Sound Design for Visual Media 3D Animation + Visual Effects Classical Animation Foundation Visual Art + Design Writing for Film, Television + Games Check us out on YouTube! Visit the VFS YouTube channel and take a look at student projects, alumni interviews, and more! youtube.com/vancouverfilmschool Vancouver Film School 37 Alumni 9 Alumni Star Trek Beyond vancouverfilmschool 3D Animation + Visual Effects Legends of Tomorrow Film Production Acting for Film + Television Makeup Design for Film + Television Acting Essentials Acting for Film + Television @vfs Film Production Acting Essentials Makeup for Film + Television Digital Design Ready for Your Close-Up? vancouverfilmschool We’ll get you ready for the screen and beyond in just one year. VFS’s acclaimed one-year Acting program not only gives VFS has more than 13 Alumni $500,000 CAD in scholarships you in-depth training in camera skills, audition techniques, available! We’re searching worldwide for the most War for the Planet of the Apes movement, voice, and improvisation, but also what it really Acting for Film + Television creative candidates, traveling across countries takes to make it in the film and TV industry. You’ll acquire 3D Animation + Visual Effects Film Production and continents. We’re looking for your talent, your professional-level performance techniques and industry-ready passion, and your drive. -
Voice Overs: Where Do I Begin?
VOICE OVERS: WHERE DO I BEGIN? 1. WELCOME 2. GETTING STARTED 3. WHAT IS A VOICE OVER? 4. ON THE JOB 5. TODAY’S VOICE 6. UNDERSTANDING YOUR VOICE 7. WHERE TO LOOK FOR WORK 8. INDUSTRY PROS AND CONS 9. HOW DO I BEGIN? 2 WELCOME Welcome! I want to personally thank you for your interest in this publication. I’ve been fortunate to produce voice overs and educate aspiring voice actors for more than 20 years, and it is an experience I continue to sincerely enjoy. While there are always opportunities to learn something new, I feel that true excitement comes from a decision to choose something to learn about. As is common with many professions, there’s a lot of information out there about the voice over field. The good news is that most of that information is valuable. Of course, there will always be information that doesn’t exactly satisfy your specific curiosity. Fortunately for you, there are always new learning opportunities. Unfortunately, there is also information out there that sensationalizes our industry or presents it in an unrealistic manner. One of my primary goals in developing this publication is to introduce the voice over field in a manner that is realistic. I will share information based on my own experience, but I’ll also share information from other professionals, including voice actors, casting professionals, agents, and producers. And I’ll incorporate perspective from people who hire voice actors. After all, if you understand the mindset of a potential client, you are much more likely to position yourself for success. -
Dolby 3D Brochure
Dolby 3D Makes Good Business Sense Premium Quality Dolby 3D provides a thrilling audience experience and a powerful box-office attraction. It’s also more cost-effective and better Widely recognized as producing the best 3D image, Dolby for the environment than systems that use disposable glasses. Another key feature: Dolby 3D is part of an integrated suite of 3D provides an amazingly sharp picture with brighter, more Dolby Digital Cinema products from a company with over 40 years of cinematic innovation. natural colors—giving your audiences an unparalleled 3D experience they’ll want to return for again and again. Keep More 3D Profit Dolby 3D Return on Investment Dolby 3D is a one-time investment—no annual licensing fees ROI or revenue sharing. In fact, a complete Dolby 3D system generally pays for itself after only a few 3D releases. You $80K keep more of the additional revenues generated with Dolby $60K Flexible 3D and your ROI continues to improve over time. $40K Dolby 3D wows audiences on any screen—either on $20K traditional white screens or on silver screens, allowing Durable and Eco-Friendly for greater scheduling flexibility. Easily switch between Engineered to resist damage and hold their shape, Dolby 3D $0 2D and 3D, and move films from one auditorium to glasses deliver a comfortable fit and the highest quality 3D ($20K) another without screen restrictions. experience for hundreds of uses, without ending up in landfills like disposables. Reduce, reuse, recycle—it's good ($40K) for business. 1 5 10 15 Number of Dolby 3D Releases* World-Class Support Dolby provides comprehensive support for our 3D solution, *Based on 7,500 admissions per title. -
Motion-In-Depth Perception and Prey Capture in the Praying Mantis Sphodromantis Lineola
© 2019. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2019) 222, jeb198614. doi:10.1242/jeb.198614 RESEARCH ARTICLE Motion-in-depth perception and prey capture in the praying mantis Sphodromantis lineola Vivek Nityananda1,*, Coline Joubier1,2, Jerry Tan1, Ghaith Tarawneh1 and Jenny C. A. Read1 ABSTRACT prey as they come near. Just as with depth perception, several cues Perceiving motion-in-depth is essential to detecting approaching could contribute to the perception of motion-in-depth. or receding objects, predators and prey. This can be achieved Two of the motion-in-depth cues that have received the most using several cues, including binocular stereoscopic cues such attention in humans are binocular: changing disparity and as changing disparity and interocular velocity differences, and interocular velocity differences (IOVDs) (Cormack et al., 2017). monocular cues such as looming. Although these have been Stereoscopic disparity refers to the difference in the position of an studied in detail in humans, only looming responses have been well object as seen by the two eyes. This disparity reflects the distance to characterized in insects and we know nothing about the role of an object. Thus as an object approaches, the disparity between the stereoscopic cues and how they might interact with looming cues. We two views changes. This changing disparity cue suffices to create a used our 3D insect cinema in a series of experiments to investigate perception of motion-in-depth for human observers, even in the the role of the stereoscopic cues mentioned above, as well as absence of other cues (Cumming and Parker, 1994).