<<

ObservationalObservational CosmologyCosmology -- thethe DarkDark UniverseUniverse --

Ariel Goobar Physics Department, Stockholm University Evidence for DM Evidence for DE primer Hands-On cosmology

Cross-cutting techniques: CMB, Lensing, LSS, BAO New SN data-sets

Ongoing and Future projects

2 CosmologyCosmology && NewNew PhysicsPhysics

• Cosmic inventory: best evidence for new microphysics!

3 TheThe ””oldold”” newsnews

Dark Matter Rotation curves of spiral : pioneered by J.Oort in 30’s

Y. Sofue, 1997

mv 2 (r) Centripetal force F = GMN visible c r ⇒≈vr() M(r)m r Gravity: F = G g N r2 ButBut rotation rotation curves curves are are flat! flat! FF= & MrM ( ) = cg visible ⇒⇒DarkDark Matter! Matter! 5 DarkDark MatterMatter contents and rotation curves

DarkDark mattermatter needed needed to to explainexplain rotation rotation curves curves ofof galaxiesgalaxies

Jungman et al, Phys. Rep. 267(1996)195. 6 DarkDark MatterMatter atat largerlarger scalesscales:: clustersclusters ofof galaxiesgalaxies

F.Zwicky (1933) measured Coma cluster individual velocities of galaxies in Coma and concluded that ~10 times more 7 mass than Mvisible needed DarkDark MatterMatter inin action:action: thethe bulletbullet clustercluster

DM separarted from the gas: MOND does not work!

Clowe et al 06 8 SoSo whatwhat’’ss goinggoing on?on?

”Collisionless” matter needed= DM

9 TheThe leadingleading candidatecandidate:: lightestlightest SUSYSUSY particleparticle

Supersymmetri: from particle physics and string theory.

Normal particles / fields Supersymmetric particles / fields Interaction eigenstates Mass eigenstates Symbol Name Symbol Name Symbol Name q = d,c,b,u,s,t quark q˜ L ,q˜ R squark q˜ 1,q˜ 2 squark l = e, µ,τ ˜ ˜ ˜ ˜ lepton l L ,l R slepton l 1,l 2 slepton

ν = ν e ,ν µ ,ντ ν˜ sneutrino ν˜ sneutrino g gluon g˜ gluino g˜ gluino W ± W-boson W˜ ± wino ± χ˜ 1, 2 chargino m ˜ m } H Higgs boson H1/2 Higgsino B B-field B˜ bino ⎫ 3 3 3 ⎪ W W -field W˜ wino ⎪ 0 ⎬ χ˜ 0 H1 Higgs boson ˜ 0 Higgsino 1,2,3,4 neutralino 0 H1 ⎪ H Higgs boson 0 2 H˜ Higgsino ⎪ 0 Higgs boson 2 ⎭ H31 R=+1 R=Š1 Perfect DM candidate!

10 TheThe ””newernewer”” newsnews

Dark Energy SCP:Perlmutter et al + High-Z Team:Riess et al

Supernova Cosmology Project (SCP)

12 TheThe breakthroughbreakthrough!!

13 ExpandingExpanding UniverseUniverse

• The equations governing the expansion of the are the Friedmann equation (FE) and the acceleration equation. • These are derived from the Einstein equation: 1 R −−Λ=gR g8π GT µνµν2 µν µν

applied to a homogeneous and isotropic Universe, i.e. in the RW metric. • Friedmann equation:

2 ⎛⎞. aGk8π H 2 = ⎜⎟=− ⎜⎟aa3 ρ 2 ⎝⎠

• Acceleration equation:

.. aG4π =−() +3p a 3 ρ

• Where ρ(t) and p(t) are the energy density and pressure driving the expansion of the

Universe. H is the Hubble parameter (H0 corresponds to the present value). 14 TheThe ContentsContents ofof thethe UniverseUniverse

• There is a third equation that can be derived from the Friedmann equation and the Acceleration equation, the Fluid equation (also called continuity equation):

. ρρ+ 3(Hp+= )0 • The energy density is made up of different types of matter characterized by their equation of state: pw= ρ • At least three types of “fluids” are used to describe the energy content of the Universe Radiation, w=⅓ non-relativistic matter, w=0 vacuum energy, w=-1. • Inserting the equation of state into the acceleration eqn into we see that:

.. aG4π =−()13 + w a 3 ρ

• Thus, a fluid with w<-1/3 (if dominant) can make the universe accelerate . As we shall see later on, other kinds of energy types with negative w have been suggested, these all fall under the general name “”. 15 CriticalCritical densitydensity

• It is often useful to rewrite the energy density components in units of the critical density: 3H 2 ρ c = 8πG • How do we see that this should be the critical density? By examining the Friedmann equation for the flat case k=0 which corresponds to the critical density. • In a Λ=0 universe. If k>0, will eventually hit zero i.e bounce, if k<0 the density is under-critical and does not have a singularity. • The present value of the critical density is: ρc=1.9h2×10-29 g/cm3 2 11 3 = 2.8 h ×10 M☼/Mpc = 11.3 h2 protons/m3 • The energy density terms are diluted with the expansion of the

universe as [a0=a(t0); t0 = now]:

3(1+w ) ⎛⎞a0 3(1+w ) ρρ==+ ρ00⎜⎟ (1z ) ⎝⎠a 16 CosmologicalCosmological parametersparameters

ρ0 8πG Ω=M c = 2 ρ0 ρ003H 8πG Ω Xxxx==⋅2 ρ ;where pwρ 3H0 k Ω=−K 22 aH00 Λ w =−1; ΩX ≡ΩΛ = 2 3H0 17 LuminosityLuminosity DistanceDistance

cz⋅+(1 ) ⎛⎞zE dz dF=ΩE ⎜⎟ LK⎜⎟∫ Hz() ΩK ⎝⎠0

• where F(x) = sin(x) for a closed universe, sinh(x) for an open universe and x for a

flat universe. In the latter case the ΩK terms are set to 1.

22⎡⎤ 3 2 HH=Ω++Ω++⋅Ω0 ⎣⎦MK(1 z ) (1 z ) fz ( ) X where ⎡⎤z 1()+ wx fz()exp3= ⎢⎥∫ dx ⎣⎦0 1+ x

18 WhatWhat isis aa SNSN Ia?Ia? AA ToyToy ModelModel

19 TychoTycho’’ss SNSN 1572:1572: aa companioncompanion foundfound??????

20 HowHow doesdoes aa TypeType IaIa SNSN looklook like?like?

Soon after the explosion SN2003duSN2003du

Credit: V.Stanishev 22 SupernovaSupernova classificationclassification

23 SNIaSNIa spectrumspectrum

Fingerprint of Ia’s: Fλ Si 6150 Å feature

λ

24 SNSN opticaloptical lightcurveslightcurves

SNIa SNIIp 25 ShapeShape--brightnessbrightness relationrelation

26 ””StandarizeableStandarizeable”” candlecandle

• Typical spread in Type Ia brightness is about 40% • After shape-brightness correction, SNIa are standarized to about <15% standard deviation in brightness...... Corresponding to ~7% precision in distance.

27 Recent estimates of H0 from Type Ia Supernovae

Credits: Saurabh Jha 28 SNSN--cosmologycosmology tutorialtutorial

Cosmology fits

Search Lightcurve

Hubble diagram

Reference

29 ExampleExample ofof highhigh--redshiftredshift SNeSNe

30 SNIaSNIa ratesrates

31 SNIaSNIa ratesrates

Exposure length

32 AstronomicalAstronomical measurementsmeasurements

• The observed bolometric magnitude (integrated over all wavelengths)

m(z) = M + 5 log10(c/H0) +25 + 5 log10D’L(z;Ω’s)

M is the magnitude of the object if placed at 10 pc; DL is measured in Mpc and D’L=DLH0

• In practice, astronomical measurements are done through broadband filters: K-corrections are needed in order to compensate for spectral differences.

• Corrections for extinction are often applied • In the case of type Ia SNe, there is also a brightness-shape relation that is taken into account

mY(z) = MW host MX + 5 log10(c/H0)+25+ 5 log10D’L(z;Ω’s) + 25 + KXY(z) – AY –AX + α(s-1) 33 KK--correctionscorrections

34 TypeType IaIa supernovaesupernovae asas standardstandard candlescandles

and how we learn about Dark Energy Statistical uncertainty: dependence

AG & Perlmutter 95 95 36 MeasurinMeasuringg thethe eqneqn ofof statestate parameterparameter ””ww”” withwith SNIaSNIa

37 55 AD:AD: concordanceconcordance modelmodel (see also Tonry et al 2003, Barris et al 2004)

ΛΣΣ ?ΙΣΩ

+0.06 ΩΛ = 0.75−0.07 ± 0.04 38 HandsHands--OnOn SNIaSNIa cosmologycosmology

What may go wrong in the world of astrophysics ((KnownKnown)) systematicsystematic effectseffects

• SN brightness evolution • Shape-brightness relation Astrophysics of supernovae • K-corrections and SN colors

• Non-Type Ia contamination Selection effects,contamination • Malmquist bias

• Host galaxy dust properties • Intergalactic dust Line of sight effects • Gravitational lensing • Exotica:axion-photon oscillations, etc

• Instrumental corrections Measurement • Absolute calibration issues • Lightcurve fitting technique/host galaxy subtraction

• … 40 ExploringExploring thethe ””StandardStandard CandleCandle”” CheckinCheckingg thethe standardstandard candlecandle:: lowlow vsvs highhigh redshiftredshift

Goldhaber el al 2001

42 OngoingOngoing EuropeanEuropean SNIaSNIa Network:Network: upup toto nownow >15>15 nearnear--byby SNeSNe:: e.ge.g SN03duSN03du

Infrared spectra between -13 and +30 days

Optical spectra between -13 and +376 days Stanishev et al 2006 43 SpectralSpectral diversitydiversity:: couldcould bebe usedused toto sharpensharpen ””standardstandard candlecandle””??

high-velocity Ca II ~21000 km/s

44 AsymmetriesAsymmetries linkedlinked toto spectralspectral diversitydiversity??

D.Kasen

45 InteractionInteraction withwith companioncompanion starstar??

Marietta et al. 2000 46 OngoingOngoing highhigh--statisticsstatistics lowlow--zz projectsprojects

• Supernova Factory: search + optical spectrophotometry of a few hundred SNe. (Search at Palomar, IFU follow-up at UH2.2m) • Carnegie Supernova Project: high precision optical and NIR lightcurves of ~200 SNe (z<0.07). Already ~150 SNe, about ½Ia’s.

47 FirstFirst SNSN--factoryfactory resultsresults Aldering et al

Target Redshift Epochs Timespan Comments

2004dt 0.020 27 93 days HST UV

2004gc 0.031 16+1 58 days

2004ef 0.031 11+1 46 days HST UV

2004gs 0.027 11+1 48 days

2005bc 0.012 16 51 days

2005M 0.022 11 40 days HST UV

2005bg 0.023 11 29 days

2005ag 0.029 9 51 days

2005L 0.070 7+1 28 days

2004gk 0.000 8 31 days

2005bl 0.024 8 20 days

2005ak 0.027 4+1 8 days

2004il 0.107 4 11 days SDSS

2005cf 0.001 2+ 3+ days HST UV

2005cg 0.031 1+ 0+ days 48 CarnegieCarnegie SupernovaSupernova ProjectProject

49 HighHigh--QualityQuality lightcurveslightcurves inin opticaloptical andand NIRNIR

50 SupernovaeSupernovae atat z~0.5z~0.5

New data-sets SpectroscopicSpectroscopic teststests ofof standardstandard candlecandle

Low-z average CaII (3900) subluminous velocity

z∼0.5

overluminous subluminous

Folatelli et al, Garavini et al , Lidman et al 52 LargeLarge ongoingongoing 0.2

• ESSENCE at CTIO 4-m: to collect ~200 SNIa

• CFHT (3.7-m) SuperNova Legacy Survey: 5 year ”rolling search”in (u)griz. Up to ~1000 spectroscopically confirmed SNIa.

53 HugeHuge Cameras!Cameras! CTIO:CTIO: 88 CCDCCD’’ss ½½°°xx½½°°

54 CFHT:CFHT: 4040 CCDsCCDs,, 44 timestimes biggerbigger!!

55 SNLSSNLS progressprogress

56 CFTHCFTH--SNLSSNLS

57 astro-ph/0510447

58 1st1st YearYear HubbleHubble diagramdiagram

• 71 high-z SNe discovered at CFHT • 44 low-z SNe from Hamuy et al, Riess et al & Jha et al (Cfa1 & Cfa2) • High-z: SDSS ugriz filter system • Derived ”intrinsic” scatter in CFHT sample 0.12 mag • Excellent agreement with concordance

model (ΩM = 0.263± 0.042 for flat universe)

59 ΩΩΛ

60 ww0

61 wwa

62 MMscript

63 TheyThey shouldshould allall bebe fittedfitted atat samesame time!time!

64 ENDEND OFOF PARTPART II Evidence for DM Evidence for DE Cosmology primer Hands-On supernova cosmology

Cross-cutting techniques: CMB, Lensing, LSS, BAO New SN data-sets

Ongoing and Future projects

66 CrossCross--cuttingcutting techniquestechniques

CMB,Lensing,baryon oscillations,LSS,... WeakWeak GravitationalGravitational LensingLensing

Distortion of background images by foreground matter

Unlensed Lensed Credits: R.Ellis 68 69 RecentRecent weakweak lensinlensingg resultsresults fromfrom CFHTLSCFHTLS

70 AskAsk thethe lensinglensing guru!!guru!!

71 72 The principle behind the CMB

The limit of the visible Universe. Given by how far light can have travelled since the beginning of the Universe. The visible Universe At an age of about ½ million years the Universe became transparent for light.

Observers

TheThe cosmic cosmic microwave microwave backgroundbackground radiation radiation was was The CMB sentsent out out in in all all directions. directions. WhereeverWhereever we we look, look, we we see see the the lightlight that that was was sent sent out out in in the the directiondirection of of us us (about (about 14 14 billionbillion years years ago). ago). 73 ShortShort historyhistory ofof CosmicCosmic MicrowaveMicrowave BackgroundBackground (CMB)(CMB)

•• GamowGamow predicted predicted the the CMBCMB inin 19461946

•• PenziasPenzias och och WilsonWilson discoverddiscoverd it it inin 19651965 andand gotgot thethe NobelNobel prizeprize in in 1978.1978.

•• Dicke,Dicke, Peebles,Peebles, RollRoll andand WilkinsonWilkinson explainexplain Penzias Penzias andand Wilson’sWilson’s measurements measurements inin 1965.1965. Arno Penzias and Robert Wilson, Nobel prize 1978

74 ise” ”no mic Cos red! ove disc

75 76 The CMB – A perfect black body spectrum

COBE

Congratulations to J.Mather2006σ & G.Smoot, Νοβελπρισε:ϑ This year’s Nobel laureates! 77 14 years ago…

78 CMBCMB anisotropiesanisotropies:: thethe WMAPWMAP resultsresults

• Flat geometry:

ΩM + ΩΛ = 1.04 ±0.05

• Low baryon content 2 Ωbh = 0.024 ± 0.005 (cf 0.019 ± 0.02)

Credits:WMAP 79 CosmicCosmic MicrowaveMicrowave BackgroundBackground The small angle -causal- fluctuations

•• Balance Balance between between infall infall and and pressure.pressure. •• Acoustic Acoustic oscillations oscillations arise. arise. •• Photons Photons from from the the dense dense and and sparsesparse areas areas have have different different temperature.temperature. Two Two effects effects compressioncompression (heating) (heating) + + redshift.redshift. •• The The typical typical distance distance between between coldcold and and hot hot areas areas act act as as a a standardstandard ruler ruler and and extend extend aboutabout 1 1˚˚onon the the sky. sky.

Legendre multipoles: l~π/θ~200/Ω-½

81 From Wayne Hu. The geometry of the Universe

TypicalTypical distancedistance betweenbetween coldcold andand hothot spots:spots: FlatFlat universe:universe: θθ~~ 11˚˚ OpenOpen universe:universe: θθ<< 11˚˚ ClosedClosed universe:universe: θθ>> 11˚˚

82 From Wayne Hu. AngularAngular PowerPower SpectrumSpectrum

83 closed

CMB alone tells “Geometric Degeneracy” us we are on the “geometric

open degeneracy” line

WMAP3 only best fit LCDM

= Ωb + Ωc Assume flatness

Reduced 84 LargeLarge ScaleScale StructureStructure && CMBCMB

Χρεδιτ Mark Subbarao & SDSS Collaboration 85 SoundSound waveswaves inin thethe earlyearly UniverseUniverse

Credit:D.Eisenstein

86 TheThe acousticacoustic peakpeak

Credit: D.Eisenstein

87 BaryonBaryon oscillationsoscillations inin LRGLRG galaxiesgalaxies

88 2 DA=DL/(1+z) 89 SNLSSNLS 11--yyrr ++ BAOBAO prior:prior: w=w=--1.021.02±±0.090.09±±0.0540.054 (Astier et al , 2005)

90 GravitationalGravitational leakageleakage intointo XX--dimensiondimension

• Use SNLS (Astier et al 2005) + Baryon oscillations (Eisenstein et al 2005) to examine 5D extenction of Friedmann eqn suggested by Dvali, Gabadadge,Porrati 2000; Deffayet, Dvali, Gabadadze 2001.

H 8πG H 2 ±= ρ rc 3

Fairbairn & AG, 2005 91 GravitationalGravitational leakageleakage intointo XX--dimensiondimension (2)(2)

• Consider more general modifications to Friedmann eqn (as in Dvali & Turner, 2003)

H α 8πG Λ equiv H 2 −=ρ 2− α rc 3

Fit SNLS data + baryon oscillations AND flat universe

Fairbairn & AG, 2005 92 InvestigatingInvestigating DMDM withwith LSSLSS mν = 0 eV mν = 1 eV

Ma ’96 mν = 7 eV mν = 4 eV 94 PerturbationsPerturbations andand powerpower spectraspectra

• Gaussian field of density perturbations δ(x) and its Fourier transform δ(k)

δ ρρ()xr − ()xr ≡ ; ρ rδδ1 r r ()kxedx= ()r ik⋅ x 3 ; V ∫ r ()xkr δδ== () 0

r 2 Pk()≡ () k δ

95 TheThe powerpower spectrumspectrum

96 LymanLyman--αα ForestForest

Neutral hydrogen clouds

Credit: N. Wright 97 PowerPower spectrumspectrum andand ΩΩM

Increasing the total density of matter (baryons + cold ) pushes the epoch of matter-radiation equality back in time and moves the peak scale (the horizion size at that time) to the right.

98 THE ABSOLUTE VALUES OF NEUTRINO MASSES FROM COSMOLOGY

ν m Ω h2 = ∑ ν 93 eV AFFECT BECAUSE THEY ARE A SOURCE OF DARK MATTER

HOWEVER, eV NEUTRINOS ARE DIFFERENT FROM CDM BECAUSE THEY FREE STREAM

−1 dFS ~ 1 Gpc meV

SCALES SMALLER THAN dFS DAMPED AWAY, LEADS TO SUPPRESSION OF POWER ON SMALL SCALES

99 NeutrinosNeutrinos asas DMDM candidatescandidates

100 NeutrinosNeutrinos asas DMDM candidatescandidates

Credit: M.Tegmark

101 THERE IS A DEGENERACY BETWEEN NEUTRINO MASS AND THE DARK ENERGY EQUATION OF STATE

S.Hannestad, ASTRO-PH/0505551 (PRL) 102 USING THE BAO DATA THE BOUND BAO BAO+ IS STRENGTHENED, EVEN FOR VERY GENERAL MODELS LY-α LY-α

∑∑mmνν <<02.48.623 eV eVeV @ @@ 95% 95%95%

No BAO 1011 FREE PARAMETERS ν ν ΩΩM ,,ΩΩBB,,Hw0,,Hn,0τ,,nA,,τb,,Am,b, ,Nmν ,Q, N,αν s WMAP, BOOMERANG, CBI SDSS, 2dF SNLS SNI-A,SNI-A SDSS BARYONS

GOOBAR, HANNESTAD, MÖRTSELL, TU (astro-ph/0602155, JCAP)

WITH THE INCLUSION OF LYMAN-ALPHA DATA THE BOUND STRENGTHENS TO m < 0.2 − 0.45 eV @ 95% ∑ ν 103 AssumptionsAssumptions && ResultsResults

104 NewNew excitingexciting SNSN datadata--setssets SDSSSDSS II:II: intermediateintermediate--zz SNeSNe

• Three year project started in September 2005. • Aiming at filling in the ”gap” left by eg SNLS and ESSENCE with 200 well measured, accurately calibrated, multicolor LCs

106 SDSSSDSS--IIII SNeSNe fromfrom 20052005

107 ResultsResults fromfrom 20052005

• 126 spectroscopically confirmed SN Ia (=0.21) • 13 spectroscopically probable SN Ia • 6 SN Ib/c (3 hypernovae) • 10 SN II (4 type IIn) • 5AGN ΩΛ = 0.74 • ~hundreds of other unconfirmed SNe with good light curves (galaxy spectroscopic measured for ~25 additional Ia candidates) PreliminaryPreliminary NoNo reddeningreddening corrcorr.. • TO BE REPEATED IN 06 σσ=0.27=0.27 & 07 WITH EVEN BETTER FOLLOW-UP: > 300 SNeIa in the DE dominated era! Courtesy of Bob Nichol 108 CC--T/T/CfACfA lowlow--zz,, SDSSSDSS 11--runrun ++ SNLSSNLS 11--yryr

Χ

SDSS

SNLS

109 AsAs ofof todaytoday ~noon~noon

110 TheThe highesthighest redshiftsredshifts

Working at z>1 FindingFinding SupernovaeSupernovae withwith HSTHST

112 VeryVery--highhigh ZZ supernovaesupernovae fromfrom ACS/HSTACS/HST (Riess et al 2004)

•By now >40 SNe discovered from space, up to z=1.7 •Reported CL-regions due to statistical errors

113 SNSN 1997ff1997ff aa SNSN atat zz==1.71.7

114 SeenSeen thethe transition?transition?

115 CouldCould gravitationalgravitational lensinglensing affectaffect thethe SNSN resultsresults?? ””BlurringBlurring”” ofof standardstandard candlecandle duedue toto gravitationalgravitational lensinglensing

(Bergström, Goobar, Goliath, Mörtsell)

• SN light (de)magnified by inhomogeneous foreground matter

• The error increases with redshift

• Different lensing models

— Smooth halo models

— Admixture of compact objects?

117 LensingLensing ((de)magnificationde)magnification inin thethe GOODSGOODS SNSN surveysurvey:: aa studystudy casecase

• The photometric redshift catalogue for GOODS used to study the line- of-sight properties of the SNIa in the Riess et al 2004 sample (see Gunnarsson et al ApJ 2006 and Jönsson et al ApJ 2006) • Faber-Jackson & Tully Fischer relations used for M/L • Galaxy halos modelled as truncated SIS or NFW

• Self-consistency loop: mass density in galaxies + unresolved matter=ΩM

118 MagnificationMagnification probabilityprobability

• We find evidence for magnified and z=1.27 demagnified supernovae (µ≠1) • Uncertainty computed by error progation from: ¾ Finite field size error ¾ Redshift and position errors ¾ Scatter in FJ&TF relations ¾ Survey magnitude limit (incompleteness) PDF built up by randomizing the contributions above according to their individual uncertainties, z=1.75 • Estimate of magnification in SN1997ff smaller than in Benitez et al 2002, Riess et al 2004. This is understood, both authors now agree with our result.

119 LensingLensing PDFsPDFs forfor GOODSGOODS SNSN--samplesample

‰We found NO evidence for selection effects due to lensing in the GOODS SN sample.Negligible corrections to Ω’s & w. ‰Expected lensing bias on SNLS results is also small: |δΩM| ~0.01 in ΩM-ΩΛ plane. Added uncertainty on w0 is σw~0.014 for BAO prior (SNOC simulation) 120 CosmologicalCosmological parametersparameters

• We found NO evidence for selection effects due to lensing in the GOODS SN sample. • Lensing distributions compatible with simulations, e.g SNOC. • JDEM: statistical uncertainty due to weak lening can be reduce by about Only GOODS SNe corrected for lensing 50% by including l-o-s galaxy (and LSS) information measured with same instrument. • Possible lensing bias on SNLS results is

small: |δΩM| ~0.01 in ΩM-ΩΛ plane. Added uncertainty on w0 (after prior on baryon oscillations) is σw~0.014

121 DownloadDownload:: www.physto.sewww.physto.se/~ariel/~ariel

MC + cosmology fitting code specifically developed to understand science reach and systematic uncertainties in of high-z SNe, e.g. due to intervening dust gravitational lensing, search biases, non-SNIa contamination, etc. A.G et al (2002) Astronomy & Astrophysics, 392,757 122 WhatWhat aboutabout dustdust oror somethingsomething elseelse attenuatingattenuating thethe signal?signal? Dust/Dust/reddeningreddening:: aa realreal problem!problem!

B-V color • Dust in SN host galaxy (or along line of of low-z SNe sight) • Correction assumes some reddening law, typically Galactic type dust (SCP,High-Z Team) or average fit to any kind of reddening/blueing (SNLS) • Can only be estimated for individual SNe with Extinction: a) accurate multi-wavelength data b) good knowledge of intrinsic ”color” ∆MB=RB·E(B-V) with RB~ 2 - 5 of SNe • Extinction probabilty in a given galaxy Extinction correction dominates depends on where the SN explosion happens measurement error! Exception: Elliptical galaxies (E/S0) have little -formation & dust. 124 MilkyMilky WayWay dustdust

• Wavelength dependence parametrized by

Rv,

• Av= Rv E(B-V)

• Average value Rv=3.1 -4 • Rv ~1 → Rayleigh scattering , Aλ=kλ

• Rv »3 → “Gray” dust, weak wavelength dependence (especially in UV and optical)

Cardelli, Clayton & Mathis, 1989

125 SystematicSystematic effectseffects

No extinction correction. Reddened SNe excluded

With extinction correction Largest source of identified syst in Knop et al 126 ExtinctionExtinction//reddeningreddening correctionscorrections

Riess et al 2004 (gold sample)

Latest news: non-linearity in • z-dependence in reported Av ? ? • Problems with K-corrections/assumed NICMOS detector requires intrinsic colors in UV part of the ~0.2 mag corrections that seem SNIa spectrum? to explain this!!! • Changing dust properties ? ∆Μ∆ • Selection effects? ΜV • Degeneracy in global fit? • Watch out for priors on A ! Riess et al Β V assume P(Av)~exp(-Av) • Potential inconsistency for elliptical hosts

SN97ff: assumed extinction- Uncertainties ? free, E-host 127 SNSN cosmologycosmology atat longerlonger wavelengthswavelengths??

• Use restframe I-band lightcurves to check cosmological results: different systematics! (S.Nobili, PhD thesis, Nobili et al 2005)

128 ””DustfreeDustfree andand decelerateddecelerated””

Sullivan et al 2003 • 219 HST/ACS Orbits awarded (PI: Perlmutter) in galaxy type dispersion C14 for rolling search for SNe on galaxy clusters 0.9

Cluster RCS0221-03 at z = 1.02 Host was cataloged Cluster member. Spectrum taken for confirmation.

preliminary

ACS z band ACS I band Nicmos J band

130 ACSACS isis backback afterafter aa glitchglitch thisthis summer!summer!

131 DustDust betweenbetween galaxiesgalaxies??

Grey intergalactic dust GreyGrey IGIG dustdust

AG,Bergström & Mörtsell, A&A, 2002 • Large dust grains (weak wavelength dependence) may exist in the IG- Model A medium Concordance • Evolution of dust density: two limiting cases: Milne 3 ModelB; 1. ρdustα (1+z) [Model A] ΩM=1 3 2. ρdustα (1+z) for z<0.5 &

ρdust(z>0.5)= ρdust(z=0.5) [Model B] • Hard to rule out from SN-colors (c.f Nobili et al) • X-ray point-sources at very high-z, (e.g. Petric et al) do not exclude e.g Model B

• SDSS QSO colors (>16000 objects, IG Dust cannot explain observed z<2) <0.1 mag extinction for SN1a at faintness of SNe – but is a serious z=1; faintness of SNe cannot be only concerndue to IG-dust for precision cosmology

Mörtsell & AG, 2003, 133 Östman & Mörtsell, 2005 WhatWhat improvementimprovement inin understandingunderstanding ofof darkdark energyenergy cancan bebe expectedexpected inin nearnear futurefuture fromfrom SNIaSNIa?? WhatWhat toto expectexpect fromfrom onon--goinggoing effortsefforts??

• Data-sets in the making: SNLS ~ 700 SNe (+ ESSENCE) SDSS- II ~ 200 SNe low-z ~ 100 SNe very high-z ~ 100 SNe ”combo” ------Total 1200 SNe

• Simulate a ”combo” data-set using the same z-distributions as today, just scale up numbers • Neglect systematics – to begin with!

today

135 ””ComboCombo”” MCMC datadata--setset:: w/ow/o systematicssystematics

Sne + flat BAO prior

Current SNLS

Current BAO

136 ””ComboCombo”” MCMC datadata--setset:: w/ow/o systematicssystematics

SNLS Sne + flat BAO prior

Combo Current SNLS

Current BAO

137 HostHost galaxygalaxy extinctionextinction systematicssystematics

Bias if no correction added

138 PlanckPlanck satellitesatellite

• Next European lead CMB mission • Launch ¾ of 2008 • Significantely better S/N compared with WMAP • Better angular sensitivity • Good polarization capability

139 ΩΩGW::GravityGravity waveswaves affectaffect mapsmaps ofof polarizedpolarized radiationradiation

140 WMAPWMAP vsvs PlanckPlanck

141 WMAPWMAP vsvs PlanckPlanck

142 ””WishWish listlist”” forfor futurefuture SNSN projectsprojects

• Large statistics – also to constrain systematics: compare ”like to like” • Ideally, build entire Hubble diagram with e.g. only SNe on ellipticals (less dust) • Multi-wavelength coverage (UV-NIR): 1) cover wider range of redshift 2) fit extinction law in host and line-of- sight 3) Find optimal match – minize K-correction uncertainty 4) Accurate photometric redshifts

• Spectroscopic capability: hope to find a second parameter that sharpens the ”standarizable” candle, or else it seems unfeasible to reach below σ <0.2 w1 with current techniques. • Instrument should allow a varity of complementary techniques: weak- lensing, baryon oscillations, cluster counting, strong lensing, other candles like Type II Sne, etc.

143 ProjectsProjects forfor thethe nextnext 55--1010 yearsyears??

• Pan-STARRS, four 1.8-m , each with a 3 degrees FOV. First unit in June 06 in Haleakala on Maui (Hawaii); Full operations by 2010?

• Dark Energy Camera: a new 2.2 deg. FOV optical CCD camera on the 4-m at CTIO, Chile. Instrument R&D and Construction 2005-2009. Survey 2009-2014(?)

144 ””BigBig”” FutureFuture ProjectsProjects

• LSST: 8-meter class telescope with 10 sq.degrees FOV

• JDEM: satellite mission:~2-meter class telescope reaching NIR. Either optical+NIR imaging + spectrosocopy (SNAP) or NIR optical+spectrsocopy (JEDI) NIR grism (DESTINY) • It’s all about minimizing the systematics and (hopefully!) sharpen the standard candle by comparing ”like to like” • Time scales ~10 years from now! Exact time for JDEM unknown but highest priority among ”Beyond Einstein Probes”

145 146 SNAP:SNAP: probingprobing DarkDark EnergyEnergy modelsmodels

147 SNAPSNAP precisionprecision onon ww’’

Frieman, Huterer, Linder, Turner 2002 148 WhyWhy inin spacespace??

149 Atmospheric emission spectum

150 SNeSNe ++ WeakWeak LensingLensing Bernstein, Huterer, Linder, & Takada √ • Comprehensive: no external priors required! • Independent test of flatness to 1-2% • Complementary:

w0 to 5%, w′ to 0.11 (with systematics)

+baryon oscillations? SNAP:SNAP: otherother GLGL sciencescience potentialspotentials

• Independent measurement of H0,ΩM,ΩΛ,w from time delay of multiply imaged supernovae, mainly Type II (AG, Mörtsell, Amannulah & Nugent).

2 ∆θ DDl s ∆=tzfr1(); + ()l flux 2 Dls

DDzzH=ΩΩ(, ; , , , w ) ij ij ij 0 MXx

The Refsdal method

152 Strong lensing science potential: 3 year run, optical + NIR 20 º

SNIa

H0 exactly known

A.G, Mörtsell, Amanullah & Nugent, 2002

153 SNAPSNAP –– TheThe moviemovie

154 155