Homo Erectus - the First Expansion out of Africa - Homo Erectus Behavior - Fire? - Hunters Or Scavengers?

Total Page:16

File Type:pdf, Size:1020Kb

Homo Erectus - the First Expansion out of Africa - Homo Erectus Behavior - Fire? - Hunters Or Scavengers? Out of Africa Emergence of the Genus Homo (after 2.5mya, shown in teal and blue) Members of the Homo genus have larger brains. Boyd & Silk (2014). Outline of Today’s Class: Out of Africa 1) Homo erectus - The first expansion out of Africa - Homo erectus behavior - Fire? - Hunters or scavengers? 2) Models for the emergence of modern humans - Multiregionalism - Out of Africa with Replacement - Out of Africa with Admixture 3) Homo heidelbergensis Homo erectus fossils are found outside of Africa starting at 1.8mya Boyd & Silk (2014). The earliest Homo erectus fossils outside of Africa are found at Dmanisi, Georgia (1.8 mya). Homo erectus spread quickly into East and Southeast Asia. The Site of Zhoukoudian in China Provides Clues About Homo erectus Behavior • In the 1920-30s, excavations of caves outside of Beijing uncovered dozens of Homo erectus fossils (referred to as “Peking Man”) as well as tools and animal bones. • Original fossils lost during WWII. Casts still survive. Stratigraphic profile of Zhoukoudian Locality 1 Fire at Zhoukoudian? • Did controlling fire help Homo erectus to cook food and live in colder climates? • Evidence for fire at Zhoukoudian: – Soils with black “ash” – Red fire-cracked earth – Burned animal bones • Re-analysis indicates that black soils were fine silt accumulated from standing water. Fire-cracked earth could be caused by natural Entrance to the Zhoukoudian Site Museum fires. Bones were burned after fossilization. • Claims that Homo erectus at Zhoukoudian controlled fire are not well supported. • There is debatable evidence that Homo erectus living elsewhere in Eurasia and Africa controlled fire. Hunters or Scavengers at Zhoukoudian? • Fossil accumulation in the cave was likely due to other predators (hyena den). • Hyenas also chewed Homo erectus bones. • Some animal fossils have cut marks on top of carnivore chew marks. There is no doubt that Homo erectus scavenged, but we lack direct evidence that they were sophisticated hunters. • There are cut marks on some Homo erectus fossils. Cannibalism? Boaz, N. T., et al. (2000). Large mammalian carnivores as a taphonomic factor in the bone accumulation at Zhoukoudian. Acta Anthropologica Sinica, 19, 224-234. After Homo erectus, several species of archaic Homo emerged during the Middle Paleolithic Homo heidelbergensis, Neanderthals, and Denisovans are often called “Archaic Homo” or “Archaic Humans” Neanderthals Homo sapiens Denisovans (400-30kya) (200kya-present) (40kya) Europe and Middle East Africa first Asia Homo heidelbergensis (600-200kya) Africa, Europe, and the Middle East Homo erectus (2mya-150kya?) Africa and Asia. Europe? Model #1: Multiregionalism • AKA “continuity with hybridization.” Homo Homo sapiens Homo sapiens Homo sapiens • Homo sapiens evolved in multiple regions across the Old World. Homo Homo Denisovans • Fossil traits suggest constant gene flow between Nanderthals populations living in different regions. heidelbergensis • Explains intermediate forms of archaic Homo fossils with region-specific morphological features. th • Consensus model until the late 20 Century Homo erectus when it became possible to study DNA from living people. Model #2: Recent African Origins and Replacement “Out of Africa” • Homo erectus evolved into Homo heidelbergensis in Africa. Homo Homo sapiens Homo sapiens Homo sapiens • Homo heidelbergensis left Africa 400 kya and evolved into Neanderthals and other regional forms of archaic Homo. • Limited or no gene flow between regions. • Homo heidelbergensis in Africa evolved into modern Nanderthals Denisovans humans by 200-100kya. • Modern humans left Africa 100-60kya and displaced other Homo forms of archaic Homo. Regional traits in modern human populations appeared recently. heidelbergensis • Hominins outside of Africa went extinct without making significant genetic contributions to modern humans. Homo Homo erectus • Consensus model from the 1980s/90s through early 2000s due to modern genetic evidence. Most archaeological and modern genetic evidence supports the replacement/“Out of Africa” model: • Oldest modern human fossils are found in Africa. • Oldest archaeological materials associated with modern humans are found in Africa. • Modern mtDNA evidence supports African origins (e.g., Mitochondrial Eve). • Last major gene flow between African and non-African populations occurred 65- 95kya (Fu et al. 2013), which is consistent with a single wave of human migration out of Africa. BUT thanks to ancient DNA, we now know that the picture is more complicated: • Ancient DNA shows there was admixture between populations of archaic Homo. • Ancient DNA shows there was admixture between Homo sapiens and these other groups. • Fossil evidence that Homo erectus in Asia continued to evolve into other intermediate forms. Fu, Q., et al. (2013). A revised timescale for human evolution based on ancient mitochondrial genomes. Current Biology, 23(7), 553-559. A Revised Model for Human Origins: “Out of Africa with Admixture” 1. Homo erectus gave rise to Homo heidelbergensis in Africa and Western Eurasia. 2. Homo heidelbergensis gave rise to additional forms of archaic humans in Eurasia (Neanderthals and Denisovans). 3. There was some gene flow between the various forms of archaic humans outside of Africa. 4. Modern humans evolved from Homo heidelbergensis in Africa. 5. Modern humans replaced other archaic humans, but there was a low level of gene flow between humans and these other groups. 6. Some transitional forms of hominin that evolved directly from Homo erectus persisted in Asia. Qiu (2016) After Homo erectus, several species of archaic Homo emerged during the Middle Paleolithic Homo heidelbergensis, Neanderthals, and Denisovans are often called “Archaic Homo” or “Archaic Humans” Neanderthals Homo sapiens Denisovans (400-30kya) (200kya-present) (40kya) Europe and Middle East Africa first Asia Homo heidelbergensis (600-200kya) Africa, Europe, and the Middle East Homo erectus (2mya-150kya?) Africa and Asia. Europe? Homo heidelbergensis (600-200kya) Large brains. Skeletal features are very similar to Neanderthals and modern humans. New tool types. Developments in cognition and social organization. Cave site of Sima de los Huesos, Spain • Bones from over 30 individuals that are ancestors of European Neanderthals. • Evidence for care of disabled individuals. • Intentional burial? Oldest wooden spear, Schöningen, Germany (400kya) Stone Tool Industries Levallois Technique—Making Specialized Stone Tools for Different Tasks Stone Tool Industries Homo heidelbergensis Ancient DNA 430,000 year old bones from Sima de los Huesos: – Oldest hominin ancient DNA to date. – Mitochondrial genome indicates that they were more closely related to Denisovans than Neanderthals (Meyer et al. 2014). – Nuclear genome indicates that they were early Neanderthals (Meyer et al. 2016). – Conclusions based on mtDNA are often later contradicted by nuclear DNA because mtDNA provides a limited picture of ancestry and relatedness. – Most recent ancient DNA results raise questions about whether Homo heidelbergensis was the ancestor of all later hominins. Homo antecessor? Meyer, M., et al. (2014). A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature, 505(7483), 403-406. Meyer, M., et al. (2016). Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature, 531(7595), 504-517. Next week…Neanderthals!.
Recommended publications
  • 5 Years on Ice Age Europe Network Celebrates – Page 5
    network of heritage sites Magazine Issue 2 aPriL 2018 neanderthal rock art Latest research from spanish caves – page 6 Underground theatre British cave balances performances with conservation – page 16 Caves with ice age art get UnesCo Label germany’s swabian Jura awarded world heritage status – page 40 5 Years On ice age europe network celebrates – page 5 tewww.ice-age-europe.euLLING the STORY of iCe AGE PeoPLe in eUROPe anD eXPL ORING PLEISTOCene CULtURAL HERITAGE IntrOductIOn network of heritage sites welcome to the second edition of the ice age europe magazine! Ice Age europe Magazine – issue 2/2018 issn 2568­4353 after the successful launch last year we are happy to present editorial board the new issue, which is again brimming with exciting contri­ katrin hieke, gerd­Christian weniger, nick Powe butions. the magazine showcases the many activities taking Publication editing place in research and conservation, exhibition, education and katrin hieke communication at each of the ice age europe member sites. Layout and design Brightsea Creative, exeter, Uk; in addition, we are pleased to present two special guest Beate tebartz grafik Design, Düsseldorf, germany contributions: the first by Paul Pettitt, University of Durham, cover photo gives a brief overview of a groundbreaking discovery, which fashionable little sapiens © fumane Cave proved in february 2018 that the neanderthals were the first Inside front cover photo cave artists before modern humans. the second by nuria sanz, water bird – hohle fels © urmu, director of UnesCo in Mexico and general coor­­­di nator of the Photo: burkert ideenreich heaDs programme, reports on the new initiative for a serial transnational nomination of neanderthal sites as world heritage, for which this network laid the foundation.
    [Show full text]
  • Homo Heidelbergensis: the Ot Ol to Our Success Alexander Burkard Virginia Commonwealth University
    Virginia Commonwealth University VCU Scholars Compass Auctus: The ourJ nal of Undergraduate Research and Creative Scholarship 2016 Homo heidelbergensis: The oT ol to Our Success Alexander Burkard Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/auctus Part of the Archaeological Anthropology Commons, Biological and Physical Anthropology Commons, and the Biology Commons © The Author(s) Downloaded from https://scholarscompass.vcu.edu/auctus/47 This Social Sciences is brought to you for free and open access by VCU Scholars Compass. It has been accepted for inclusion in Auctus: The ourJ nal of Undergraduate Research and Creative Scholarship by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Homo heidelbergensis: The Tool to Our Success By Alexander Burkard Homo heidelbergensis, a physiological variant of the species Homo sapien, is an extinct spe- cies that existed in both Europe and parts of Asia from 700,000 years ago to roughly 300,000 years ago (carbon dating). This “subspecies” of Homo sapiens, as it is formally classified, is a direct ancestor of anatomically modern humans, and is understood to have many of the same physiological characteristics as those of anatomically modern humans while still expressing many of the same physiological attributes of Homo erectus, an earlier human ancestor. Since Homo heidelbergensis represents attributes of both species, it has therefore earned the classifica- tion as a subspecies of Homo sapiens and Homo erectus. Homo heidelbergensis, like anatomically modern humans, is the byproduct of millions of years of natural selection and genetic variation. It is understood through current scientific theory that roughly 200,000 years ago (carbon dat- ing), archaic Homo sapiens and Homo erectus left Africa in pursuit of the small and large animal game that were migrating north into Europe and Asia.
    [Show full text]
  • What Makes a Modern Human We Probably All Carry Genes from Archaic Species Such As Neanderthals
    COMMENT NATURAL HISTORY Edward EARTH SCIENCE How rocks and MUSIC Philip Glass on Einstein EMPLOYMENT The skills gained Lear’s forgotten work life evolved together on our and the unpredictability of in PhD training make it on ornithology p.36 planet p.39 opera composition p.40 worth the money p.41 ILLUSTRATION BY CHRISTIAN DARKIN CHRISTIAN BY ILLUSTRATION What makes a modern human We probably all carry genes from archaic species such as Neanderthals. Chris Stringer explains why the DNA we have in common is more important than any differences. n many ways, what makes a modern we were trying to set up strict criteria, based non-modern (or, in palaeontological human is obvious. Compared with our on cranial measurements, to test whether terms, archaic). What I did not foresee evolutionary forebears, Homo sapiens is controversial fossils from Omo Kibish in was that some researchers who were not Icharacterized by a lightly built skeleton and Ethiopia were within the range of human impressed with our test would reverse it, several novel skull features. But attempts to skeletal variation today — anatomically applying it back onto the skeletal range of distinguish the traits of modern humans modern humans. all modern humans to claim that our diag- from those of our ancestors can be fraught Our results suggested that one skull nosis wrongly excluded some skulls of with problems. was modern, whereas the other was recent populations from being modern2. Decades ago, a colleague and I got into This, they suggested, implied that some difficulties over an attempt to define (or, as PEOPLING THE PLANET people today were more ‘modern’ than oth- I prefer, diagnose) modern humans using Interactive map of migrations: ers.
    [Show full text]
  • The Biting Performance of Homo Sapiens and Homo Heidelbergensis
    Journal of Human Evolution 118 (2018) 56e71 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol The biting performance of Homo sapiens and Homo heidelbergensis * Ricardo Miguel Godinho a, b, c, , Laura C. Fitton a, b, Viviana Toro-Ibacache b, d, e, Chris B. Stringer f, Rodrigo S. Lacruz g, Timothy G. Bromage g, h, Paul O'Higgins a, b a Department of Archaeology, University of York, York, YO1 7EP, UK b Hull York Medical School (HYMS), University of York, Heslington, York, North Yorkshire YO10 5DD, UK c Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArHEB), University of Algarve, Faculdade das Ci^encias Humanas e Sociais, Universidade do Algarve, Campus Gambelas, 8005-139, Faro, Portugal d Facultad de Odontología, Universidad de Chile, Santiago, Chile e Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany f Department of Earth Sciences, Natural History Museum, London, UK g Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA h Departments of Biomaterials & Biomimetics, New York University College of Dentistry, New York, NY 10010, USA article info abstract Article history: Modern humans have smaller faces relative to Middle and Late Pleistocene members of the genus Homo. Received 15 March 2017 While facial reduction and differences in shape have been shown to increase biting efficiency in Homo Accepted 19 February 2018 sapiens relative to these hominins, facial size reduction has also been said to decrease our ability to resist masticatory loads. This study compares crania of Homo heidelbergensis and H.
    [Show full text]
  • Functional Creativity by Molly Carpenter (Instructor: Jeff Arnett)
    1 Functional Creativity by Molly Carpenter (Instructor: Jeff Arnett) The prominent writer and poet Oscar Wilde once said, “All art is quite useless.” In a literal sense, of course, art does not serve a utilitarian but aesthetic function. Artwork cannot feed an impoverished country or solve a worldwide issue, and it reflects subjective life experiences of the artist instead of life itself. Why then has art flourished as an integral aspect of humanity for tens of thousands of years? What evolutionary function, if any, did creativity serve for prehistoric hominids? Although perhaps unanswerable, these questions invite further contemplation of the dynamic connections between physical brain structure and human consciousness. Anthropologists have theorized ways in which specific brain adaptations gave prehistoric humanoids the evolutionary “edge” over other non-Homo species, and all agree that the rise of a conscious brain directly led to the formation of creative thought. However, as Robert Solso, an influential Russian psychologist, argues, “A serendipitous side effect of a complex brain capable of imagery and symbolic representation was the human tendency to search for understanding of the world and all things therein” (41). The ability to interpret abstract symbols created a world in which those that possessed creative skills—the advanced toolmaker, the resourceful leader, and the talented cave painter—gained a selective advantage over others. While creative thought may require consciousness, creativity did not emerge only after humans achieved biological evolution but, over time, became a necessary ingredient for it. Although creative activities serve leisurely rather than survival purposes today, creativity remains one of the few human universals regardless of any society’s political, economic, or 2 technological achievement.
    [Show full text]
  • Language Evolution to Revolution
    Research Ideas and Outcomes 5: e38546 doi: 10.3897/rio.5.e38546 Research Article Language evolution to revolution: the leap from rich-vocabulary non-recursive communication system to recursive language 70,000 years ago was associated with acquisition of a novel component of imagination, called Prefrontal Synthesis, enabled by a mutation that slowed down the prefrontal cortex maturation simultaneously in two or more children – the Romulus and Remus hypothesis Andrey Vyshedskiy ‡ ‡ Boston University, Boston, United States of America Corresponding author: Andrey Vyshedskiy ([email protected]) Reviewable v1 Received: 25 Jul 2019 | Published: 29 Jul 2019 Citation: Vyshedskiy A (2019) Language evolution to revolution: the leap from rich-vocabulary non-recursive communication system to recursive language 70,000 years ago was associated with acquisition of a novel component of imagination, called Prefrontal Synthesis, enabled by a mutation that slowed down the prefrontal cortex maturation simultaneously in two or more children – the Romulus and Remus hypothesis. Research Ideas and Outcomes 5: e38546. https://doi.org/10.3897/rio.5.e38546 Abstract There is an overwhelming archeological and genetic evidence that modern speech apparatus was acquired by hominins by 600,000 years ago. On the other hand, artifacts signifying modern imagination, such as (1) composite figurative arts, (2) bone needles with an eye, (3) construction of dwellings, and (4) elaborate burials arose not earlier than © Vyshedskiy A. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Continuity in Animal Resource Diversity in the Late Pleistocene Human Diet of Central Portugal
    Continuity in animal resource diversity in the Late Pleistocene human diet of Central Portugal Bryan Hockett US Bureau of Land Management, Elko District Office, 3900 East Idaho Street, Elko, NV 89801 USA [email protected] Jonathan Haws Department of Anthropology, University of Louisville, Louisville, KY 40292 USA [email protected] Keywords Palaeolithic, diet, nutritional ecology, Portugal, Neanderthals Abstract Archaeologists studying the human occupation of Late Pleistocene Iberia have identified the Late Upper Palaeolithic, including the Pleistocene-Holocene transition, as a time of resource intensification, diversification and speciali- sation. The primary drivers for these changes were argued to be the result of population-resource imbalances triggered by the postglacial climatic warming and human population growth. Recent research, however, has pushed resource intensification and diversification back in time to the Early Upper Palaeolithic in Iberia and beyond. Dietary diversity may have given anatomically modern humans a selective advantage over Neanderthals. In this article we review the accumulated evidence for Late Middle and Upper Palaeolithic diet in central Portugal, emphasising the importance of small animal exploitation. We incorporate results from on-going research at Lapa do Picareiro and other sites to explore the possibility that the dietary choices of modern foragers in Iberia contrib- uted to the extinction of the Neanderthal populations occupying the region until ca 30,000 14C BP. 1 Introduction Archaeologists studying the human occupation of Late Pleistocene with one that linked situational shifts in Pleistocene Iberia often frame explanations for their different types of small game to human population subsistence economies within the now-classic ‘Broad pulses.
    [Show full text]
  • THE FORGOTTEN CONTINENT Fossil Finds in China Are Challenging Ideas About the Evolution of Modern Humans and Our Closest Relatives
    NEWS FEATURE THE FORGOTTEN CONTINENT Fossil finds in China are challenging ideas about the evolution of modern humans and our closest relatives. n the outskirts of Beijing, a small BY JANE QIU government is setting up a US$1.1-million limestone mountain named Dragon laboratory at the IVPP to extract and sequence Bone Hill rises above the surround- spread around the globe — and relegated Asia ancient DNA. Oing sprawl. Along the northern side, a path to a kind of evolutionary cul-de-sac. The investment comes at a time when palaeo- leads up to some fenced-off caves that draw But the tale of Peking Man has haunted anthropologists across the globe are starting to DEAGOSTINI/GETTY 150,000 visitors each year, from schoolchildren generations of Chinese researchers, who have pay more attention to Asian fossils and how to grey-haired pensioners. It was here, in 1929, struggled to understand its relationship to they relate to other early hominins — creatures that researchers discovered a nearly complete modern humans. “It’s a story without an end- that are more closely related to humans than ancient skull that they determined was roughly ing,” says Wu Xinzhi, a palaeontologist at the to chimps. Finds in China and other parts of half a million years old. Dubbed Peking Man, Chinese Academy of Sciences’ Institute of Ver- Asia have made it clear that a dazzling variety of it was among the earliest human remains ever tebrate Paleontology and Paleoanthropology Homo species once roamed the continent. And uncovered, and it helped to convince many (IVPP) in Beijing.
    [Show full text]
  • Human Origin Sites and the World Heritage Convention in Eurasia
    World Heritage papers41 HEADWORLD HERITAGES 4 Human Origin Sites and the World Heritage Convention in Eurasia VOLUME I In support of UNESCO’s 70th Anniversary Celebrations United Nations [ Cultural Organization Human Origin Sites and the World Heritage Convention in Eurasia Nuria Sanz, Editor General Coordinator of HEADS Programme on Human Evolution HEADS 4 VOLUME I Published in 2015 by the United Nations Educational, Scientific and Cultural Organization, 7, place de Fontenoy, 75352 Paris 07 SP, France and the UNESCO Office in Mexico, Presidente Masaryk 526, Polanco, Miguel Hidalgo, 11550 Ciudad de Mexico, D.F., Mexico. © UNESCO 2015 ISBN 978-92-3-100107-9 This publication is available in Open Access under the Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) license (http://creativecommons.org/licenses/by-sa/3.0/igo/). By using the content of this publication, the users accept to be bound by the terms of use of the UNESCO Open Access Repository (http://www.unesco.org/open-access/terms-use-ccbysa-en). The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The ideas and opinions expressed in this publication are those of the authors; they are not necessarily those of UNESCO and do not commit the Organization. Cover Photos: Top: Hohle Fels excavation. © Harry Vetter bottom (from left to right): Petroglyphs from Sikachi-Alyan rock art site.
    [Show full text]
  • Arguments That Prehistorical and Modern Humans Belong to the Same Species
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 doi:10.20944/preprints201905.0038.v1 Arguments that Prehistorical and Modern Humans Belong to the Same Species Rainer W. Kühne Tuckermannstr. 35, 38118 Braunschweig, Germany e-mail: [email protected] May 2, 2019 Abstract called either progressive Homo erectus or archaic Homo sapiens. I argue that the evidence of the Out-of-Africa A more primitive group of prehistorical hu- hypothesis and the evidence of multiregional mans is sometimes classified as Homo erec- evolution of prehistorical humans can be un- tus, but mostly classified as belonging to dif- derstood if there has been interbreeding be- ferent species. These include Homo anteces- tween Homo erectus, Homo neanderthalensis, sor, Homo cepranensis, Homo erectus, Homo and Homo sapiens at least during the preced- ergaster, Homo georgicus, Homo heidelbergen- ing 700,000 years. These interbreedings require sis, Homo mauretanicus, and Homo rhodesien- descendants who are capable of reproduction sis. Sometimes the more primitive Homo habilis and therefore parents who belong to the same is regarded as belonging to the same species as species. I suggest that a number of prehistori- Homo ergaster. cal humans who are at present regarded as be- A further species is Homo floresiensis, a dwarf longing to different species belong in fact to one form known from Flores, Indonesia. This species single species. shows some anatomical characteristics which are similar to those of the more primitive humans Keywords Homo ergaster and Homo georgicus and other Homo sapiens, Homo neanderthalensis, Homo anatomical characteristics which are similar to erectus, Homo floresiensis, Neandertals, Deniso- those of Homo sapiens [1][2][3].
    [Show full text]
  • Evolution of the 'Homo' Genus
    MONOGRAPH Mètode Science StudieS Journal (2017). University of Valencia. DOI: 10.7203/metode.8.9308 Article received: 02/12/2016, accepted: 27/03/2017. EVOLUTION OF THE ‘HOMO’ GENUS NEW MYSTERIES AND PERSPECTIVES JORDI AGUSTÍ This work reviews the main questions surrounding the evolution of the genus Homo, such as its origin, the problem of variability in Homo erectus and the impact of palaeogenomics. A consensus has not yet been reached regarding which Australopithecus candidate gave rise to the first representatives assignable to Homo and this discussion even affects the recognition of the H. habilis and H. rudolfensis species. Regarding the variability of the first palaeodemes assigned to Homo, the discovery of the Dmanisi site in Georgia called into question some of the criteria used until now to distinguish between species like H. erectus or H. ergaster. Finally, the emergence of palaeogenomics has provided evidence that the flow of genetic material between old hominin populations was wider than expected. Keywords: palaeogenomics, Homo genus, hominins, variability, Dmanisi. In recent years, our concept of the origin and this species differs from H. rudolfensis in some evolution of our genus has been shaken by different secondary characteristics and in its smaller cranial findings that, far from responding to the problems capacity, although some researchers believe that that arose at the end of the twentieth century, have Homo habilis and Homo rudolfensis correspond to reopened debates and forced us to reconsider models the same species. that had been considered valid Until the mid-1970s, there for decades. Some of these was a clear Australopithecine questions remain open because candidate to occupy the «THE FIRST the fossils that could give us position of our genus’ ancestor, the answer are still missing.
    [Show full text]
  • Homo Heidelbergensis: with an Emphasis on the Type Specimen from the Mauer
    The Post Hole Issue 34 Homo Heidelbergensis: with an emphasis on the Type Specimen from the Mauer Jordan Scott Myers1 1Northern Arizona University, 3804 S. Walapai Dr. #3, Flagstaff, AZ 86005 Email: [email protected] Homo heidelbergensis has been a subject of controversy in palaeoanthropology for more than 100 years. Some paleoanthropologists feel that fossils assigned to the palaeo species deserve their own nomenclature, while others feel that they represent an outlier of either Homo erectus, or Neanderthals. The first theory argues that H. heidelbergensis represents either an evolved H. erectus, or a primitive Neanderthal; which would suggest that the Homo lineage transitioned through anagenesis, or a gradual change from H. erectus into Neanderthals, after which the species went extinct. The second theory suggests evolution through cladogenesis (or the splitting of species), which would support the hypothesis that H. heidelbergensis was a separate species which split, resulting in both the Neanderthal lineage, as well as the modern H. sapien line. This paper will address both theories. Background The Mauer mandible is the first example of H. heidelbergensis. It was discovered by a worker in a sandpit, from a depth of more than 24 meters, in the village of Mauer, near Heidelberg, Germany, in 1907 (Bahain et al. 2010; Field 1932; Haidle & Pawlik 2010; Harvati 2007; Lewin 1998; Collard & Wood 1999; Collard & Wood 2007). It was given the name of Homo heidelbergensis by Professor Otto Shoetensack of the University of Heidelberg, and subsequently dubbed as the “type specimen” for the species (Harvati 2007). The discovery of the Mauer mandible was crucial for understanding human origins (Harvati 2007; Bahain et al.
    [Show full text]