Lecture 2 Early Humans and the Prehistoric Record: Human-Plant Interaction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Impact of New Technologies on the Development of Architecture Julia Walker
The Impact of New Technologies on the Development of Architecture Julia Walker A view of the history of architectural technology can help us understand the stakes involved in the construction of buildings of different periods, styles, and structural systems. It can also help clarify why certain forms arose at particular moments in history, at specific sites, and under specific conditions. In all eras and geographical locations, technological innovation has influenced the development of architecture. This innovation has taken various forms—sometimes manifesting as new materials, either manmade or natural, and sometimes as new design tools or structural methods. The practical necessities of any given moment determine the technology that will arise to suit these demands, whether it relates to shelter, fortification, or religious ideas. Technology has been used to solve practical problems, but also to create symbolic orders, such as the assertion of human will over natural forces that arose in prehistoric building. Since antiquity, architects have stressed the significance of such knowledge to their field; the Roman architect and theorist Marcus Vitruvius Pollio (see box text on p. 174), for example, was trained as an engineer and frequently underscored the importance of technological understanding to the execution of architecture. In fact, we see this theme repeated in architectural theory across the globe. The Manasara-silpasastra, a seventh- century Indian building manual named for its author (see box text on p. 273), and the Chinese treatise Yingzao Fashi by Li Jie, a Song Dynasty book of architectural standards (see box text on p. 435), likewise argue that no architect can prosper without a thorough technical education. -
Great Inventors of the Ancient World Preliminary Syllabus & Course Outline
CLA 46 Dr. Patrick Hunt Spring Quarter 2014 Stanford Continuing Studies http://www.patrickhunt.net Great Inventors Of the Ancient World Preliminary Syllabus & Course Outline A Note from the Instructor: Homo faber is a Latin description of humans as makers. Human technology has been a long process of adapting to circumstances with ingenuity, and while there has been gradual progress, sometimes technology takes a downturn when literacy and numeracy are lost over time or when humans forget how to maintain or make things work due to cataclysmic change. Reconstructing ancient technology is at times a reminder that progress is not always guaranteed, as when Classical civilization crumbled in the West, but the history of technology is a fascinating one. Global revolutions in technology occur in cycles, often when necessity pushes great minds to innovate or adapt existing tools, as happened when humans first started using stone tools and gradually improved them, often incrementally, over tens of thousands of years. In this third course examining the greats of the ancient world, we take a close look at inventions and their inventors (some of whom might be more legendary than actually known), such as vizier Imhotep of early dynastic Egypt, who is said to have built the first pyramid, and King Gudea of Lagash, who is credited with developing the Mesopotamian irrigation canals. Other somewhat better-known figures are Glaucus of Chios, a metallurgist sculptor who possibly invented welding; pioneering astronomer Aristarchus of Samos; engineering genius Archimedes of Siracusa; Hipparchus of Rhodes, who made celestial globes depicting the stars; Ctesibius of Alexandria, who invented hydraulic water organs; and Hero of Alexandria, who made steam engines. -
Language Evolution to Revolution: from a Slowly Developing Finite Communication System with Many Words to Infinite Modern Language
bioRxiv preprint doi: https://doi.org/10.1101/166520; this version posted July 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Language evolution to revolution: from a slowly developing finite communication system with many words to infinite modern language Andrey Vyshedskiy1,2* 1Boston University, Boston, USA 2ImagiRation LLC, Boston, MA, USA Keywords: Language evolution, hominin evolution, human evolution, recursive language, flexible syntax, human language, syntactic language, modern language, Cognitive revolution, Great Leap Forward, Upper Paleolithic Revolution, Neanderthal language Abstract There is overwhelming archeological and genetic evidence that modern speech apparatus was acquired by hominins by 600,000 years ago. There is also widespread agreement that modern syntactic language arose with behavioral modernity around 100,000 years ago. We attempted to answer two crucial questions: (1) how different was the communication system of hominins before acquisition of modern language and (2) what triggered the acquisition of modern language 100,000 years ago. We conclude that the communication system of hominins prior to 100,000 years ago was finite and not- recursive. It may have had thousands of words but was lacking flexible syntax, spatial prepositions, verb tenses, and other features that enable modern human language to communicate an infinite number of ideas. We argue that a synergistic confluence of a genetic mutation that dramatically slowed down the prefrontal cortex (PFC) development in monozygotic twins and their spontaneous invention of spatial prepositions 100,000 years ago resulted in acquisition of PFC-driven constructive imagination (mental synthesis) and converted the finite communication system of their ancestors into infinite modern language. -
Human Evolution Timeline 1
Name: Human Origins Web Inquiry 1. Got to the website: http://humanorigins.si.edu/evidence 2. Read the paragraph under “Evidence of Evolution.” 3. In the maroon box on the left, click on “Timeline Interactive” 4. Start by clicking on the red bands at the bottom of the timeline, beginning with Homo sapiens and the rest of the Hominids. Read the information boxes that pop up when you click. 5. When you come across a species you find particularly interesting, record that information (including dates) in the box below. Record facts of at least 5 interesting hominid species, including Homo sapiens. 6. Then begin to explore the rest of the timeline. As you go, record at least 5 other interesting species. 7. Use the magnifier tool at the bottom of the timeline. Click on “color key” to identify the different color dots. Each dot represents a specific piece of evidence scientists have discovered in their study of evolution. 8. Click on various colored dots to learn about tools, events, geology, climate information, behavior, and skeletal adaptations discovered by scientists that add to the evidence for human evolution. Record 7 pieces of evidence you find interesting or particularly important in the box on the back. Make sure to put down different types of evidence (different colors). 9. Take 15-20 minutes to explore the whole timeline and record interesting facts. 10. Build your own timeline on the next page, filling in the interesting species and evidence you recorded in their proper place in the timeline. Hominids Species Dates Interesting fact(s) Homo sapiens Name: Evidence Type of Date Interesting fact(s) Evidence Name: Human Evolution Timeline 1. -
5 Years on Ice Age Europe Network Celebrates – Page 5
network of heritage sites Magazine Issue 2 aPriL 2018 neanderthal rock art Latest research from spanish caves – page 6 Underground theatre British cave balances performances with conservation – page 16 Caves with ice age art get UnesCo Label germany’s swabian Jura awarded world heritage status – page 40 5 Years On ice age europe network celebrates – page 5 tewww.ice-age-europe.euLLING the STORY of iCe AGE PeoPLe in eUROPe anD eXPL ORING PLEISTOCene CULtURAL HERITAGE IntrOductIOn network of heritage sites welcome to the second edition of the ice age europe magazine! Ice Age europe Magazine – issue 2/2018 issn 25684353 after the successful launch last year we are happy to present editorial board the new issue, which is again brimming with exciting contri katrin hieke, gerdChristian weniger, nick Powe butions. the magazine showcases the many activities taking Publication editing place in research and conservation, exhibition, education and katrin hieke communication at each of the ice age europe member sites. Layout and design Brightsea Creative, exeter, Uk; in addition, we are pleased to present two special guest Beate tebartz grafik Design, Düsseldorf, germany contributions: the first by Paul Pettitt, University of Durham, cover photo gives a brief overview of a groundbreaking discovery, which fashionable little sapiens © fumane Cave proved in february 2018 that the neanderthals were the first Inside front cover photo cave artists before modern humans. the second by nuria sanz, water bird – hohle fels © urmu, director of UnesCo in Mexico and general coordi nator of the Photo: burkert ideenreich heaDs programme, reports on the new initiative for a serial transnational nomination of neanderthal sites as world heritage, for which this network laid the foundation. -
The Adaptive Significance of Human Language
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Senior Thesis Projects, 1993-2002 College Scholars 2000 The Adaptive Significance of Human Language Nathan Oesch Follow this and additional works at: https://trace.tennessee.edu/utk_interstp2 Recommended Citation Oesch, Nathan, "The Adaptive Significance of Human Language" (2000). Senior Thesis Projects, 1993-2002. https://trace.tennessee.edu/utk_interstp2/52 This Project is brought to you for free and open access by the College Scholars at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Senior Thesis Projects, 1993-2002 by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. The Adaptive Significance of Human Language Nathan Oesch Department of Psychology University of Tennessee, Knoxville noesch @ utk. edu Abstract Many experts have argued that human language is fundamentally incompatible with the principles of traditional Darwinian evolutionary theory. According to conventional Darwinian explanations, specific traits evolved among species according to gradual and incremental genetic changes, each of which that were in some way so favorable to the survival and reproduction of ancestral generations that they were ultimately preserved within successive generations of those species. Human language, it has been said, is simply to complex to be explained as a result of Darwinian explanations, since each successive step in the evolution of language would confer no obvious survival benefits to its recipients. According to this idea, language is such an "all-or none system," that it could not possibly have existed in any immediately beneficial intermediate forms and thus could not have evolved according to conventional Darwinian modes of explanation. -
Human Brain Evolution, Theories of Innovation, and Lessons
MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2004 PREPRINT 254 Alfred Gierer Human Brain Evolution, Theories of Innovation, and Lessons from the History of Technology Human Brain Evolution, Theories of Innovation, and Lessons from the History of Technology1 Alfred Gierer Max-Planck-Institute for Developmental Biology, T¨ubingen Abstract Biological evolution and technological innovation, while differing in many respects, also share common features. In particular, the implementation of a new technology in the market is analogous to the spreading of a new genetic trait in a population. Technological innovation may occur either through the accumulation of quantitative changes, as in the development of the ocean clipper, or it may be initiated by a new combination of features or subsystems, as in the case of steamships. Other examples of the latter type are electric networks that combine the generation, distribution, and use of electricity, and containerized transportation that combines standardized containers, logistics, and ships. Biological evolution proceeds, phenotypically, in many small steps, but at the genetic level novel features may arise not only through the accumulation of many small, common mutational changes, but also when dis- tinct, relatively rare genetic changes are followed by many further mutations. New evolutionary directions may be initiated by, in particular, some rare combinations of regulatory sections within the genome. The combinatorial type of mechanism may not be a logical prerequisite for bio- logical innovation, but it can be efficient, especially when novel features arise out of already highly developed systems. Such is the case with the evolution of general, widely applicable capabilities of the human brain. -
Bibliography
Bibliography Many books were read and researched in the compilation of Binford, L. R, 1983, Working at Archaeology. Academic Press, The Encyclopedic Dictionary of Archaeology: New York. Binford, L. R, and Binford, S. R (eds.), 1968, New Perspectives in American Museum of Natural History, 1993, The First Humans. Archaeology. Aldine, Chicago. HarperSanFrancisco, San Francisco. Braidwood, R 1.,1960, Archaeologists and What They Do. Franklin American Museum of Natural History, 1993, People of the Stone Watts, New York. Age. HarperSanFrancisco, San Francisco. Branigan, Keith (ed.), 1982, The Atlas ofArchaeology. St. Martin's, American Museum of Natural History, 1994, New World and Pacific New York. Civilizations. HarperSanFrancisco, San Francisco. Bray, w., and Tump, D., 1972, Penguin Dictionary ofArchaeology. American Museum of Natural History, 1994, Old World Civiliza Penguin, New York. tions. HarperSanFrancisco, San Francisco. Brennan, L., 1973, Beginner's Guide to Archaeology. Stackpole Ashmore, w., and Sharer, R. J., 1988, Discovering Our Past: A Brief Books, Harrisburg, PA. Introduction to Archaeology. Mayfield, Mountain View, CA. Broderick, M., and Morton, A. A., 1924, A Concise Dictionary of Atkinson, R J. C., 1985, Field Archaeology, 2d ed. Hyperion, New Egyptian Archaeology. Ares Publishers, Chicago. York. Brothwell, D., 1963, Digging Up Bones: The Excavation, Treatment Bacon, E. (ed.), 1976, The Great Archaeologists. Bobbs-Merrill, and Study ofHuman Skeletal Remains. British Museum, London. New York. Brothwell, D., and Higgs, E. (eds.), 1969, Science in Archaeology, Bahn, P., 1993, Collins Dictionary of Archaeology. ABC-CLIO, 2d ed. Thames and Hudson, London. Santa Barbara, CA. Budge, E. A. Wallis, 1929, The Rosetta Stone. Dover, New York. Bahn, P. -
Homo Heidelbergensis: the Ot Ol to Our Success Alexander Burkard Virginia Commonwealth University
Virginia Commonwealth University VCU Scholars Compass Auctus: The ourJ nal of Undergraduate Research and Creative Scholarship 2016 Homo heidelbergensis: The oT ol to Our Success Alexander Burkard Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/auctus Part of the Archaeological Anthropology Commons, Biological and Physical Anthropology Commons, and the Biology Commons © The Author(s) Downloaded from https://scholarscompass.vcu.edu/auctus/47 This Social Sciences is brought to you for free and open access by VCU Scholars Compass. It has been accepted for inclusion in Auctus: The ourJ nal of Undergraduate Research and Creative Scholarship by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Homo heidelbergensis: The Tool to Our Success By Alexander Burkard Homo heidelbergensis, a physiological variant of the species Homo sapien, is an extinct spe- cies that existed in both Europe and parts of Asia from 700,000 years ago to roughly 300,000 years ago (carbon dating). This “subspecies” of Homo sapiens, as it is formally classified, is a direct ancestor of anatomically modern humans, and is understood to have many of the same physiological characteristics as those of anatomically modern humans while still expressing many of the same physiological attributes of Homo erectus, an earlier human ancestor. Since Homo heidelbergensis represents attributes of both species, it has therefore earned the classifica- tion as a subspecies of Homo sapiens and Homo erectus. Homo heidelbergensis, like anatomically modern humans, is the byproduct of millions of years of natural selection and genetic variation. It is understood through current scientific theory that roughly 200,000 years ago (carbon dat- ing), archaic Homo sapiens and Homo erectus left Africa in pursuit of the small and large animal game that were migrating north into Europe and Asia. -
What Makes a Modern Human We Probably All Carry Genes from Archaic Species Such As Neanderthals
COMMENT NATURAL HISTORY Edward EARTH SCIENCE How rocks and MUSIC Philip Glass on Einstein EMPLOYMENT The skills gained Lear’s forgotten work life evolved together on our and the unpredictability of in PhD training make it on ornithology p.36 planet p.39 opera composition p.40 worth the money p.41 ILLUSTRATION BY CHRISTIAN DARKIN CHRISTIAN BY ILLUSTRATION What makes a modern human We probably all carry genes from archaic species such as Neanderthals. Chris Stringer explains why the DNA we have in common is more important than any differences. n many ways, what makes a modern we were trying to set up strict criteria, based non-modern (or, in palaeontological human is obvious. Compared with our on cranial measurements, to test whether terms, archaic). What I did not foresee evolutionary forebears, Homo sapiens is controversial fossils from Omo Kibish in was that some researchers who were not Icharacterized by a lightly built skeleton and Ethiopia were within the range of human impressed with our test would reverse it, several novel skull features. But attempts to skeletal variation today — anatomically applying it back onto the skeletal range of distinguish the traits of modern humans modern humans. all modern humans to claim that our diag- from those of our ancestors can be fraught Our results suggested that one skull nosis wrongly excluded some skulls of with problems. was modern, whereas the other was recent populations from being modern2. Decades ago, a colleague and I got into This, they suggested, implied that some difficulties over an attempt to define (or, as PEOPLING THE PLANET people today were more ‘modern’ than oth- I prefer, diagnose) modern humans using Interactive map of migrations: ers. -
K = Kenyanthropus Platyops “Kenya Man” Discovered by Meave Leaky
K = Kenyanthropus platyops “Kenya Man” Discovered by Meave Leaky and her team in 1998 west of Lake Turkana, Kenya, and described as a new genus dating back to the middle Pliocene, 3.5 MYA. A = Australopithecus africanus STS-5 “Mrs. Ples” The discovery of this skull in 1947 in South Africa of this virtually complete skull gave additional credence to the establishment of early Hominids. Dated at 2.5 MYA. H = Homo habilis KNM-ER 1813 Discovered in 1973 by Kamoya Kimeu in Koobi Fora, Kenya. Even though it is very small, it is considered to be an adult and is dated at 1.9 MYA. E = Homo erectus “Peking Man” Discovered in China in the 1920’s, this is based on the reconstruction by Sawyer and Tattersall of the American Museum of Natural History. Dated at 400-500,000 YA. (2 parts) L = Australopithecus afarensis “Lucy” Discovered by Donald Johanson in 1974 in Ethiopia. Lucy, at 3.2 million years old has been considered the first human. This is now being challenged by the discovery of Kenyanthropus described by Leaky. (2 parts) TC = Australopithecus africanus “Taung child” Discovered in 1924 in Taung, South Africa by M. de Bruyn. Raymond Dart established it as a new genus and species. Dated at 2.3 MYA. (3 parts) G = Homo ergaster “Nariokotome or Turkana boy” KNM-WT 15000 Discovered in 1984 in Nariokotome, Kenya by Richard Leaky this is the first skull dated before 100,000 years that is complete enough to get accurate measurements to determine brain size. Dated at 1.6 MYA. -
Education + Technology + Innovation = Learning? T
Thank you for downloading Education + Technology + Innovation = Learning? T. V. Joe Layng and Janet S. Twyman from the Center on Innovations in Learning website www.centeril.org This report is in the public domain. While permission to reprint this publication is not necessary, it should be cited as: Layng, T. V. J., & Twyman, J. S. (2013). Education + technology + innovation = learning? In M. Murphy, S. Redding, & J. Twyman (Eds.), Handbook on innovations in learning (pp. 13 –1 ). Philadelphia, PA: Center on Innovations in Learning, Temple University; Charlotte, NC: Information Age Publishing.3 48 Retrieved from http://www.centeril.org/ 2 <body> e = mc2 e = mc </body> </html> Part 3 Technology in Learning Innovation Education + Technology + Innovation = Learning? T.V. Joe Layng and Janet S. Twyman Close your eyes, and think of the word “technology.” What thoughts and images come to mind? Your smart phone? Computers? Hardware or digital head? Now, pause to pay attention to the feelings that you associate with “tech- nology”?things, or Do information you feel comfortable, in bits and bytes or sense floating stirrings around of concern? in the “cloud” Is there above eager your- Technology is the use and knowledge of tools, techniques, systems, or meth- ness, or do you have a sense that things could very easily be out of control? ods in order to solve a problem or serve some purpose. What we view as new technology evolves and advances persistently. A technological innovation— stone tools—is said to be a driver behind early human migration (Jacobs et al., 2008). Agriculture and pottery were innovative “technologies” to our Neolithic - ancestors (Cole, 1970), as was the light bulb to Edison and his contemporaries (Hargadon & Douglas, 2001).