Subject Index

Total Page:16

File Type:pdf, Size:1020Kb

Subject Index SUBJECT INDEX Lower Cretaceous 4515 21 57 61 65 676871 8990 A 9298115189 191193195196198 200 204 229 243 248 197 Abu Dhabi 5 21 2834 71 96 130 173 187188 191 249 251 263264273 282 287 299 308309 198 200 203 229 231257259 261262 264 315347 271 285 287 297 303 312 336337 340 343 350354 351 354355 Upper Cretaceous 5 92 130187259 263 267 315 322 Alaska 465 67 68 69 74 326351 Albian 4 5 14 17 65 6769 74 77 7980 81 8486 89 92 cyclicity 21 24 37 42 484951 236 243 273 285 343 9499173209211217219222223 249281300303311312315320325326 332 335 341 347 351 D ammonite 421 24 33 38 61 77 79 81 118 129130212 218219222223300335depositional cycles 45 77 79 8386236 83 Amran Group 155157158160164166168169170171diagenesis 3537 41 47 69 103104107 110111136 Aptian 351418 62 65 6769727477818485 89 92 155 162191194 94 96 98 118173180181183185 197 200 220 229 281 290 299 308 343 209 198 209210217219222223 264 299 300 disconformities 483 158 303311312315325332335345347351Diyab Formation 3 5 249250254 255259261264267 Arab Formation 3553 229 236 241 243 249250 257 268 335343344351354311354 Arabian Plate 12 62 73 115 129 210 315 317 320 332 Arabian Platform 3510 1718 78 143 149 209210 218 222 229 338 E 21 28 30 34 229 249250263264 335 343 351 Araej Egypt 4 103 107 111 112 Araej Formation 229 250 264 eustatic sealevel 48 68 74 287 315 317 321 331 345 347 Araej Member 30 250 343 eustatic sealevel changes 287 Araej oil 249 263 eustatic sealevel variations 68 74 F Bahamas Bank 67 Falaise de 53 55 62 Barremian 4515 53 62 92 94 98 115 118 197 315 324 Bikfaya firmground 24 37 41 46 47 49 83 212 275280 285 325 331 Berriasian 451517 6162115126185 197 273 284 315 322 347 G biofacies 85 98 175176 179 biostratigraphy 421 29 66 6869 98 218 343 geochemistry 79 103 107 181 186 201 209 214 249 259 Biyadh Formation 115117118126324299 345 Buwaib Formation 4 115 117126 graphic correlation 477 78 79 82 83 85 209 217 218 219222 C H Calcaire de Salima 53 55 596062 Cenomanian 417 77 7980 83 858694 217218264 Habshan Formation 17 77 89 9899185196197229 311321326327331332336341347351248 287 345 351 Chouf Sandstone 53 55 6062 Habshan reservoir 197 345 condensed horizons 26 Hadriya Formation 5229 235236243 248 250 257 285 constratal growth 143 146 150 152 Hadriya reservoir 229 243 250 257 corrosion zone 38 45 47 Hanifa Formation 5 229 235236243 248 Cretaceous 35910151718 53 61627778 80 Hanifa reservoir 229 235 243 257 8599104150 hardground 4524 373841 46498386130 145 155 152 155 158 173 209 212 217 222 243 250 162223 315 251 267 270 273 276 284 299300 312 Hauterivian 4 77 89 98 115118126 197 324 354 317 320 335 345 347 349351 Hawasina 9121518129 210 Early Cretaceous 16 62 8990 92 94 104 115 117 122 Hith Formation 115 117118229 236 242244248250 158 250 273 281 300 315 317 320 341 259354 Late Cretaceous 5910121517103129152 hurricanes 152 214229243248249259315320321335hydrocarbon potential 299 309 316 335 350354 hydrocarbon reserves 4 329 359 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3797349/9781565761919_backmatter.pdf by guest on 28 September 2021 SUBJECT INDEX microfacies 438 115 118129133134136143 I 148280 microporosity 5 155 162 166 173 176180183 273 282 insitu associations 152 143 145 148 283308 Iran 3491224223320322326331332 Milankovitch successions 37 335 Minagish Oolite 273279281285345 Iraq 3521 55 62 130 274275281282315317 320 322 324326328332 349 351 T Izhara Formation 21 2834338 343 1I Nahr Umr Formation 4569 777880818385173 176 J 178179182183209212214 216223249 300345 Formation 236 243 Jubaila 347354 Jurassic 359 14 21 23 29 3738 4648 53 6062 99 Nanushuk 676870 74 10304107246 NeoTethys 1 4 9121417 248 270 273 312 315 322 324 329 335 340 NeoTethys 2 349121517 341 343 345 347 350351 354 Neogene 3417 656668 74 Early Jurassic 12 38 48 51 317 Late Jurassic 39 1516 158 235236 249 273 322 354 Lower Jurassic 426 28 34 37384041464951 337 338340 Middle Jurassic 421 23262831333447 103107 109112158209229250263340343oil migration 193249 Upper Jurassic 3 5 11 15 26 34 53 57 115 117 155 oiloil correlation 263 158237 Oman 35912 14 151821 28 37 38 49 77 798689 239315 9298117143 322329332343345350351354144 152210 212301 308354 K omission surface 24 33 37384043454951 oncoid 421 24 313438 41 103104106108110112 karst 4 3738414244 46 484953 5962158164 134343 166 220 343 ophiolites 3 1117 kerogen type 259 Kharaib Formation 69 94 96 98 173 185 186 189 193 194305 P 309 345 351 Kharaib reservoir 5 287 paleoenvironment 59 98 103 117 129130209 222 251 Kuwait 35273275281 285 326 331 345 257 permeability 3 173 176181183 185 189 191 193194 196309 L 311 324 351 petroleum exploration 350 lagoonal environment 278 303 pore geometry 5 191 287 291292294295 Lebanon 45354 59 62 79 219 porosity 45108 110 136 155 162164166 173174176 Lekhwair Formation 77 98 185197 287 345 351 180197 200283 M 285311 312326345f351 Maastrichtian 349 12 151783 129 136 143 147 150 259262264315329331332335349351 macroporosity 5 173 176180 182 183 273274282283 Y marine calcite cement 107 Qatar Arch 30 34 229 235 248 matrix 542 48 90 92 94 103104106108110112 120 123183 188277 R 280282283285288289291293299307 308312 ramp 5 69 72 115 117118126 176 179 183 229 243 matrix porosity 351 273291 MenderLekhwair High 229 231 235 243 248 303 305 315 324 331 Mesopotamian Basin 5 315317320327329332 reef structure 149150 meteoricwater diagenesis 173 reservoir simulation 5 287 295 microrhombic calcite 173 178181 183 308 311 360 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3797349/9781565761919_backmatter.pdf by guest on 28 September 2021 SUBJECT INDEX reservoirs 3551 53 115 158 179 185 188189191193 195197204229237240243248249257T 259309 Thamama 312347 Group 45115200 229 236 243 249 267 275 287 299 315 325 350351354355 335 345 347 351 354 reserves oil and gas 5 335 351 Thamama II reservoir 287292295 oil 3 315 326 329 Tithonian 4 15 17 53 555659606142 117 158 236 gas 3 249 250 343 rudist 4569 72 77 8990 92 94 96 9899129133 Torok Formation 74 134183 676870 Triassic 198281 3 9 10 12 151721 24 272830 34 37158 335 337343 287303 Mountain Formation 243 305332 Tuwaiq 229 232 235236 345 347 349 351 rudistbivalves 89 288 294 299 U S unconformity 4528 30 65 68 73 808183 85 107 115 117229 Samhan Formation 143 231332 343 345 347 SanandajSirjan Zone 91117 Saudi Arabia 34 24 26 2830115118 126 130 249 273 274285299324331343345V sealevel change 4537 38 414248119 51 66 8485 350 155 158 166 273 285 287 343 345 Valanginian 4518117126197 273 284 315 322 simulation 303 sedimentary 6566 74 324 331 347 sequence stratigraphy 3517 21 24 5960 62 69 8081 303 315 317 321 343 sequences 4510 12 15 2324 26 31 34 374953 62 Y 65707274 77 104 107 115 155 158 162 197 257305 Yamama Formation 115 117 118 122124274275281 315351 282 285 315 321322324 329 331332 Shuaiba Formation 35656669707274808183 92 Yemen 5 26 59 62 155156158159166 343 94 96 98118 173 175183185186 191196198209211212214216222264 267315 325 332 345 347 351 Shuaiba reservoir 173 181 183 312 Simsima Formation 4517 129130132134 136 138 143152268 335 349 351 355 simulation 49 656668707274 185 287 295 297 303 Sinai 4 103 104 110 111 112 343 source rock 3517 21 229 243 247249 251 257259 261315 324329350354355 stable isotopes 5 103 209 299 305 308309 storm 24 38 55 59 6162130146149152211212 222273276278280281285345 stylolites 3547 107 155 162 166 185201203206 277 280282288301305308311 subaerial exposure 4537 49 62 83 86 103 166 173 176 178308 subduction 311 9 12 1517 129 335 349 Sulaiy Formation 115324 361 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3797349/9781565761919_backmatter.pdf by guest on 28 September 2021 TAXONOMIC INDEX A Actaeonella 131 134 136 Colomisphaera tenuis 59 Actinarea cf granulata 60 Commitosphaera sublapidosa 59 Actinarea sponginoides 55 Conicospirillina 59 Actinoporella podolica 55 59 Coniporella clavaeformis 33 Aetostreon latissima 117 Corbis sp 118 Agerostrea sp 131 Corbula sp 118 Agriopleura blumenbachi 90 92 Crustocadosina semiradiata 59 Agriopleura martieensis 92 Crustocadosina semiradiata olzae 59 hastellata Aleetryonia 60 Cucullaea sp 118 Alzonella euvillieri 21 24 33 Cyclammina spp 117122124126 Amijiella amiji 24 Cyclolites sp 131 Ammobaculites 55 59 62 118 122 124 Cylindroporella arabica 55 Ammobaculites subaequalis 62 Cytherelloidea bikfayaensis 59 Ampullina krumbecki 55 Cytherelloidea salimaensis 59 Ampullina vautrini 55 Anapachydiscus fresvillensis 129 Anchispirocyclina lusitanica 117 122 D Anisocardia sp 118 61 Aporrhais sp 117118131 Dadoxylon Araucariacites australis 29 Diceras sp 117 Araucarioxylon 61 Dictyoptychus 131 134 136 Architectonica sp 131 Dictyoptychus morgani 131 133 60 Aspidoceras sp 59 Dimorphastrea kobyi 55 Astrocoenia sp 118 Diplocoenia punica Atopochara trivolvis 62 Diplocraterion 61 Durania sp 131 133134143150 152 B E Baryhelia hexaconena 55 Berriasella richteri 59 Eoradiolites 99 Eoradiolites 217 Berthelinella sp 117 lyratus 84 90 92 Eoradiolites 92 Bigenerina sp 118 plicatus 90 Biradiolites 145 150 Everticyclammina 303 324 contorta Bramkampella 117 122 324 Everticyclammina 124 126 Burgundia trinorchii 55 Everticyclammina eccentrica 117 Everticyclammina greigi 118 124125 Everticyclammina hellen 117122124126 C Everticyclammina hensoni 118 124 Everticyclammina kelleri 117 Cadosina fusca 59 Everticyclammina praekelleri 59 Cadosina fusca cieszynica 59 Everticyclammina virguliana 59 Calpionella 62 Everticyclammina sp 117122125 Caprotina sp 92 94 96 9899 Exogyra 118 281 Caprotina striata 94 Cardium corallium 55 Centrastrea blanckenhorni 60 F Centrastrea leptomeres 55 Centrastrea polystila 55
Recommended publications
  • Gastropods from the Lower Cretaceous of Vorarlberg, Austria. a Systematic Review 23-73 ©Naturhistorisches Museum Wien, Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2002 Band/Volume: 103A Autor(en)/Author(s): Kollmann Heinz Albert Artikel/Article: Gastropods from the Lower Cretaceous of Vorarlberg, Austria. A systematic review 23-73 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 103 A 23–73 Wien, März 2002 Gastropods from the Lower Cretaceous of Vorarlberg, Austria. A systematic review 1 by Heinz A. KOLLMANN (With 1 text-figure and 6 plates) (Manuscript submitted on December 19th 2001, the revised manuscript on Januray 31st 2002) Abstract This paper gives a synopsis and systematic revision of Lower Cretaceous gastropods of the Helvetic Zone in Vorarlberg, Austria. All investigated specimens are parts of public collections. Besides types and refe- rence specimens, hitherto scientifically not investigated material is documented and mostly figured. The assemblage of the Upper Valanginan to Lower Hauterivian Kieselkalk Formation (mainly Gemsmättli Member) yielded 18 taxa. From the Barremian to Early Aptian Schrattenkalk Formation, 13 taxa are described, whereas 2 taxa stem from the Aptian Luitere Bed of the Gams Formation and 14 taxa from the Albian Garschella Formation. Due to the poor preservation, many taxa are specifically indeterminable. The assemblages closely resemble contemporary ones of the Swiss Jura, the Haute Savoie and the Anglo- Parisian Basin. Two new species are introduced: Pyrgotrochus concavus (fam. Pleurotomariidae) and Pseudonerinea vaceki (fam. Ceritellidae). Zusammenfassung Aus der Unterkreide des Helvetikums von Vorarlberg beschriebene, in Fossillisten erwähnte und bisher unbeschriebene Gastropodentaxa aus öffentlichen Sammlungen werden systematisch revidiert, beschrieben und größtenteils abgebildet.
    [Show full text]
  • Les Vertébrés Du Crétacé Supérieur Des Charentes
    Les vert´ebr´esdu Cr´etac´eSup´erieurdes Charentes (Sud-Ouest de la France) : biodiversit´e,taphonomie, pal´eo´ecologieet pal´eobiog´eographie Romain Vullo To cite this version: Romain Vullo. Les vert´ebr´esdu Cr´etac´eSup´erieur des Charentes (Sud-Ouest de la France) : biodiversit´e,taphonomie, pal´eo´ecologie et pal´eobiog´eographie. domain other. Universit´e Rennes 1, 2005. Fran¸cais. <tel-00166218> HAL Id: tel-00166218 https://tel.archives-ouvertes.fr/tel-00166218 Submitted on 2 Aug 2007 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. N° d'ordre: 3313 THÈSE présentée DEVANT L'UNIVERSITÉ DE RENNES 1 pour obtenir le grade de : DOCTEUR DE L'UNIVERSITÉ DE RENNES 1 Mention Biologie par ROMAIN VULLO Equipe d'accueil : Géosciences Rennes Ecole Doctorale : Vie-Agronomie-Santé Composante Universitaire : UFR SPM LES VERTÉBRES DU CRÉTACÉ SUPÉRIEUR DES CHARENTES (SUD-OUEST DE LA FRANCE) : BIODIVERSITÉ, TAPHONOMIE, PALÉOÉCOLOGIE ET PALÉOBIOGÉOGRAPHIE Soutenue le 13 décembre 2005 devant la commission d'Examen COMPOSITION DU JURY : M. François Guillocheau, Univ. Rennes 1 Président du Jury Mme Angela D. Buscalioni, Univ. Madrid Rapporteur M. Jean-Claude Rage, MNHN, Paris Rapporteur M.
    [Show full text]
  • Mollusca of the Buda Limestone
    Bulletin No. 205 Series C, Systematic Geology and Paleontology, 59 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHAKLES D. WALCOTT, DIRECTOR THE MOLLUSCA OF THE BUDA LIMESTONE BY GEORGE BURBANK SHATTUCK WITH AN APPENDIX ON THE CORALS OF THE BUDA LIMESTONE THOMAS WAYLAND VAUGHAN WASHINGTON GOVERNMENT PRINTING OFFICE 1903 CONTENTS. Page. Letter of transmittal, by T. W. Stanton .................................. 7 Preparatory note .----..-................,.........:..._................... 9 Historical review . ... .................................................... 9 Bibliography.............................._..........................'.. 11 Geology of the Bnda limestone..... .....--.....'-...---...-...--.-........ 12 List of species in Buda limestone.......---.-..-...--....-................ 14 Descriptions of species.................................................... 15 Mollusca ...... ._--.-._-.-.-------...-__..-.... ..-..'.-.......-....... 15 Pelecypoda.... .................-...................-.-..-------- 15 Pectinidse .................................................. .... 15 Limidse ................:...................................... 17 Pernidae....................................................... 19' Pinnidae..................................................... 19 Spondylidffi--_---.-.......................................... 20 Ostreidae ......................... ............................ 20 Mytilidae.......... ...................'.............. ....... 23 Arcidse......................................................
    [Show full text]
  • (Upper Cretaceous) Gastropods from Egypt 115 Thérèse Pfister, Urs Egmüllerw & Beat Keller Die Molluskenfauna Der St
    51 Reihe A Series A/ Zitteliana An International Journal of Palaeontology and Geobiology Series A /Reihe A Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Geologie 51 An International Journal of Palaeontology and Geobiology München 2011 Zitteliana Zitteliana An International Journal of Palaeontology and Geobiology Series A/Reihe A Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Geologie 51 CONTENTS/INHALT Nora Dotzler, Thomas N. Taylor, Jean Galtier & Michael Krings Sphenophyllum (Sphenophyllales) leaves colonized by fungi from the Upper Pennsylvanian Grand-Croix cherts of central France 3 Evelyn Kustatscher, Christian Pott & Johanna H.A. van Konijnenburg-van Cittert Scytophyllum waehneri (Stur) nov. comb., the correct name for Scytophyllum persicum (Schenk) Kilpper, 1975 9 Alfred Selmeier & Dietger Grosser Lower Cretaceous conifer drift wood from Sverdrup Basin, Canadian Arctic Archipelago 19 Wolf Ohmert Radiolarien-Faunen und Stratigraphie der Pattenau-Formation (Campanium bis Maastrichtium) im Helvetikum von Bad Tölz (Oberbayern) 37 Joachim Gründel, Martin Ebert & Roger Furze Die Gastropoden aus dem oberen Aalenium von Geisingen (Süddeutschland) 99 Wagih Ayoub-Hannaa & Franz Theodor Fürsich Revision of Cenomanian-Turonian (Upper Cretaceous) gastropods from Egypt 115 Thérèse Pfister, Urs egmüllerW & Beat Keller Die Molluskenfauna der St. Galler Formation (Belpberg-Schichten, Obere Meeresmolasse) bei Bern (Schweiz): Taphonomie und Paläoökologie 153 Volker Dietze, Günter Schweigert, Uwe Fidder & Norbert Wannenmacher The Giganteuston Member of Öschingen (Humphriesianum Zone, Lower Bajocian, Swabian Alb), with comments on the genera Dorsetensia Buckman, 1892 and Nannina Buckman, 1927 209 Wolfgang Witt Mixed ostracod faunas, co-occurrence of marine Oligocene and non-marine Miocene taxa at Pınarhisar, Thrace, Turkey 237 Peter Schäfer Beiträge zur Ostracoden- und Foraminiferen-Fauna der Unteren Süßwassermolasse in der Schweiz und in Savoyen (Frankreich).
    [Show full text]
  • Cenomanian–Turonian Transition in a Shallow Water Sequence of the Sinai, Egypt
    Int J Earth Sci (Geol Rundsch) (2010) 99:165–182 DOI 10.1007/s00531-008-0374-4 ORIGINAL PAPER Cenomanian–Turonian transition in a shallow water sequence of the Sinai, Egypt B. Gertsch Æ G. Keller Æ T. Adatte Æ Z. Berner Æ A. S. Kassab Æ A. A. A. Tantawy Æ A. M. El-Sabbagh Æ D. Stueben Received: 25 July 2007 / Accepted: 27 September 2008 / Published online: 22 October 2008 Ó Springer-Verlag 2008 Abstract Environmental and depositional changes across likely due to a rising sea-level. Characteristic OAE2 anoxic the Late Cenomanian oceanic anoxic event (OAE2) in the conditions reached this coastal region only at the end of the Sinai, Egypt, are examined based on biostratigraphy, d13C plateau in deeper waters near the end of the Ceno- mineralogy, d13C values and phosphorus analyses. Com- manian. Increased phosphorus accumulations before and parison with the Pueblo, Colorado, stratotype section after the d13C excursion suggest higher oxic conditions and reveals the Whadi El Ghaib section as stratigraphically increased detrital input. Bulk-rock and clay mineralogy complete across the late Cenomanian–early Turonian. indicate humid climate conditions, increased continental Foraminifera are dominated by high-stress planktic and runoff and a rising sea up to the first d13C peak. Above this benthic assemblages characterized by low diversity, low- interval, a dryer and seasonally well-contrasted climate oxygen and low-salinity tolerant species, which mark with intermittently dry conditions prevailed. These results shallow-water oceanic dysoxic conditions during OAE2. reveal the globally synchronous d13C shift, but delayed Oyster biostromes suggest deposition occurred in less than effects of OAE2 dependent on water depth.
    [Show full text]
  • Guidebook to the Geology of Travis County.Pdf (4.815Mb)
    Page | 1 Guidebook to the Geology of Travis County: Preface Geology of the Austin Area, Travis County, Texas Keith Young When Robert T. Hill first came to Austin, Texas, as the first professor of geology, he described Austin and its surrounding area as an ideal site for a school of geology because it offered such varied outcrops representing rocks of many ages and varieties. Although Hill resigned his position about 85 years ago, the opportunities of the local geology have not changed. Hill (Hill, 1889) implies the intent of writing a series of papers to describe the geology of the local area for all who might be interested. The authors of this volume hope that they have fulfilled in large measure Hill's original intent. No product can ever be all things to all users, but we have presented here common geological phenomenon for many, including the description of an ancient volcano, the description of faulting that occurred in the Austin area in the past, a geologic history of the Austin area, a description of the local rocks, including their classification, field trips for interested observers of the geologic scene, collecting localities for the lovers of fossils, and resource places and agencies. We cannot emphasize enough that many unique geological phenomena are on private property. Please do not trespass, obtain permission. And if permission is not granted, observe from a distance. There are sufficient areas of geologic interest in the Austin area to please all without antagonizing landowners and making it even more difficult for the next person. Page | 2 Guidebook to the Geology of Travis County: Author's Note A useful guide to the geology of the Austin area has long been a goal.
    [Show full text]
  • Ecological Disparity Is More Susceptible to Environmental
    Swiss J Palaeontol (2018) 137:49–64 https://doi.org/10.1007/s13358-017-0140-y REGULAR RESEARCH ARTICLE Ecological disparity is more susceptible to environmental changes than familial taxonomic richness during the Cretaceous in the Alpstein region (northeastern Switzerland) 1 2 1 Amane Tajika • Peter Ku¨rsteiner • Christian Klug Received: 12 June 2017 / Accepted: 26 September 2017 / Published online: 12 October 2017 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2017 Abstract Studies of global palaeoecology through time disparity are decoupled and that the ecological disparity is usually ignore regional details. Such regional studies on more highly variable in response to environmental changes palaeoecology are required to better understand both than familial taxonomic richness. regional- and global-scale palaeoecolgical changes. We analyzed the palaeoecolgy of a Cretaceous sedimentary Keywords Palaeoecology Á Diversity Á Ecological sequence in the Alpstein (cantons of Appenzell Ausser- disparity Á Cretaceous Á Switzerland rhoden, Appenzell Innerrhoden and St. Gallen, northeast- ern Switzerland), which covers from the Barremian to Cenomanian stage. Two diversity indices of familial tax- Introduction onomic richness and ecological disparity (ecospace occu- pation) with the trophic nucleus concept were employed in The ‘Big Five’ mass extinctions (End-Ordovician, Late order to document changes in palaeocommunities through Devonian, End-Permian, End-Triassic and End-Cretaceous) time. Our results illustrate that taxonomic richness did not are known to have severely affected the earth’s ecosystems change dramatically, while distinct changes occurred in and ecology (e.g., Murphy et al. 2000; Sheehan 2001;Hes- ecospace occupation through time. The changes in eco- selbo et al. 2007; Knoll et al.
    [Show full text]
  • A Systematic Palaeontology
    Egypt. Jour. Paleontol., Vol. 13, 2013, p. 185-254 ISSN 1687 - 4986 UPPER CRETACEOUS MACROFOSSILS FROM JARDAS AL'ABID AREA, AL JABAL AL AKHADAR NORTHEAST LIBYA: A SYSTEMATIC PALAEONTOLOGY Gamal M. EL QOT 1, 2, Esam O. ABDULSAMAD 2 and Mohamed Fouad ALY 3 1 Geology Department, Faculty of Science, Benha University, [email protected] 2 Earth Sciences Department, Faculty of Science, Benghazi University, P. O. Box: 9480, Benghazi, Libya, [email protected] 3 Geology Department, Faculty of Science, Cairo University, [email protected] ABSTRACT Forty nine macrofossil species and subspecies have been identified, systematically described, and discussed in detail. They have been collected from five Upper Cretaceous stratigraphic sections exposed at Jardas al'Abid area, Al Jabal Al Akadar, NE Libya. The studied fauna are belonging to Mollusca (Bivalvia, Gastropoda, and Cephalopoda) and Echinoidea. Bivalves constitute the main bulk of the taxa, being represented by 30 species and subspecies belonging to 24 genera. The gastropods comprise 11 species belonging to 10 genera, the cephalopods (ammonites) are 4 species belong to 4 genera, and the echinoids are 4 species belong to 3 genera. Among the prementioned fauna 19 species were recorded for the first time from Libya. Key words: Macrofossils,Upper Cretaceous,Al Jabal Al Akhadar, Libya. INTRODUCTION The Upper Cretaceous sequence of the Jardas al'Abid area is fairly rich in marine invertebrates. Bivalves are considered the most abundant macrofossils among the various macrofossil groups, especially the oysters which are very abundant in the Cenomanian Qasr al'Abid Formation. Echinoids and gastropods represent the second abundant faunal elements. The ammonites are of subordinate occurrence and characterize the lower part of Al Baniyah Formation as well as the Al Majahir Formation.
    [Show full text]
  • The Roles of Mass Extinction and Biotic Interaction in Large-Scale Replacements: a Reexamination Using the Fossil Record of Stromboidean Gastropods
    Paleobiology, 22(3), 1996, pp. 436-452 The roles of mass extinction and biotic interaction in large-scale replacements: a reexamination using the fossil record of stromboidean gastropods Kaustuv Roy Abstract.-The macroevolutionary processes underlying large-scale biotic replacements are still poorly understood. Opinion remains divided regarding the roles of mass extinction, biotic inter- action, and environmental perturbations in these replacement events. Previous attempts to test re- placement hypotheses have largely focused on taxonomic diversity patterns. Taxonomic data alone, however, provide little insight about ecological interactions and hence other approaches are needed to understand mechanics of biotic replacements. Here I propose a conceptual model of replacement based on predation-mediated biotic interactions, and attempt a test using analysis of the Cenozoic replacement of the gastropod family Aporrhaidae by a closely related group, the Strombidae. Taxonomic, morphologic, and geographic data analyzed in this study all suggest a replacement of aporrhaids by strombids following the end-Cretaceous mass extinction. While most of the tax- onomic replacement was associated with a mass extinction, some replacement also occurred during background times and was mediated by higher origination rates in strombids rather than by higher extinction rates in aporrhaids. Morphologically, the replacement was largely confined to the portion of the morphospace unaffected by the end-Cretaceous extinction. At a global scale, the geographic overlap between the two groups declined through the Cenozoic, reflecting increasing restriction of aporrhaids to colder, temperate waters while strombids flourished in the tropics. However, at a finer geographic scale a more mosaic pattern of replacement is evident and coincides with Eocene and Oligocene climatic fluctuations.
    [Show full text]
  • Were Late Cretaceous Extinctions of Gastropods Selective by Generic Longevity?
    Geoscience Frontiers 4 (2013) 87e93 Contents lists available at SciVerse ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research paper Were Late Cretaceous extinctions of gastropods selective by generic longevity? Dmitry A. Ruban a,b,* a P.O. Box 7333, Rostov-na-Donu, 344056, Russian Federation (for postal communication) b Division of Mineralogy and Petrography, Geology and Geography Faculty, Southern Federal University, Zorge Street 40, Rostov-na-Donu, 344090, Russian Federation article info abstract Article history: Many gastropod taxa went extinct during the Late Cretaceous. The stratigraphic ranges of 268 Received 11 February 2012 genera permit to establish the longevity of extinction victims for each stage of this epoch. “Young” taxa Received in revised form (originated within 3 epochs before the extinction) prevailed among victims of the extinctions in all 11 April 2012 stages. The proportion of “old” taxa (originated before the Cretaceous) that went extinct was the highest Accepted 17 April 2012 in the Cenomanian, and it was the lowest in the Coniacian and the Maastrichtian. It appears that the Available online 2 May 2012 end-Cretaceous mass extinction affected chiefly “young” taxa. However, the comparison with the earlier time intervals suggests that this pattern of selectivity by generic longevity was not specific for the Keywords: Gastropods noted catastrophe, but, in contrast, it was typical for the entire Late Cretaceous. The latest Cenomanian “ ” Extinction environmental perturbation (OAE2) caused a stronger extinction of old taxa, and thus, this biotic crisis Longevity was less selective by generic longevity. This hypothesis, however, is not proven by the statistical test.
    [Show full text]
  • Early Kimmeridgian Carbonate Platform, French Jura Mountains
    Swiss J Geosci (2015) 108:273–288 DOI 10.1007/s00015-015-0189-9 Evolution of a Late Oxfordian: early Kimmeridgian carbonate platform, French Jura Mountains 1 2 3 Nicolas Olivier • Elsa Cariou • Pierre Hantzpergue Received: 27 August 2014 / Accepted: 27 March 2015 / Published online: 23 April 2015 Ó Swiss Geological Society 2015 Abstract A detailed facies analysis and interpretation of during the upper Bimammatum Zone caused an increase in the evolution of depositional environments along a north– siliciclastic and nutrient input, leading to a reduction in south transect of the Late Oxfordian—Early Kimmeridgian carbonate production and strong retrogradation of the French Jura carbonate platform highlights hierarchically platform. During the Platynota and lower Hypselocyclum stacked depositional sequences. The identified small- and zones, the shallow inner shelf carbonate production once medium-scale depositional sequences are matched with the more exceeded the accommodation, leading to a general precise cyclostratigraphic framework initially established aggradation of the platform. From the upper Hypselocy- for the Swiss Jura platform. The superimposition of a long- clum Zone, with a more humid climate, the carbonate term (2nd order) sea-level rise with long (400 kyr) eccen- production did not outweigh the accommodation creation tricity cycles explains most of the French Jura platform and the platform evolved to a flat-topped shelf. Thus, sea- architecture. During the Bimammatum and Planula zones, level changes and climatic conditions (temperature and the climate became progressively warmer and more arid, humidity) are the key factors controlling the nature of the allowing enhanced carbonate production. This resulted in a sedimentation and the depositional profile of the French strong progradation of the French Jura platform that pro- Jura platform during the Late Oxfordian—Early gressively evolved from a ramp to an oolitic rimmed shelf.
    [Show full text]
  • 8Th International Symposium on the Cretaceous System Abstract Volume
    v E H „ 8th International Symposium on the Cretaceous System CI 4- Convenors: Malcolm B. Hart and Gregory D. Price The Geological Society The MtcropalaeontcHogtcal Society M jftex SIRAIIGHAPHIC CONSULTING LIMITED ProceiXlings of th«* Geolog isl s 'Assoc! ation Published by ElttvUr» from 2009 PES 4 Abstract Volume Edited by Malcolm B. Hart 8th International Symposium on the Cretaceous System University of Plymouth 6th- 12th September 2009 Abstract Volume Editor: Malcolm B. Hart Organisation of the 8 International Symposium on the Cretaceous System Conveners: Malcolm B. Hart and Gregory D. Price Symposium Secretariat: Samantha Davis, Kevin Chappie and Clare Parkinson Secretary: Sally Greenwood Webmaster: Paul Dowland Editor of the Abstract Volume: Malcolm B. Hart Production of Documentation: Lizz Score and Document Production Centre of the University of Plymouth Sponsors: The Geological Society of London The Micropalaeontological Society Palaeontological Association Neftex Petroleum Consultants Ltd Network Stratigraphic Consulting Ltd Shell Exploration and Production Ltd Petroleum Exploration Society of Great Britain Proceedings of the Geologists' Association (Elsevier) University of Plymouth ISBN: 978-1-84102-233-8 Hart, M.B. (Ed.), 8th International Symposium on the Cretaceous System, 6th - 12th September, 2009, Abstract Volume. 2 Cretaceous climatic oscillations in the southern palaeolatitudes: new stable isotope evidence from India and Madagascar [790] Zakharov, Y.D.1, Shigeta, Y.2, Nagendra, R.3, Safronov, P.P.1, Smyshlyaeva, O.P.1,
    [Show full text]