UNIVERSITY of CALIFORNIA Los Angeles Mycobacterium

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA Los Angeles Mycobacterium UNIVERSITY OF CALIFORNIA Los Angeles Mycobacterium tuberculosis tRNA triggers TLR8 to induce a pathway for Th1 cell instruction A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Microbiology, Immunology and Molecular Genetics by Caroline Keegan 2016 ã Copyright by Caroline Keegan 2016 ABSTRACT OF THE DISSERTATION Mycobacterium tuberculosis tRNA triggers TLR8 to induce a pathway for Th1 cell instruction by Caroline Keegan Doctor of Philosophy in Microbiology, Immunology and Molecular Genetics University of California, Los Angeles, 2016 Professor Robert L. Modlin, Chair Mycobacterium tuberculosis, the etiologic agent of tuberculosis, has infected one third of the world’s population and is one of the leading global infectious disease threats. Treatment is challenging, lasting upwards of six months even for drug sensitive infections, and the proliferation of multi and extensively drug resistant forms of tuberculosis underscore the urgent need for knowledge of the mechanisms driving pathogenesis of this disease. The ability of the innate immune system to combat infection involves activation of pattern recognition receptors (PRRs) that detect evolutionarily conserved pathogen-associated molecular patterns, including nucleic acids and lipoproteins. Activation of PRRs, including Toll-like receptors (TLRs), induces secretion of inflammatory and immunomodulatory cytokines that instruct adaptive ii immune pathways for T cell differentiation. For intracellular pathogens like M. tuberculosis, a Th1 response is required, whereas a Th2 response is beneficial for the control of extracellular parasites, but is associated with active tuberculosis disease. This dissertation seeks to understand modulators of the initial immune response to M. tuberculosis through characterization of innate immune pathways induced by distinct bacterial ligands. The first study explores a mechanism by which Th1 or Th2 cytokines alter the vitamin D-dependent antimicrobial pathway in response to M. tuberculosis 19kD lipoprotein, and illustrates the importance of the Th1 cytokine IFN-g in guiding an antimicrobial response. Next, is a comparison of the immune response induced by the M. tuberculosis-derived ligands: 19kD lipoprotein and purified tRNA. M. tuberculosis tRNA was found to induce a gene network inducing secretion of key Th1 cytokines including IL-12p70 and IFNg, which are necessary for host defense against TB. iii The dissertation of Caroline Keegan is approved. Linda Baum Genhong Cheng Stephen Smale Robert L. Modlin, Committee Chair University of California, Los Angeles 2016 iv TABLE OF CONTENTS List of Figures and Tables vi Acknowledgements viii Vita x Chapter 1 Introduction – Innate and adaptive immune response to Mycobacterium tuberculosis 1 References 26 Chapter 2 T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism 41 References 46 Chapter 3 Mycobacterium tuberculosis tRNA triggers a gene network for instruction of Th1 cells 49 References 98 v LIST OF FIGURES AND TABLES FIGURES CHAPTER 1 Figure 1-1 IL-12 / IFN-g feedback loop during M. tuberculosis infection 23 Figure 1-2 Human Toll-like receptors and ligands 24 Figure 1-3 Cell wall structure of mycobacteria 25 CHAPTER 2 Figure 1 T-cell cytokines differentially influence TLR2/1-induced expression of the antimicrobial peptides cathelicidin and DEFB4. 43 Figure 2 IFN-g and IL-4 upregulate vitamin D pathway genes in TLR2/1-activated monocytes 43 Figure 3 Effects of IL-4 on 1,25D3 responsiveness 44 Figure 4 IFN-g and IL-4 differentially regulate vitamin D metabolism 44 Figure 5 Regulation of 24-hydroxlase activity by IL-4 45 Figure S1 IL-4 and 1,25D3 similarly regulate vitamin D metabolism 48 Figure S2 mRNA expression levels of cytochrome p450 enzymes in TLR2/1 activated monocytes with or without IL-4 48 vi CHAPTER 3 Figure 3-1 Comparison of gene expression patterns induced by M. tuberculosis lipoprotein and tRNA 80 Figure 3-2 Network analysis of pathways and functions 81 Figure 3-3 Integrated model of central pathways and functions 82 Figure 3-4 Analysis of Th1 genes and validation in PBMC 83 Figure 3-5 Role of IL-18 and NK cells 84 Figure 3-6 Role for TLR8 85 Figure 3-7 Comparison of cytokine secretion by nucleic acid PAMP and synergy between TLR8 and TLR3 86 Figure 3-8 IFN-g expression in PBMC 87 TABLES CHAPTER 3 Table 1-1 Top significant differentially expressed genes 88 vii ACKNOWLEDGEMENTS I would like to thank my mentor, Robert Modlin, for giving me the opportunity to join his lab, for his constant encouragement, and for helping me find the story in my data. I would also like to thank my committee members, Linda Baum, Genhong Cheng and Steve Smale, for their guidance and insightful feedback. I am grateful to the past and present members of the Modlin Lab, especially Stephan Krutzik, who began this project, and Mirjam Schenk; for their help with experiments and discussions of results. I was fortunate to share this journey with my fellow ModLab PhDs – Susan, Manali and Angeline; grad school would have been nowhere near as fun without their friendship. Finally, I could not have succeeded without the love and support of my parents, Jim and Michele; my sister, Leah; and my fiancé, Yasser; who kept me going through the challenging times and who are a constant source of happiness in my life. Chapter 1 contains reprints of figures used with permission. Figure 1-1 is adapted with permission from Nature Publishing Group (License #3960000587574). Figure 1-2 is adapted with permission from Elsevier (License #3960431065745). Figure 1-3 is adapted with permission from Nature Publishing Group (License #3960421067287). Chapter 2 is a reprint of the full citation Edfeldt, K., Liu, P. T., Chun, R., Fabri, M., Schenk, M., Wheelwright, M., Keegan, C., Krutzik, S. R., Adams, J. S., Hewison, M., and Modlin, R. L. 2010. T-cell cytokines differentially control human monocyte viii antimicrobial responses by regulating vitamin D metabolism. Proc Natl Acad Sci U S A 107:22593-22598. Chapter 3 is a version of a manuscript in preparation for publication. Contributors include Stephan Krutzik, Mirjam Schenk, Jing Lu, Matteo Pellegrini, Barry Bloom, John Belisle, Sarah Fortune, Peter Dedon, and all work was performed with direction by Robert Modlin. ix VITA 2009 Bachelor of Science, Microbiology, Immunology and Molecular Genetics / Biology University of California, Los Angeles 2011-2012 Teaching Assistant Department of Microbiology, Immunology and Molecular Genetics University of California, Los Angeles 2009-2016 Graduate Student Researcher Department of Microbiology, Immunology and Molecular Genetics University of California, Los Angeles PUBLICATIONS Keegan, C., Krutzik, S., Schenk, M., Lu, J., Pellegrini, M., Bloom, B. R., Belisle, J. T., Fortune, S., Dedon, P., and Modlin, R. L. Mycobacterium tuberculosis tRNA triggers a gene network for instruction of Th1 cells. In preparation for submission. Edfeldt, K., P.T. Liu, R. Chun, M. Fabri, M. Schenk, M. Wheelwright, C. Keegan, S.R. Krutzik, J.S. Adams, M. Hewison, and R.L. Modlin. 2010. T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proc Natl Acad Sci U S A 107:22593-22598. McHardy, I., C. Keegan, J.H. Sim, W. Shi, and R. Lux. 2010. Transcriptional profiles of Treponema denticola in response to environmental conditions. PLoS One 5:e13655. x CHAPTER 1 Introduction Innate and adaptive immune response to Mycobacterium tuberculosis 1 Tuberculosis Mycobacterium tuberculosis, the etiologic agent of tuberculosis, has been a plague on humanity since ancient times. The genomes of ancestral strains of M. tuberculosis have been identified and sequenced from Neolithic human remains (Hershkovitz et al., 2008), and the disease was common in the 5th century BCE where Hippocrates reported, “Consumption was the most considerable of the diseases which then prevailed, and the only one which proved fatal to many persons” (Hippocrates and Adams, 1938). Currently, one third of the world’s population is infected, and tuberculosis remains one of the leading global infectious disease threats (WHO, 2015). The most common form of disease is pulmonary tuberculosis, an affliction of the lungs characterized by fever, chest pain, persistent cough, coughing up blood and weight loss. Extrapulmonary tuberculosis, disease occurring outside of the lungs, may take several forms including Pott’s disease (infection of the spine), scrofula (infection of the lymph nodes), and miliary tuberculosis (extensive disseminated infection) (Frith, 2014). For much of history, tuberculosis was thought to be an inherited condition. However, in 1882, Robert Koch presented definitive proof that tuberculosis was a transmissible bacterial infection. He demonstrated the presence of bacilli in infected tissues which he isolated and grew in culture, then used the cultured bacteria to infect guinea pigs and reconstitute disease. For this discovery, he was awarded the Nobel Prize in 1905. Still, there was no effective treatment for tuberculosis until the 1940’s 2 when treatment with the antibiotic streptomycin was found to be successful (Zumla et al., 2013), although antibiotic resistance swiftly developed. At this time, the treatment regimen for susceptible strains involves a six month course of a combination of antibiotics, isoniazid and rifampicin, which have toxic side effects. Premature discontinuation of treatment has fueled the rise of resistant
Recommended publications
  • Fine Tuning by Human Cd1e of Lipid-Specific Immune Responses
    Fine tuning by human CD1e of lipid-specific immune responses Federica Facciottia, Marco Cavallaria, Catherine Angénieuxb, Luis F. Garcia-Allesc, François Signorino-Gelob, Lena Angmana, Martine Gilleronc, Jacques Prandic, Germain Puzoc, Luigi Panzad, Chengfeng Xiae, Peng George Wangf, Paolo Dellabonag, Giulia Casoratig, Steven A. Porcellih, Henri de la Salleb, Lucia Moria,i,1, and Gennaro De Liberoa,1 aExperimental Immunology, Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland; bInstitut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S725, Biology of Human Dendritic Cells, Université de Strasbourg and Etablissement Français du Sang-Alsace, 67065 Strasbourg, France; cCentre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; dDepartment of Chemistry, Food, Pharmaceuticals, and Pharmacology, Università del Piemonte Orientale, 28100 Novara, Italy; eState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, China; fDepartment of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210; gExperimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Dipartimento di Biotecnologie (DIBIT), San Raffaele Scientific Institute, 20132 Milano, Italy; hAlbert Einstein College of Medicine, Bronx, NY 10461; and iSingapore Immunology Network, Agency for Science Technology and Research, Biopolis, Singapore 138648 Edited by Peter Cresswell, Yale University School of Medicine, New Haven, CT, and approved July 20, 2011 (received for review June 5, 2011) CD1e is a member of the CD1 family that participates in lipid an- molecules traffic to early recycling endosomes and, to a lesser tigen presentation without interacting with the T-cell receptor.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • Oncostatin M Exhibit Elevated Responsiveness to IL-31 Receptor
    IL-31 Receptor (IL-31RA) Knockout Mice Exhibit Elevated Responsiveness to Oncostatin M This information is current as Janine Bilsborough, Sherri Mudri, Eric Chadwick, Brandon of September 28, 2021. Harder and Stacey R. Dillon J Immunol 2010; 185:6023-6030; Prepublished online 18 October 2010; doi: 10.4049/jimmunol.0902769 http://www.jimmunol.org/content/185/10/6023 Downloaded from References This article cites 29 articles, 6 of which you can access for free at: http://www.jimmunol.org/content/185/10/6023.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IL-31 Receptor (IL-31RA) Knockout Mice Exhibit Elevated Responsiveness to Oncostatin M Janine Bilsborough,1 Sherri Mudri,1 Eric Chadwick,2 Brandon Harder,3 and Stacey R. Dillon IL-31 signals through the heterodimeric receptor IL-31RA and oncostatin M receptor (OSMR), and has been linked with the development of atopic dermatitis, a Th2 cytokine-associated disease in humans.
    [Show full text]
  • 2016 SOT Enterocytes
    Human Enterocytes: Isolation, Cryopreservation, Characterization, and Application in The Evaluation of Drug-Food Interactions Albert P. Li, Qian Yang, David Ho, Carol J. Loretz, Stephen N. Ring, Kirsten Amaral, Utkarsh Doshi, In Vitro ADMET Laboratories Inc., Columbia, MD and Malden, MA Introduction Results Why Enterocytes Successful Isolation and Comparison of Enterocytes and Hepatocytes in Drug Metabolizing Enzyme Activities (pmol/min/million enterocytes) Drug Gene Expression Substrate • Key cell type for oral bioavailability (as a Cryopreservation from Metabolizing Substrate Metabolite HE3005 HE3006 HE3007 HE3008 HE3009 HE3010 HE3011 HE3014 HE3015 HE3016 HE3020 HE3027 HE3029 Conc. (µM) function of permeability, metabolism, efflux) Multiple Donors Enzyme P450 Isoforms CYP2C9 Diclofenac 25 4-OH Diclofenac 1.68 0.59 0.91 0.46 1.18 1.21 0.03 0.44 2.50 2.05 0.31 2.02 0.86 First pass metabolism before the liver • CYP3A4/5 Midazolam 20 1-OH-Midazolam 2.67 0.13 0.99 0.87 0.72 0.46 0.09 0.40 2.55 0.99 0.49 0.68 0.59 Lot Gender Race Age (Years) -ΔCт -ΔCт Ratio of enterocyte to Gene name 2 enterocytes 2 hepatocytes 7-OH Coumarin UGT 7-OH Coumarin 100 8.38 2.30 3.08 1.80 4.32 2.56 1.01 3.55 7.33 5.71 5.83 3.68 6.55 • Target of drug-interactions with orally co- hepatocytes Glucuronide HE3005 M C 23 Sulfate administered substances CYP1A2 0.0000 0.1333 0.00 7-OH Coumarin 100 7-OH Coumarin Sulfate 8.72 2.04 4.04 1.79 7.78 3.32 1.70 2.66 5.23 4.13 1.84 2.69 3.65 HE3006 M C 47 Transferase CYP2B6 0.0024 1.0304 0.00 • Target of enterotoxicity of ingested
    [Show full text]
  • Steroid-Dependent Regulation of the Oviduct: a Cross-Species Transcriptomal Analysis
    University of Kentucky UKnowledge Theses and Dissertations--Animal and Food Sciences Animal and Food Sciences 2015 Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis Katheryn L. Cerny University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cerny, Katheryn L., "Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis" (2015). Theses and Dissertations--Animal and Food Sciences. 49. https://uknowledge.uky.edu/animalsci_etds/49 This Doctoral Dissertation is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • IL-12 Abrogates Calcineurin-Dependent Immune Evasion During Leukemia Progression
    Author Manuscript Published OnlineFirst on May 29, 2019; DOI: 10.1158/0008-5472.CAN-18-3800 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. IL-12 abrogates calcineurin-dependent immune evasion during leukemia progression Jennifer L. Rabe,1* Lori Gardner,2* Rae Hunter,3 Jairo A. Fonseca,3 Jodi Dougan,3 Christy M. Gearheart,2 Michael S. Leibowitz,2 Cathy Lee-Miller,2 Dmitry Baturin,2 Susan P. Fosmire,2 Susan E. Zelasko,2 Courtney L. Jones,2 Jill E. Slansky,4 Manali Rupji,5 Bhakti Dwivedi,5 Curtis J. Henry,3,5,6 and Christopher C. Porter3,5,6 Affiliations: 1Molecular Biology Program, University of Colorado Denver, Aurora, CO. 2Department of Pediatrics, University of Colorado, Aurora, CO 3Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 4Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO 5Winship Cancer Institute, Emory University, Atlanta, GA 6Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, GA JR and LAG contributed equally to this study. Corresponding Author: Christopher C. Porter, MD Emory University School of Medicine 1760 Haygood Drive, E370 Atlanta, GA 30322 Phone: 404-727-4881 Fax: 404-727-4455 [email protected] Running title: Leukemia-cell calcineurin drives immune evasion Conflict of interest statement The authors have declared that no conflicts of interest exist. Abstract: 199 words Main Text: 5797 words (excluding figure legends and references) Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 29, 2019; DOI: 10.1158/0008-5472.CAN-18-3800 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • Interactions Between the Parasite Philasterides Dicentrarchi and the Immune System of the Turbot Scophthalmus Maximus.A Transcriptomic Analysis
    biology Article Interactions between the Parasite Philasterides dicentrarchi and the Immune System of the Turbot Scophthalmus maximus.A Transcriptomic Analysis Alejandra Valle 1 , José Manuel Leiro 2 , Patricia Pereiro 3 , Antonio Figueras 3 , Beatriz Novoa 3, Ron P. H. Dirks 4 and Jesús Lamas 1,* 1 Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] 2 Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] 3 Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; [email protected] (P.P.); antoniofi[email protected] (A.F.); [email protected] (B.N.) 4 Future Genomics Technologies, Leiden BioScience Park, 2333 BE Leiden, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +34-88-181-6951; Fax: +34-88-159-6904 Received: 4 September 2020; Accepted: 14 October 2020; Published: 15 October 2020 Simple Summary: Philasterides dicentrarchi is a free-living ciliate that causes high mortality in marine cultured fish, particularly flatfish, and in fish kept in aquaria. At present, there is still no clear picture of what makes this ciliate a fish pathogen and what makes fish resistant to this ciliate. In the present study, we used transcriptomic techniques to evaluate the interactions between P. dicentrarchi and turbot leucocytes during the early stages of infection. The findings enabled us to identify some parasite genes/proteins that may be involved in virulence and host resistance, some of which may be good candidates for inclusion in fish vaccines.
    [Show full text]
  • Human IL12A / NKSF1 Protein (His Tag)
    Human IL12A / NKSF1 Protein (His Tag) Catalog Number: 10021-H08H General Information SDS-PAGE: Gene Name Synonym: CLMF; IL-12A; NFSK; NKSF1; P35 Protein Construction: A DNA sequence encoding the p35 subunit of human IL12, termed as IL12A (P29459) (Met 1-Ser 219) was expressed, fused with a polyhistidine tag at the C-terminus. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 92 % as determined by SDS-PAGE Bio Activity: Protein Description Measured by its ability to bind Human IL12B-his in functional ELISA. Interleukin-12 subunit alpha (IL12A/IL-12p35) is also known as Cytotoxic lymphocyte maturation factor 35 kDa subunit, cytotoxic lymphocyte Endotoxin: maturation factor 1, p35, NK cell stimulatory factor chain 1, and interleukin- 12 alpha chain. IL12A/IL-12p35 is a subunit of a cytokine that acts on T < 1.0 EU per μg of the protein as determined by the LAL method and natural killer cells, and has a broad array of biological activities. The cytokine is a disulfide-linked heterodimer composed of the 35-kD subunit Stability: encoded by this gene, and a 40-kD subunit that is a member of the Samples are stable for up to twelve months from date of receipt at -70 ℃ cytokine receptor family. IL12A/IL-12p35 is required for the T-cell- independent induction of IFN-gamma, and is important for the Predicted N terminal: Arg 23 differentiation of both Th1 and Th2 cells. The responses of lymphocytes to this cytokine are mediated by the activator of transcription protein STAT4. Molecular Mass: Nitric oxide synthase 2A (NOS2A/NOS2) is found to be required for the signaling process of this cytokine in innate immunity.
    [Show full text]
  • Transcriptional Repression of IFN Regulatory Factor 7 by MYC Is Critical for Type I IFN Production in Human Plasmacytoid Dendrit
    Transcriptional Repression of IFN Regulatory Factor 7 by MYC Is Critical for Type I IFN Production in Human Plasmacytoid Dendritic Cells This information is current as of September 28, 2021. Tae Whan Kim, Seunghee Hong, Yin Lin, Elise Murat, HyeMee Joo, Taeil Kim, Virginia Pascual and Yong-Jun Liu J Immunol 2016; 197:3348-3359; Prepublished online 14 September 2016; doi: 10.4049/jimmunol.1502385 Downloaded from http://www.jimmunol.org/content/197/8/3348 Supplementary http://www.jimmunol.org/content/suppl/2016/09/14/jimmunol.150238 http://www.jimmunol.org/ Material 5.DCSupplemental References This article cites 74 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/197/8/3348.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 28, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Repression of IFN Regulatory Factor 7 by MYC Is Critical for Type I IFN Production in Human Plasmacytoid Dendritic Cells Tae Whan Kim,*,1 Seunghee Hong,*,1 Yin Lin,* Elise Murat,* HyeMee Joo,* Taeil Kim,†,2 Virginia Pascual,* and Yong-Jun Liu*,† Type I IFNs are crucial mediators of human innate and adaptive immunity and are massively produced from plasmacytoid dendritic cells (pDCs).
    [Show full text]
  • Patient-Based Cross-Platform Comparison of Oligonucleotide Microarray Expression Profiles
    Laboratory Investigation (2005) 85, 1024–1039 & 2005 USCAP, Inc All rights reserved 0023-6837/05 $30.00 www.laboratoryinvestigation.org Patient-based cross-platform comparison of oligonucleotide microarray expression profiles Joerg Schlingemann1,*, Negusse Habtemichael2,*, Carina Ittrich3, Grischa Toedt1, Heidi Kramer1, Markus Hambek4, Rainald Knecht4, Peter Lichter1, Roland Stauber2 and Meinhard Hahn1 1Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany; 2Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt am Main, Germany; 3Central Unit Biostatistics, Deutsches Krebsforschungszentrum, Heidelberg, Germany and 4Department of Otorhinolaryngology, Universita¨tsklinik, Johann-Wolfgang-Goethe-Universita¨t Frankfurt, Frankfurt, Germany The comparison of gene expression measurements obtained with different technical approaches is of substantial interest in order to clarify whether interplatform differences may conceal biologically significant information. To address this concern, we analyzed gene expression in a set of head and neck squamous cell carcinoma patients, using both spotted oligonucleotide microarrays made from a large collection of 70-mer probes and commercial arrays produced by in situ synthesis of sets of multiple 25-mer oligonucleotides per gene. Expression measurements were compared for 4425 genes represented on both platforms, which revealed strong correlations between the corresponding data sets. Of note, a global tendency towards smaller absolute ratios was observed when
    [Show full text]