Neogastropoda, Conoidea) Jawad Abdelkrim, Laetitia Aznar-Cormano, Alexander Fedosov, Yuri Kantor, Pierre Lozouet, Mark Phuong, Paul Zaharias, Nicolas Puillandre

Total Page:16

File Type:pdf, Size:1020Kb

Neogastropoda, Conoidea) Jawad Abdelkrim, Laetitia Aznar-Cormano, Alexander Fedosov, Yuri Kantor, Pierre Lozouet, Mark Phuong, Paul Zaharias, Nicolas Puillandre Exon-Capture-Based Phylogeny and Diversification of the Venomous Gastropods (Neogastropoda, Conoidea) Jawad Abdelkrim, Laetitia Aznar-Cormano, Alexander Fedosov, Yuri Kantor, Pierre Lozouet, Mark Phuong, Paul Zaharias, Nicolas Puillandre To cite this version: Jawad Abdelkrim, Laetitia Aznar-Cormano, Alexander Fedosov, Yuri Kantor, Pierre Lozouet, et al.. Exon-Capture-Based Phylogeny and Diversification of the Venomous Gastropods (Neogastropoda, Conoidea). Molecular Biology and Evolution, Oxford University Press (OUP), 2018, 35 (10), pp.2355- 2374. hal-02002406 HAL Id: hal-02002406 https://hal.archives-ouvertes.fr/hal-02002406 Submitted on 31 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Manuscript type: Article/Discoveries 2 3 4 Exon-capture based phylogeny and diversification of the venomous gastropods 5 (Neogastropoda, Conoidea). 6 7 Abdelkrim J.1, Aznar-Cormano L.1, Fedosov A.2, Kantor Y.2, Lozouet P.3, Phuong M.4, 8 Zaharias P.5, Puillandre N.5 9 10 1 UMS 2700, Museum National d’Histoire Naturelle, Département Systématique et Evolution, 11 43, Rue Cuvier, 75231 Paris, France 12 2 A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninski 13 prospect 33, 119071 Moscow, Russian Federation 14 3 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 15 CA 90095, USA 16 4 Muséum national d’Histoire naturelle, 55 rue de Buffon, F-75005 Paris 17 5 Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire 18 naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France. 19 20 Corresponding author: Nicolas Puillandre, [email protected] 21 22 ABSTRACT 23 24 Transcriptome-based exon capture methods provide an approach to recover several hundred 25 markers from genomic DNA, allowing for robust phylogenetic estimation at deep timescales. 26 We applied this method to a highly diverse group of venomous marine snails, Conoidea, for 27 which published phylogenetic trees remain mostly unresolved for the deeper nodes. We 28 targeted 850 protein coding genes (678,322 base pairs) in ca. 120 samples, spanning all 29 (except one) known families of Conoidea and a broad selection of non-Conoidea 30 neogastropods. The capture was successful for most samples, although capture efficiency 31 decreased when DNA libraries were of insufficient quality and/or quantity (dried samples or 32 low starting DNA concentration) and when targeting the most divergent lineages. An average 33 of 75.4% of proteins was recovered, and the resulting tree, reconstructed using both 34 supermatrix (IQ-tree) and supertree (Astral-II, combined with the Weighted Statistical 35 Binning method) approaches, are almost fully supported. A reconstructed fossil-calibrated 36 tree dates the origin of Conoidea to the Lower Cretaceous. We provide descriptions for two 37 new families. The phylogeny revealed in this study provides a robust framework to re- 38 interpret changes in Conoidea anatomy through time. Finally, we used the phylogeny to test 39 the impact of the venom gland and radular type on diversification rates. Our analyses revealed 40 that repeated losses of the venom gland had no effect on diversification rates, while families 41 with a breadth of radula types showed increases in diversification rates, thus suggesting that 42 trophic ecology may have an impact on the evolution of Conoidea. 43 44 INTRODUCTION 45 Next-generation sequencing (NGS) techniques have enabled the resolution of deep 46 phylogenetic relationships by facilitating the rapid acquisition of genetic markers across 47 divergent taxa (Lemmon and Lemmon 2013; McCormack et al. 2013). This field of research 48 has been particularly active for non-model organisms, for which genomic and transcriptomic 49 data are scarce (Bi et al. 2012; Cariou et al. 2013; da Fonseca et al. 2016; Yeates et al. 2016). 50 In molluscs, a major bottleneck in applying NGS techniques has been the identification of 51 suitable markers for phylogenetic inference (Schrödl and Stöger 2014). As such, phylogenetic 52 analyses applying NGS techniques have been limited to mitogenomes (e.g., Osca et al. 2015; 53 Lee et al. 2016), transcriptome sequencing (e.g., Kocot et al. 2011; Smith et al. 2011; Zapata 54 et al. 2014; González et al. 2015; Tanner et al. 2017) or RAD-sequencing (e.g., Combosch et 55 al. 2017). While they provided better-resolved phylogenetic trees compared to the traditional 56 Sanger sequencing of a few mitochondrial and nuclear genes, each have their own limitations. 57 For example, resulting trees can be potentially biased when only mitochondrial data are used 58 (Platt et al. 2017). Further, transcriptome-based approaches need RNA-preserved samples and 59 the associated costs may be prohibitive to laboratories with more limited budgets. 60 Transcriptome based exon capture methods provide an approach to recover hundreds 61 of genetic markers from genomic DNA, allowing for robust phylogenetic estimation and does 62 not rely on RNA-preserved or fresh samples (Bi et al. 2012; Hugall et al. 2015; Teasdale et al. 63 2016). Furthermore, because it targets short DNA fragments (typically between 100 bp and 64 400bp), older specimens that were not preserved in ideal conditions for molecular analysis 65 can also be sequenced. In molluscs, 250 years of taxonomy based on shell collecting have 66 cataloged and preserved an impressive amount of material. Although molluscs are 67 traditionally preserved dried (Bouchet and Strong 2010), recent efforts in the framework of 68 the “La Planète Revisitée” and the “Tropical Deeps-Sea Benthos” expedition programs 69 (http://expeditions.mnhn.fr) have amassed a large collection of alcohol-preserved samples. 70 The high quantity of dry and alcohol preserved material, together with their huge species 71 diversity, the lack of genomic data and the ease of generating transcriptome data, makes 72 Mollusca a good model to test the applicability of the exon-capture approach to non-model 73 organisms. 74 Conoidea is a group of hyperdiverse venomous gastropods (5,000 described species 75 for a total estimated around 10–20,000 – Bouchet et al. 2009), distributed across all oceans, 76 latitudes, and depths. Conoideans, and in particular cone snails, are one of the most studied 77 groups of animals for the toxins they produce. These toxins are highly diversified and 78 specific, and some of them are used – or about to be used – as therapeutics (Prashanth et al. 79 2014). In a series of articles, several molecular phylogenies were published (Puillandre et al. 80 2008; Puillandre et al. 2011) followed by subsequent descriptions of new families and the 81 publication of a new classification (Bouchet et al. 2011; Kantor et al. 2012) that were deeply 82 modified compared to the previous classifications. These phylogenies included a 83 representative (although not complete) sampling of the superfamily diversity (WORMS 84 2018). However, these phylogenies are all based on a few Sanger-sequenced markers, 85 typically the mitochondrial COI (cytochrome c oxidase subunit I), 16S rRNA and 12S rRNA 86 genes and the nuclear 28S rRNA, 18S rRNA and histone H3 genes. While the analyses of 87 these loci recognized clades from the species to family levels (i.e. up to 50 MYA, roughly), 88 their resolving power was limited as they were unable to define older relationships. 89 Researchers working on conoideans now have a phylogenetic classification for the group, but 90 understanding the processes underlying the evolutionary success of the group and of the 91 toxins they produce requires a better resolved phylogenetic tree. Recently, Uribe et al. 92 (2018)proposed a phylogeny based on full mitogenomes, and while it was more resolved 93 compared to previously published trees, sampling of conoidean diversity was still limited. 94 Here, we aim to generate the most complete and resolved phylogeny of Conoidea published 95 so far, including representatives of most of the known family-level lineages by applying an 96 exon-capture strategy to target thousands of loci. We explored several approaches of tree 97 reconstructions designed for very large datasets. We also identified, for the first time, several 98 fossils that can be attributed to the molecularly-defined lineages and used these fossils to 99 reconstruct a time-calibrated tree. The obtained phylogeny is almost fully resolved and 100 supported, reveals new family-level lineages of conoideans and unexpected phylogenetic 101 relationships between the families, and modifies some of the traditionally well-defined groups 102 within the superfamily. Such phylogenies can then be used as a framework to test hypotheses 103 related to the evolutionary success of the group. To illustrate this idea, we analyzed the 104 variability of the diversification rates among conoidean families and tested the relationships 105 between diversification rates and the evolution of two traits (venom gland and radula) related 106 to the venom apparatus, a structure thought to contribute to the evolutionary success of the 107 conoideans. 108 109 110 RESULTS 111 112 Exon capture 113 We used available Conoidean transcriptome data from the literature and online 114 resources to identify 850 protein coding genes. We tentatively captured 120 samples 115 representing the diversity of the Conoidea, as well as a selection of non-conoidean 116 neogastropod lineages. Two samples failed at the library preparation step (because of very 117 low quantity of DNA available) and were thus not sequenced: the unique sample of 118 Bouchetispiridae and an unidentified turrid, “HORS_MNHN_Stahlschmidt_9”.
Recommended publications
  • Cone Snail Case
    Cone Snail case Cone snail molecular phylogeny Cone snail video Snail Venom Yields Potent Painkiller, But Delivering The Drug Is Tricky Updated August 4, 201510:52 AM ETPublished August 3, 20153:30 PM ET http://www.npr.org/sections/health-shots/2015/08/03/428990755/snail-venom- yields-potent-painkiller-but-delivering-the-drug-is-tricky Magician’s cone (Conus magus) The magician’s cone, Conus magus, is a fish-hunting, or piscivorous cone snail found in the Western Pacific. It is so common in some of small Pacific islands, especially in the Philippines, that it is routinely sold in the market as food. The magician’s cone attacks its fish prey by sticking out its light yellowish proboscis, from which venom is pushed through a harpoon-like tooth. It hunts by the hook-and-line method and so will engulf its prey after it has been paralyzed. To learn more about hook-and-line hunters, click here. Scientists have analyzed the venom of the magician’s cone and one of its venom components was discovered to have a unique pharmacological activity by blocking a specific calcium channel (N-type). After this venom component was isolated and characterized in a laboratory, researchers realized that it had potential medical application. By blocking N-type calcium channels, the venom blocks channels that when open convey pain from nerve cells. If this is blocked, the brain cannot perceive these pain signals. It was developed as a pain management drug, and is now chemically synthesized and sold under the trade name Prialt. This drug is given to patients who have very severe pain that is not alliviated by morphine.
    [Show full text]
  • The Peristerniinae (Mollusca: Gastropoda, Buccinoidea, Fasciolariidae) from the Neogene of Venezuela
    Cainozoic Research, 9(1), pp. 87-99, June 2012 The Peristerniinae (Mollusca: Gastropoda, Buccinoidea, Fasciolariidae) from the Neogene of Venezuela Bernard Landau!* & Geerat J. Vermeij" 1Centro de Geologia da Universidade de Lisboa. Campo Grande, 1749-016 Lisboa, Portugal and International Health Centres, Av. Infante de Henrique 7, Areias São João, P-8200 Albufeira, Portugal; [email protected] 2Department of Geology, University of California at Davis, One Shields Avenue, Davis, CA 95616 USA; gjver- [email protected] *Corresponding author Received: 15 April 2012; revised version accepted 16 April 2012 The Latirus-group of Peristerniinae Tryon, 1881 present in the early Miocene, late Burdigalian, Cantaure Formation assemblage of Ven- ezuela, and other less well-known Venezuelan Miocene assemblages, is described and discussed. Seven species taxa representing three genera are present in the northern Venezuelan Miocene assemblages, six are new to science; Hemipolygona snyderi nov. sp., Hemipoly- gona carrizalensis nov. sp., Polygona praeanapetes nov. sp., Polygona barbascoensis nov. sp., Polygona sepulcralis nov. sp. and Poly- gona buenevaraensis nov. sp. The presence of Pustulatirus tumbeziensis (Olsson, 1932) in the Cantaure Formation of Venezuela is con- firmed. For all three genera, Pustulatirus, Hemipolygona and Polygona these represent the earliest records in the Caribbean portion of the Tropical American Neogene Gatunian biogeographical province. KEY WORDS: Peristerniinae, Mollusca, Miocene, Cantaure Formation, Venezuela, new species Introduction Systematic palaeontology In this paper we continue with the description of the mol- Superfamily Buccinoidea Rafinesque, 1815 luscan assemblage found in the early Miocene, late Burdi- Family Fasciolariidae Gray, 1853 galian, Cantaure Formation of Venezuela, describing the Subfamily Peristerniinae Tryon, 1881 Latirus-group (sensu Vermeij & Snyder, 2006) of Genus Pustulatirus Vermeij & Snyder, 2006 Peristerniinae Tryon, 1881 found in these deposits.
    [Show full text]
  • The New South Wales Cancellariidae
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Laseron, C. F., 1955. The New South Wales Cancellariidae. Records of the Australian Museum 23(5): 267–272. [1 September 1955]. doi:10.3853/j.0067-1975.23.1955.635 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia THE NEW SOUTH WALES CANCELLARIIDAE* By OHARLES F. LASERON, F.R.Z.S. ilonorary Correspondent, Australian Museum. (Figures 1-13.) INTRODUOTION. Hedley in his Oheck List in 1918 recorded six '3pecies of this family as occurring in New South vVales. Since that time considerable revision in nomenclature has taken place, and some further material has come to hand. As descriptions and references to the family are very scattered in literature, the opportunity is now taken to bring them together, and to illustrate not only species new to science, but also all those which have already been described. It is felt that such papers are of great convenience to conchologists and form a base on which future work can be under­ taken. The complete check list of species from the Peronian zoogeographical province will now read as follows: Sydaphera ren01)atn Iredale obniJ';a Iredale anxifer Iredale deZicosa Laseron " scobina Hedley Trigonaphera vinn11,Za Iredale " interZaevis Laseron. A rizelostoma Zaseroni Iredale Pepta stricto. Iredale Microsveltia recessa Iredale PaUidonia simo[!Zex Laseron. All types, as well as specimens illustrated, are being presented to the Australian :Museum, Sydney.
    [Show full text]
  • Conotoxin Diversity in Chelyconus Ermineus (Born, 1778) and the Convergent Origin of Piscivory in the Atlantic and Indo-Pacific
    GBE Conotoxin Diversity in Chelyconus ermineus (Born, 1778) and the Convergent Origin of Piscivory in the Atlantic and Indo-Pacific Cones Samuel Abalde1,ManuelJ.Tenorio2,CarlosM.L.Afonso3, and Rafael Zardoya1,* 1Departamento de Biodiversidad y Biologıa Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain Downloaded from https://academic.oup.com/gbe/article-abstract/10/10/2643/5061556 by CSIC user on 17 January 2020 2Departamento CMIM y Q. Inorganica-INBIO, Facultad de Ciencias, Universidad de Cadiz, Puerto Real, Spain 3Fisheries, Biodiversity and Conervation Group, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal *Corresponding author: E-mail: [email protected]. Accepted: July 28, 2018 Data deposition: Raw RNA seq data: SRA database: project number SRP139515 (SRR6983161-SRR6983169) Abstract The transcriptome of the venom duct of the Atlantic piscivorous cone species Chelyconus ermineus (Born, 1778) was determined. The venom repertoire of this species includes at least 378 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity. A total of three individuals were sequenced showing considerable intraspecific variation: each individual had many exclusive conotoxin precursors, and only 20% of all inferred mature peptides were common to all individuals. Three different regions (distal, medium, and proximal with respect to the venom bulb) of the venom duct were analyzed independently. Diversity (in terms of number of distinct members) of conotoxin precursor superfamilies increased toward the distal region whereas transcripts detected toward the proximal region showed higher expression levels.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • DOGAMI Open-File Report O-86-06, the State of Scientific
    "ABLE OF CONTENTS Page INTRODUCTION ..~**********..~...~*~~.~...~~~~1 GORDA RIDGE LEASE AREA ....................... 2 RELATED STUDIES IN THE NORTH PACIFIC .+,...,. 5 BYDROTHERMAL TEXTS ........................... 9 34T.4 GAPS ................................... r6 ACKNOWLEDGEMENT ............................. I8 APPENDIX 1. Species found on the Gorda Ridge or within the lease area . .. .. .. .. .. 36 RPPENDiX 2. Species found outside the lease area that may occur in the Gorda Ridge Lease area, including hydrothermal vent organisms .................................55 BENTHOS THE STATE OF SCIENTIFIC INFORMATION RELATING TO THE BIOLOGY AND ECOLOGY 3F THE GOUDA RIDGE STUDY AREA, NORTZEAST PACIFIC OCEAN: INTRODUCTION Presently, only two published studies discuss the ecology of benthic animals on the Gorda Sidge. Fowler and Kulm (19701, in a predominantly geolgg isal study, used the presence of sublittor31 and planktsnic foraminiferans as an indication of uplift of tfie deep-sea fioor. Their resuits showed tiac sedinenta ana foraminiferans are depositea in the Zscanaba Trough, in the southern part of the Corda Ridge, by turbidity currents with a continental origin. They list 22 species of fararniniferans from the Gorda Rise (See Appendix 13. A more recent study collected geophysical, geological, and biological data from the Gorda Ridge, with particular emphasis on the northern part of the Ridge (Clague et al. 19843. Geological data suggest the presence of widespread low-temperature hydrothermal activity along the axf s of the northern two-thirds of the Corda 3idge. However, the relative age of these vents, their present activity and presence of sulfide deposits are currently unknown. The biological data, again with an emphasis on foraminiferans, indicate relatively high species diversity and high density , perhaps assoc iated with widespread hydrotheraal activity.
    [Show full text]
  • Mollusca, Neogastropoda) from the Mozambique Channel and New Caledonia
    Bull. Mus. natn. Hist, nat., Paris, 4e ser., 3, 1981, section A, n° 4 : 985-1009. On a collection of buccinacean and mitracean Gastropods (Mollusca, Neogastropoda) from the Mozambique Channel and New Caledonia by W. 0. CERNOHORSKY Abstract. — The present paper deals with a collection of 59 species of buccinacean and mitra- cean gastropods belonging to 4 families from moderately shallow to deep water around the Mozam- bique Channel area, north of Madagascar. A total of 27 % of the species recovered are new geogra- phical range extensions. The New Caledonian material consists of 21 species belonging to 5 fami- lies, and was dredged, with one exception, in moderately deep water. A total of 38 % of the New Caledonian species represent new geographical records, and one of these is a new species : Voluto- mitra (Waimatea) vaubani n. sp. The new name Vexillum (Costellaria) duplex is proposed for the homonymous Mitra simphcissima Schepman, 1911, and its var. glabra Schepman, 1911. Résumé. — L'auteur étudie une collection de 59 espèces appartenant à 4 familles de Gasté- ropodes Buccinacea et Mitracea dragués dans le nord du canal du Mozambique, à des profondeurs diverses. L'étude montre une extension de l'aire de répartition connue pour 27 % des espèces. Le matériel néo-calédonien comprend 21 espèces appartenant à 5 familles et a été dragué, à une exception près, en eau relativement peu profonde. L'aire de répartition connue se trouve étendue pour 38 % des espèces, dont une est nouvelle : Volulomilra (Waimatea) vaubani n. sp. Le nom nouveau Vexillum (Costellaria) duplex est proposé en remplacement du nom Mitra simplicissima Schepman, 1911, et de sa variété glabra Schepman, 1911, tous deux préoccupés.
    [Show full text]
  • Gastropoda: Turbinellidae)
    Ruthenica, 200 I, II (2): 81-136. ©Ruthenica, 2001 A revision of the Recent species of Exilia, formerly Benthovoluta (Gastropoda: Turbinellidae) I 2 3 Yuri I. KANTOR , Philippe BOUCHET , Anton OLEINIK 1 A.N. Severtzov Institute of Problems of Evolution of the Russian Academy of Sciences, Leninski prosp. 33, Moscow 117071, RUSSIA; 2 Museum national d'Histoire naturelle, 55, Rue BufJon, 75005 Paris, FRANCE; 3 Department of Geography & Geology Florida Atlantic University, 777 Glades Rd, Physical Sciences Building, PS 336, Boca Raton FL 33431-0991, USA ABSTRACT. The range of shell characters (overall established among some of these nominal taxa. shape, sculpture, columellar plaits, protoconchs) Schematically, Exilia Conrad, 1860, Palaeorhaphis exhibited by fossil and Recent species placed in Stewart, 1927, and Graphidula Stephenson, 1941 Exilia Conrad, 1860, Mitraefusus Bellardi, 1873, are currently used as valid genera for Late Creta­ Mesorhytis Meek, 1876, Surculina Dall, 1908, Phe­ ceous to Neogene fossils; and Surculina Dall, 1908 nacoptygma Dall, 1918, Palaeorhaphis Stewart, 1927, and Benthovoluta Kuroda et Habe, 1950 are cur­ Zexilia Finlay, 1926, Graphidula Stephenson, 1941, rently used as valid genera for Recent deep-water Benthovoluta Kuroda et Habe, 1950, and Chatha­ species from middle to low latitudes. Each of these midia Dell, 1956 and the anatomy of the Recent nominal taxa has had a complex history of family species precludes separation of more than one genus. allocation, which has not facilitated comparisons Consequently all of these nominal genera are sy­ on a broader scale. Exilia and Benthovoluta are the nonymised with Exilia, with a stratigraphical range genera best known in the fossil and Recent litera­ from Late Cretaceous to Recent.
    [Show full text]
  • Description of a New Species of the Genus Raphitoma Bellardi, 1847 from the Mediterranean Sea (Mollusca Neogastropoda Conoidea Raphitomidae)
    Biodiversity Journal, 2017, 8 (1): 205–210 MONOGRAPH Description of a new species of the genus Raphitoma Bellardi, 1847 from the Mediterranean Sea (Mollusca Neogastropoda Conoidea Raphitomidae) Francesco Pusateri1, Riccardo Giannuzzi Savelli2* & Peter Stahlschmidt3 1via Castellana 64, 90135 Palermo, Italy; e-mail: [email protected] 2via Mater Dolorosa 54, 90146 Palermo, Italy; e-mail: [email protected] 3University of Koblenz-Landau, Institute for Environmental Sciences, Fortstraße 7 - 76829 Landau, Germany; e-mail: [email protected] *Corresponding author ABSTRACT The family of Raphitomidae is currently considered a well supported clade of the Conoidea. The type genus Raphitoma Bellardi, 1847 is well known in the mediterranen Seas with about 40 species, some of which are still undescribed. Morphological analyses carried out on the genus Raphitoma Bellardi, 1847 (Mollusca Neogastropoda Conoidea Raphitomidae) from Mediterranean Sea allowed to identify a new species which is described in the present paper. KEY WORDS Raphitoma; Conoidea; new species; Mediterranean Sea. Received 12.01.2016; accepted 28.02.2017; printed 30.03.2017 Proceedings of the 3rd International Congress “Biodiversity, Mediterranean, Society”, September 4th-6th 2015, Noto- Vendicari (Italy) INTRODUCTION as “turrids”, and Turridae s.s. including some of the traditional “turrids”. More recently, Puillandre et al. The Raphitomidae Bellardi, 1875 are currently (2008) and Bouchet et al. (2011), based on DNA considered a well supported clade of the Conoidea phylogeny, have provided a major update of con- (Bouchet et al., 2011). oidean classification. Although a larger taxonomic The superfamily Conoidea, with over 300 gen- coverage would be desirable to further stabilize the era and 4,000 recognised species, but probably over molecular phylogeny, however, the position of the 12,000 extant species (Bouchet, 1990; Tucker, Raphitomidae as a clade of the Conoidea is suffi- 2004), represents the largest radiation of the entire ciently supported.
    [Show full text]
  • Foregut Anatomy of the Cochlespirinae (Gastropoda, Conoidea, Turridae)
    Foregut anatomy of the Cochlespirinae (Gastropoda, Conoidea, Turridae) Alexandra I. MEDINSKAYA A. N. Severtzov Institute of Problems of Evolution, Leninsky Prospect 33, Moscow 117071 (Russia) Medinskaya A. I. 1999. — Foregut anatomy of the Cochlespirinae (Gastropoda. Conoidea. Turridae). Zoosystema2\ (2): 171-198. ABSTRACT The foregut anatomy of 20 species, belonging to eight genera, of the sub­ family Cochlespirinae is described. A cladistic analysis based on several most important characters (morphology of proboscis, position of buccal sphinc­ ters, histology of venom gland, position of the venom gland opening, struc­ ture of muscular bulb, and morphology of radular teeth) revealed three more or less well-defined groups within the subfamily. The main feature characte­ rizing the subfamily as a whole and separating groups within it, appeared to be the structure of venom gland and its muscular bulb. The subgenus KEYWORDS Cochlespirinae, Sibogasyrinx of the genus Leucosyrinx was shown to deserve a genus status. Conoidea, Some genera appeared to be intermediate between Cochlespirinae and anatomy, foregut, Crassispirinae in some anatomical characters, and their taxonomic position histology. remains not completely clear. RESUME L'anatomie du système digestif des Cochlespirinae (Gastropoda, Conoidea, Turridae). L'anatomie du système digestif de 20 espèces, appartenant à huit genres de la sous-famille Cochlespirinae, est étudiée. Une analyse cladistique, fondée sur les plus importants caractères de ce groupe (la morphologie de la trompe, la disposition des sphincters, l'histologie de la glande à venin, la disposition de l'ouverture de la glande à venin, la structure de la poire musculaire et la mor­ phologie des dents de la radula) a permis de distinguet trois groupes plus ou moins homogènes.
    [Show full text]
  • ABSTRACT Title of Dissertation: PATTERNS IN
    ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range.
    [Show full text]
  • Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]