Tumours Producing Hypoglycaemia

Total Page:16

File Type:pdf, Size:1020Kb

Tumours Producing Hypoglycaemia Endocrine-Related Cancer (1998) 5 111-129 Tumours producing hypoglycaemia V Marks and J D Teale European Institute of Health and Medical Sciences, University of Surrey, Guildford GU2 5RF, UK and Department of Clinical Biochemistry and Nutrition, Royal Surrey County Hospital, Guildford GU2 5XX, UK (Requests for offprints should be addressed to V Marks) Introduction Classification of hypoglycaemia- Hypoglycaemia is one of the commonest of medical producing tumours emergencies, mainly due to its high frequency as a Tumours producing hypoglycaemia can, broadly complication of insulin therapy of diabetes. It sometimes speaking, be divided - on the basis of the mechanism by arises, however, ‘spontaneously’ as a manifestation of which they most commonly produce hypoglycaemia - other diseases. The present review deals exclusively with into: (1) insulin-secreting tumours; (2) non-islet cell hypoglycaemia caused by neoplastic disease. (insulin-like growth factor-II (IGF-II)-secreting) tumours; For a very brief period, between 1927 and 1930, (3) myeloma, lymphoma and leukaemia; and (4) meta- tumours capable of producing hypoglycaemia were static neoplasia. thought always to secrete insulin and arise exclusively Hypoglycaemia produced by tumours other than within the pancreas. In the intervening years it has become insulinomas is usually referred to as ‘non-islet cell tumour increasingly apparent that almost any type of neoplasm hypoglycaemia’ (NICTH) and has more than one cause. can cause hypoglycaemia through a number of different mechanisms (Marks & Rose 1964, Laurent et al. 1971, Pancreatic endocrine tumours Daughaday 1989, Fajans & Vinik 1989). Insulin-secreting tumours are the commonest hormone- producing neoplasms of the gastrointestinal tract. They Symptomatology occur with an incidence of between 0.5 and 1 per million of the population per year (Kavlie & White 1972, Hypoglycaemia may be the presenting symptom of a Atkinson et al. 1981, Cullen & Ong 1987, Watson et al. tumour, a terminal epiphenomenon or anything in 1989). More than 80% are solitary benign adenomas, between, but is always rare. It is usually episodic and composed mainly or exclusively of morphologically provoked by fasting rather than reactive to the ingestion of normal B-cells. About 10% are metastatic, i.e. malignant, food. The one notable exception is hypoglycaemia due to whilst a further 10% are multiple but behave as benign. pheochromocytoma which may be of either variety Women outnumber men in the ratio of 6:4 for benign (Gorden et al. 1981, Hiramatsu et al. 1987, Paineau et al. but not for malignant insulinomas. The highest incidence 1988, Akiba et al. 1990). is in middle aged adults, though both benign and Symptoms of acute neuroglycopenia, character- malignant insulinomas have been observed very rarely in istically associated with insulin overdose, are unusual in children and in the very elderly. tumour-induced hypoglycaemia. Instead there is a gradual loss of cognitive function associated with diminished Insulin-secreting tumours motor activity, lethargy, the onset of somnolence and a Clinically significant insulinomas are generally between gradual drift into stupor or coma. Recovery may occur 10 and 20 mm in diameter at the time of diagnosis, spontaneously at any time but is hastened by the ingestion although tumours as large as 150 mm or as small as 5 mm of carbohydrate by mouth or the injection of glucose or in diameter have been found during surgery. Occasionally glucagon. very small tumours are overlooked at operation and found Biochemically, tumour-induced hypoglycaemia is only after very thorough histopathological examination of usually associated with hypoketonaemia (<300 µmol/l) the resected pancreas, or not at all. unlike that of most other types of ‘spontaneous’ hypo- In fewer than 5% of cases of true hyperinsulinaemic glycaemia apart from insulinoma (Teale et al. 1987). Only hypoglycaemia can no tumour be found. Whilst some of rarely are patients desperately ill in between hypo- these may be due to a small tumour being overlooked glycaemic episodes except when it is a terminal event in either at operation or at autopsy others are due to a patients with liver metastases. functional abnormality of the B-cells similar to that Endocrine-Related Cancer (1998) 5 111-129 © 1998 Society for Endocrinology Printed in Great Britain 1351-0088/98/005-111 $08.00/0 111 Downloaded from Bioscientifica.com at 09/27/2021 04:07:17AM via free access Marks and Teale: Tumours producing hypoglycaemia causing persistent hyperinsulinaemic hypoglycaemia of Attempts to classify insulinomas into prognostically infants (PHHI) which may, or may not, manifest itself useful histopathological categories have been made for 60 histologically as islet hyperplasia (nesidioblastosis). This years or more with little success (Graeme-Cook et al. condition must be distinguished from the nosologically 1990). It became apparent soon after their initial distinct condition of microadenomatosis which can occur identification that classical morphological and histo- either as an isolated histopathological finding or as part of logical criteria were of little value for distinguishing multiple endocrine neoplasia type I (MEN-I) (Diarmuid et malignant from benign tumours. Only the presence of al. 1994). metastases, or their subsequent appearance, could be The natural history of insulinomas (Marks 1991) relied upon to make the distinction. suggests that apart from their propensity for causing Creutzfeldt and co-workers (1973) classified insulin- hypoglycaemia - from which death is fortunately very omas into four types on the basis of their histological, rare - they produce no adverse effects. Specifically they ultramicroscopic and immunocytological appearances. appear not to cause obstruction to the hepatic or pancreatic Type 1 is the commonest and accounts for almost half ducts or to undergo malignant transformation. There are of the cases. In this type, virtually every cell contains many reports, especially in the older literature, of typical β-granules. symptoms attributable to hypoglycaemia due to Type 2, the second commonest, accounts for 25% of insulinoma extending over a period of 25 years or more the cases. Most of the cells contain a number of atypical before its true cause was identified and removed (Fonseca granules - demonstrably different from those of normal A, et al. 1989). B, D or PP cells - in addition to typical β-granules. The The average time between onset of symptoms and atypical granules resemble the coated β-granules that are diagnosis of its cause as due to insulinoma is now about found in small numbers in normal B-cells and within 1 year. Delay, when it does occur, is almost always the which proinsulin is believed to be converted into insulin consequence of reluctance by the patient to seek help, or and C-peptide (Orci et al. 1988). failure of the practitioner to suspect hypoglycaemia. Once Type 3 tumours consist solely of cells containing suspected, diagnosis of insulinoma seldom presents any atypical β-granules. None contains typical ones. Though real difficulty (Marks & Rose 1981, Marks 1991, Marks & not specifically identified as such, these probably Teale 1996, Marks 1997, Nauck et al. 1997). correspond to predominantly, or exclusively, proinsulin- Insulinomas are distributed evenly throughout the secreting tumours (proinulinomas). pancreas and only very rarely ectopically (2%). In this Type 4 tumours included the only two metastatic respect, as in the relative infrequency of their malignancy, carcinomas in the Creutzfeldt series. None of the four insulinomas differ from other hormone-producing tumours so classified had any of the characteristic histo- tumours of the gastrointestinal tract. logical features of an insulinoma. All gave negative The commonest ectopic sites are the duodenum and reactions with classical histological and immunocyto- the immediate vicinity of the pancreas, but less than 1% of chemical stains. They all showed ultramicroscopic signs the 677 insulinomas collected from the literature by of high functional activity. Tumours of this type would Laurent and co-workers prior to 1971 were located outside possibly, in former times, have been classified as the pancreas. Only a tiny number of ectopic tumours have carcinomas of unknown origin or carcinoids rather than been reported in recent years (Yoshikawa & Wakasa 1980, ‘insulinomas’, even in experienced histopathological Miyazaki et al. 1986). laboratories. Insulinoma histology Many insulinomas are composed Berger and co-workers (1983) classified hypo- entirely of seemingly normal B-cells. More thorough glycaemia producing tumours of the pancreas on their examination, especially by electron microscopy and functional rather than histological characteristics. immunocytochemistry, usually reveals a small but Group A tumours were characterised by the almost variable number of other pancreatic endocrine cell types, complete suppressibility of insulin and proinsulin of which somatostatin-containing D-cells are the secretion by both diazoxide and somatostatin. Histo- commonest. logically they were characterised by an abundance of Insulinomas show variable and unpredictable staining well-granulated B-cells in a trabecular arrangement. with traditional as well as with immunohistological Group B tumours resisted the suppressant effects of reagents, including synaptophycin, neuron-specific diazoxide and somatostatin and their cells were arranged enolase and chromogranin, which have been used as in a
Recommended publications
  • CANINE INSULINOMA: DIAGNOSIS, TREATMENT, & STAGING Eliza Reiss Grant, DVM, and Kristine E
    Peer Reviewed PRACTICAL ONCOLOGY CANINE INSULINOMA: DIAGNOSIS, TREATMENT, & STAGING Eliza Reiss Grant, DVM, and Kristine E. Burgess, DVM, Diplomate ACVIM (Oncology) Tufts University An insulinoma is a malignant pancreatic tumor that DIAGNOSIS inappropriately secretes excessive insulin, resulting in Aside from a histologic confirmation of insulinoma, profound hypoglycemia.1 no currently available diagnostic test provides a de- Pancreatic tumors are classified as: finitive diagnosis of insulinoma. Existing techniques • Exocrine, which includes adenocarcinomas of may help increase suspicion for an insulin-secreting ductular or acinar origin tumor but, with most diagnostic testing, it is im- • Endocrine, which arise from the islets of perative to interpret all results in the context of the Langerhans. coexisting clinical signs. Insulinomas are functional neuroendocrine tumors that originate in the beta cells of the islets Differential Diagnosis of Langerhans.1 A complete work-up, including careful patient history, physical examination, bloodwork, and PRESENTATION diagnostic imaging tests, should be performed to Signalment rule out other causes of hypoglycemia, such as Any breed of dog can be affected, but large sepsis, hepatic failure, adrenal cortical insufficiency, breeds tend to be overrepresented.1 While, in toxin ingestion, and other forms of neoplasia. humans, insulinomas affect females far more frequently than males, there is no apparent sex Laboratory Tests predilection in dogs.1-3 Dogs also commonly Blood Glucose present with a malignant variant, while humans A simple fasting blood glucose level of less than often have a benign adenoma (80%).1 Insulino- 40 mg/dL can suggest hyperinsulinemia, although ma is rare in cats.4 careful monitoring of a fasted dog with suspected insulinoma is strongly recommended due to high Clinical Signs risk for seizure activity.
    [Show full text]
  • Endocrine Pathology (537-577)
    LABORATORY INVESTIGATION THE BASIC AND TRANSLATIONAL PATHOLOGY RESEARCH JOURNAL LI VOLUME 99 | SUPPLEMENT 1 | MARCH 2019 2019 ABSTRACTS ENDOCRINE PATHOLOGY (537-577) MARCH 16-21, 2019 PLATF OR M & 2 01 9 ABSTRACTS P OSTER PRESENTATI ONS EDUCATI ON C O M MITTEE Jason L. Hornick , C h air Ja mes R. Cook R h o n d a K. Y a nti s s, Chair, Abstract Revie w Board S ar a h M. Dr y and Assign ment Co m mittee Willi a m C. F a q ui n Laura W. La mps , Chair, C ME Subco m mittee C ar ol F. F ar v er St e v e n D. Billi n g s , Interactive Microscopy Subco m mittee Y uri F e d ori w Shree G. Shar ma , Infor matics Subco m mittee Meera R. Ha meed R aj a R. S e et h al a , Short Course Coordinator Mi c h ell e S. Hir s c h Il a n W ei nr e b , Subco m mittee for Unique Live Course Offerings Laksh mi Priya Kunju D a vi d B. K a mi n s k y ( Ex- Of ici o) A n n a M ari e M ulli g a n Aleodor ( Doru) Andea Ri s h P ai Zubair Baloch Vi nita Parkas h Olca Bast urk A nil P ar w a ni Gregory R. Bean , Pat h ol o gist-i n- Trai ni n g D e e p a P atil D a ni el J.
    [Show full text]
  • Adrenal Neuroblastoma Mimicking Pheochromocytoma in an Adult With
    Khalayleh et al. Int Arch Endocrinol Clin Res 2017, 3:008 Volume 3 | Issue 1 International Archives of Endocrinology Clinical Research Case Report : Open Access Adrenal Neuroblastoma Mimicking Pheochromocytoma in an Adult with Neurofibromatosis Type 1 Harbi Khalayleh1, Hilla Knobler2, Vitaly Medvedovsky2, Edit Feldberg3, Judith Diment3, Lena Pinkas4, Guennadi Kouniavsky1 and Taiba Zornitzki2* 1Department of Surgery, Hebrew University Medical School of Jerusalem, Israel 2Endocrinology, Diabetes and Metabolism Institute, Kaplan Medical Center, Hebrew University Medical School of Jerusalem, Israel 3Pathology Institute, Kaplan Medical Center, Israel 4Nuclear Medicine Institute, Kaplan Medical Center, Israel *Corresponding author: Taiba Zornitzki, MD, Endocrinology, Diabetes and Metabolism Institute, Kaplan Medical Center, Hebrew University Medical School of Jerusalem, Bilu 1, 76100 Rehovot, Israel, Tel: +972-894- 41315, Fax: +972-8 944-1912, E-mail: [email protected] Context 2. This is the first reported case of an adrenal neuroblastoma occurring in an adult patient with NF1 presenting as a large Neurofibromatosis type 1 (NF1) is a genetic disorder asso- adrenal mass with increased catecholamine levels mimicking ciated with an increased risk of malignant disorders. Adrenal a pheochromocytoma. neuroblastoma is considered an extremely rare tumor in adults and was not previously described in association with NF1. 3. This case demonstrates the clinical overlap between pheo- Case description: A 42-year-old normotensive woman with chromocytoma and neuroblastoma. typical signs of NF1 underwent evaluation for abdominal pain, Keywords and a large 14 × 10 × 16 cm left adrenal mass displacing the Adrenal neuroblastoma, Neurofibromatosis type 1, Pheo- spleen, pancreas and colon was found. An initial diagnosis of chromocytoma, Neural crest-derived tumors pheochromocytoma was done based on the known strong association between pheochromocytoma, NF1 and increased catecholamine levels.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/30/2021 02:21:58AM Via Free Access
    27 8 Endocrine-Related C R C Pieterman, Future directives in 27:8 T9–T25 Cancer S M Sadowski et al. MEN1-related PanNETs THEMATIC REVIEW HEREDITARY ENDOCRINE TUMOURS: CURRENT STATE-OF-THE-ART AND RESEARCH OPPORTUNITIES MEN1-related pancreatic NETs: identification of unmet clinical needs and future directives C R C Pieterman1,2,*, S M Sadowski3,*, J E Maxwell4, M H G Katz4, K E Lines5, C M Heaphy6,†, A Tirosh7, J E Blau8, N D Perrier1, M A Lewis9,10, J P Metzcar11,12, D M Halperin13, R V Thakker5 and G D Valk2 1Section of Surgical Endocrinology, Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA 2Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, The Netherlands 3Endocrine Surgery, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA 4Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA 5Academic Endocrine Unit, Radcliffe Department of Medicine, OCDEM, University of Oxford, Oxford, UK 6Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 7Neuroendocrine Tumors Service, Division of Endocrinology, Metabolism and Diabetes, The Chaim Sheba Medical Center, and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel 8Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA 9Gastrointestinal Oncology, Intermountain
    [Show full text]
  • Ganglioneuroblastoma As Vasoactive Intestinal Polypeptide-Secreting10.5005/Jp-Journals-10002-1167 Tumor: Rare Case Report in a Child Case Report
    WJOES Ganglioneuroblastoma as Vasoactive Intestinal Polypeptide-secreting10.5005/jp-journals-10002-1167 Tumor: Rare Case Report in a Child CASE REPORT Ganglioneuroblastoma as Vasoactive Intestinal Polypeptide-secreting Tumor: Rare Case Report in a Child 1Basant Kumar, 2Vijai D Upadhyaya, 3Ram Nawal Rao, 4Sheo Kumar ABSTRACT than 60 cases of pediatric VIP-secreting tumors.3 Most Pathologically elevated vasoactive intestinal polypeptide (VIP) of them are either adrenal pheochromocytoma or mixed plasma levels cause secretory diarrhea with excessive loss of pheochromocytoma-ganglioneuroma tumors. Mason water and electrolyte and is characterized by the typical symp- et al,4 first described the secretory nature of neuroblas- toms of hypokalemia and metabolic acidosis. It rarely occurs toma and vasoactive intestinal peptide (VIP) can be in patients with non-pancreatic disease. Despite the clinical severity, diagnosis of a VIP-secreting tumor is often delayed. produced by the mature neurogenic tumors. We herein We herein present a 14-month-old boy having prolonged present a 14 months old boy having prolonged therapy- therapy-resistant secretory diarrhea, persistent hypokalemia resistant secretory diarrhea, persistent hypokalemia with with tissue diagnosis of ganglioneuroblastoma and raised plasma VIP-levels. tissue diagnosis of ganglioneuroblastoma and briefly review the literature. Keywords: Ganglioneuroblastoma, Secretory diarrhea, VIPoma. CASE REPORT How to cite this article: Kumar B, Upadhyaya VD, Rao RN, Kumar S. Ganglioneuroblastoma as Vasoactive Intestinal A 14-month-old boy, weighing 9 kg with advanced symp- Polypeptide-secreting Tumor: Rare Case Report in a Child. World J Endoc Surg 2015;7(2):47-50. toms of persistent secretory diarrhea, hypokalemia and metabolic acidosis was referred to us with radiological Source of support: Nil (computed tomography) diagnosis of retroperitoneal Conflict of interest: None mass.
    [Show full text]
  • Neuroendocrine Tumors of the Pancreas (Including Insulinoma, Gastrinoma, Glucogacoma, Vipoma, Somatostatinoma)
    Neuroendocrine tumors of the pancreas (including insulinoma, gastrinoma, glucogacoma, VIPoma, somatostatinoma) Neuroendocrine pancreatic tumors (pancreatic NETs or pNETs) account for about 3% of all primary pancreatic tumors. They develop in neuroendocrine cells called islet cells. Neuroendocrine tumors of the pancreas may be nonfunctional (not producing hormones) or functional (producing hormones). Most pNETs do not produce hormones and, as a result, these tumors are diagnosed incidentally or after their growth causes symptoms such as abdominal pain, jaundice or liver metastasis. pNETs that produce hormones are named according to the type of hormone they produce and / or clinical manifestation: Insulinoma - An endocrine tumor originating from pancreatic beta cells that secrete insulin. Increased insulin levels in the blood cause low glucose levels in blood (hypoglycemia) with symptoms that may include sweating, palpitations, tremor, paleness, and later unconsciousness if treatment is delayed. These are usually benign and tend to be small and difficult to localize. Gastrinoma - a tumor that secretes a hormone called gastrin, which causes excess of acid secretion in the stomach. As a result, severe ulcerative disease and diarrhea may develop. Most gastrinomas develop in parts of the digestive tract that includes the duodenum and the pancreas, called "gastrinoma triangle". These tumors have the potential to be malignant. Glucagonoma is a rare tumor that secretes the hormone glucagon, which may cause a typical skin rash called migratory necrolytic erythema, elevated glucose levels, weight loss, diarrhea and thrombotic events. VIPoma - a tumor that secretes Vasoactive peptide (VIP) hormone causing severe diarrhea. The diagnosis is made by finding a pancreatic neuroendocrine tumor with elevated VIP hormone in the blood and typical clinical symptoms.
    [Show full text]
  • Small Extra-Adrenal Pheochromocytoma Causing Severe Hypertension in an Elderly Patient
    635 Hypertens Res Vol.29 (2006) No.8 p.635-638 Case Report Small Extra-Adrenal Pheochromocytoma Causing Severe Hypertension in an Elderly Patient Einosuke MIZUTA1), Toshihiro HAMADA2), Shin-ichi TANIGUCHI2), Masaki SHIMOYAMA2), Takahiro NAWADA3), Junichiro MIAKE2), Yasuhiro KAETSU2), Li PEILI2), Kiyosuke ISHIGURO4), Shingo ISHIGURO4), Osamu IGAWA2), Chiaki SHIGEMASA2), and Ichiro HISATOME1) We report the case of a 67-year-old woman with severe hypertension caused by an extra-adrenal pheochro- mocytoma. The tumor was detected by 131I metaiodobenzylguanidine scintigraphy and it was found to be small (2 cm ø) by enhanced CT. After the extirpation of the tumor, the blood pressure of the patient imme- diately normalized. It should be taken into account that a small extra-adrenal pheochromocytoma can be one of the causes of secondary hypertension in elderly patients. Since small extra-adrenal pheochromocytomas are difficult to detect, it is also important to perform suitable examinations to establish the diagnosis. Fur- thermore, we emphasize the importance of an accurate diagnosis in elderly patients with pheochromocy- toma, for they often have less symptomatology and more severe cardiovascular complications due to refractory hypertension than younger patients. (Hypertens Res 2006; 29: 635–638) Key Words: pheochromocytoma, extra-adrenal, hypertension, diagnosis mately 30% of these patients do not present these signs (7). Introduction Since most of their clinical signs and symptoms are derived from the actions of catecholamines secreted from the adrenal Pheochromocytoma is one of the major causes of secondary glands, adrenal pheochromocytoma induces more severe clin- hypertension, drug-resistant hypertension, and malignant ical signs than those observed in extra-adrenal pheochro- hypertension (1–3), but the rate of occurrence of the tumor mocytoma (7).
    [Show full text]
  • (Glucagon) – New Drug Approval
    Baqsimi™ (glucagon) – New drug approval • On July 24, 2019, the FDA announced the approval of Eli Lilly’s Baqsimi (glucagon) nasal powder, for the treatment of severe hypoglycemia in patients with diabetes ages 4 years and above. • Severe hypoglycemia occurs when a patient’s blood sugar levels fall to a level where he or she becomes confused or unconscious or suffers from other symptoms that require assistance from another person to treat. Typically, severe hypoglycemia occurs in people with diabetes who are using insulin treatment. — Injectable glucagon for the treatment of hypoglycemia has been approved for use in the U.S. for several decades. • Baqsimi is the first nasally administered formulation of glucagon. It is ready to use with no reconstitution required. • The efficacy of Baqsimi was evaluated in an open-label, crossover study in 70 adult patients with type 1 diabetes. The efficacy of a single 3 mg dose of Baqsimi was compared to a 1 mg dose of intramuscular glucagon (IMG). The primary efficacy measure was the proportion of patients achieving treatment success, which was defined as either an increase in blood glucose to ≥ 70 mg/dL or an increase of ≥ 20 mg/dL from glucose nadir within 30 minutes after receiving glucagon, without receiving additional actions to increase the blood glucose level. — Baqsimi demonstrated non-inferiority to IMG in reversing insulin-induced hypoglycemia with 100% of Baqsimi-treated patients and 100% of IMG-treated patients achieving treatment success. • The efficacy of Baqsimi was also evaluated in a similarly designed study in 83 adult patients with type 1 or type 2 diabetes.
    [Show full text]
  • Liver, Gallbladder, Bile Ducts, Pancreas
    Liver, gallbladder, bile ducts, pancreas Coding issues Otto Visser May 2021 Anatomy Liver, gallbladder and the proximal bile ducts Incidence of liver cancer in Europe in 2018 males females Relative survival of liver cancer (2000 10% 15% 20% 25% 30% 35% 40% 45% 50% 0% 5% Bulgaria Latvia Estonia Czechia Slovakia Malta Denmark Croatia Lithuania N Ireland Slovenia Wales Poland England Norway Scotland Sweden Netherlands Finland Iceland Ireland Austria Portugal EUROPE - Germany 2007) Spain Switzerland France Belgium Italy five year one year Liver: topography • C22.1 = intrahepatic bile ducts • C22.0 = liver, NOS Liver: morphology • Hepatocellular carcinoma=HCC (8170; C22.0) • Intrahepatic cholangiocarcinoma=ICC (8160; C22.1) • Mixed HCC/ICC (8180; TNM: C22.1; ICD-O: C22.0) • Hepatoblastoma (8970; C22.0) • Malignant rhabdoid tumour (8963; (C22.0) • Sarcoma (C22.0) • Angiosarcoma (9120) • Epithelioid haemangioendothelioma (9133) • Embryonal sarcoma (8991)/rhabdomyosarcoma (8900-8920) Morphology*: distribution by sex (NL 2011-17) other other ICC 2% 3% 28% ICC 56% HCC 41% HCC 70% males females * Only pathologically confirmed cases Liver cancer: primary or metastatic? Be aware that other and unspecified morphologies are likely to be metastatic, unless there is evidence of the contrary. For example, primary neuro-endocrine tumours (including small cell carcinoma) of the liver are extremely rare. So, when you have a diagnosis of a carcinoid or small cell carcinoma in the liver, this is probably a metastatic tumour. Anatomy of the bile ducts Gallbladder
    [Show full text]
  • A New Theranostic Paradigm for Advanced Thyroid Cancer
    INVITED PERSPECTIVES A New Theranostic Paradigm for Advanced Thyroid Cancer David A. Pattison1,2, Benjamin Solomon3,4, and Rodney J. Hicks1,4 1Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; 2Endocrinology Service, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; 3Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and 4Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia Differentiation status and metabolic reprogramming are increas- The successful use of 131I as a systemic treatment of a patient ingly being recognized as determinants of imaging phenotype. In with metastatic thyroid cancer was first reported in 1948 (1). This contrast to well-differentiated tumors, which are reliant on mitochon- agent has subsequently become firmly established as part of the treat- drial oxidative phosphorylation to generate the energy needed for ment of high-risk thyroid cancer and especially for metastatic dis- cellular processes, poorly differentiated cancer cells depend on the ease. There has been an evolution in the quality of assessment of the inefficient mechanism of aerobic glycolysis—the Warburg effect. distribution of radioactive iodine (RAI) within the body, progressing Notably, Hurthle cell (or oncocytic) tumors, both benign and malig- 18 from Geiger–Muller¨ counting to imaging, first with the rectilinear nant, are generally characterized by intense F-FDG avidity represent- scanning and then with the g-camera. The physical characteristics ing inherent constitutive activation of glycolytic pathways (6). Loss of 123I as a diagnostic tracer compared with 131I further improved of the mitochondrial respiratory chain complex I has been shown to imaging by facilitating higher quality SPECT and SPECT/CT.
    [Show full text]
  • Multiple Endocrine Neoplasia Type 2: an Overview Jessica Moline, MS1, and Charis Eng, MD, Phd1,2,3,4
    GENETEST REVIEW Genetics in Medicine Multiple endocrine neoplasia type 2: An overview Jessica Moline, MS1, and Charis Eng, MD, PhD1,2,3,4 TABLE OF CONTENTS Clinical Description of MEN 2 .......................................................................755 Surveillance...................................................................................................760 Multiple endocrine neoplasia type 2A (OMIM# 171400) ....................756 Medullary thyroid carcinoma ................................................................760 Familial medullary thyroid carcinoma (OMIM# 155240).....................756 Pheochromocytoma ................................................................................760 Multiple endocrine neoplasia type 2B (OMIM# 162300) ....................756 Parathyroid adenoma or hyperplasia ...................................................761 Diagnosis and testing......................................................................................756 Hypoparathyroidism................................................................................761 Clinical diagnosis: MEN 2A........................................................................756 Agents/circumstances to avoid .................................................................761 Clinical diagnosis: FMTC ............................................................................756 Testing of relatives at risk...........................................................................761 Clinical diagnosis: MEN 2B ........................................................................756
    [Show full text]
  • Rising Incidence of Neuroendocrine Tumors
    Rising Incidence of Neuroendocrine Tumors Dasari V, Yao J, et al. JAMA Oncology 2017 S L I D E 1 Overview Pancreatic Neuroendocrine Tumors • Tumors which arise from endocrine cells of the pancreas • 5.6 cases per million – 3% of pancreatic tumors • Median age at diagnosis 60 years • More indolent course compared to adenocarcinoma – 10-year overall survival 40% • Usually sporadic but can be associated with hereditary syndromes – Core genetic pathways altered in sporadic cases • DNA damage repair (MUTYH) Chromatin remodeling (MEN1) • Telomere maintenance (MEN1, DAXX, ATRX) mTOR signaling – Hereditary: 17% of patients with germline mutation Li X, Wang C, et al. Cancer Med 2018 Scarpa A, Grimond S, et al. NatureS L I2017 D E 2 Pathology Classification European American Joint World Health Organization Neuroendocrine Committee on Cancer (WHO) Tumor Society (AJCC) (ENETS) Grade Ki-67 Mitotic rt TNM TNM T1: limit to pancreas, <2 cm T1: limit to pancreas, ≦2 cm T2: limit to pancreas, 2-4 cm T2: >limit to pancreas, 2 cm T3: limit to pancreas, >4 cm, T3: beyond pancreas, no celiac or Low ≤2% <2 invades duodenum, bile duct SMA T4: beyond pancreas, invasion involvement adjacent organs or vessels T4: involves celiac or SMA N0: node negative No: node negative Intermed 3-20% 2-20 N1: node positive N1: node positive M0: no metastases M0: no metastases High >20% >20 M1: metastases M1: metastases S L I D E 3 Classification Based on Functionality • Nonfunctioning tumors – No clinical symptoms (can still produce hormone) – Accounts for 40% of tumors – 60-85%
    [Show full text]