High-Throughput Screen for Inhibitors of Androgen Receptor-RUNX2 Transcriptional Regulation in Prostate Cancer S

Total Page:16

File Type:pdf, Size:1020Kb

High-Throughput Screen for Inhibitors of Androgen Receptor-RUNX2 Transcriptional Regulation in Prostate Cancer S Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2016/08/23/jpet.116.234567.DC1 1521-0103/359/2/256–261$25.00 http://dx.doi.org/10.1124/jpet.116.234567 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 359:256–261, November 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics High-Throughput Screen for Inhibitors of Androgen Receptor-RUNX2 Transcriptional Regulation in Prostate Cancer s Winston Vuong, Ben Y. Tew, Gillian H. Little, Baruch Frenkel, and Jeremy O. Jones Beckman Research Institute, City of Hope, Duarte, California (W.V., B.Y.T., J.O.J.); Keck School of Medicine, University of Southern California, Los Angeles, California (G.H.L., B.F.) Received June 23, 2016; accepted August 12, 2016 Downloaded from ABSTRACT Runt-related transcription factor 2 (RUNX2) plays a critical role in We therefore established a phenotypic cell-based screening prostate cancer progression. RUNX2 interacts with the androgen assay for compounds that could inhibit AR-RUNX2 synergistic receptor (AR) and modulates its transcriptional activity in a locus- activity either directly or indirectly. This assay was used to screen specific manner. RUNX2 and AR synergistically stimulate a 880 compounds as a proof of concept, resulting in identification subset of genes, including the pro-oncogene snail family zinc of several compounds that disrupted the synergistic stimulation jpet.aspetjournals.org finger 2 (SNAI2). AR-RUNX2 signaling cooperatively induces of genes. Further investigation suggested the involvement of invasiveness of prostate cancer cells via SNAI2; and coexpres- epidermal growth factor receptor (EGFR) signaling in AR/RUNX2 sion of AR, RUNX2, and SNAI2 in prostate cancer biopsy synergistic activity. Our assay is amenable to high-throughput samples predicts disease recurrence. Competitive inhibition of screening and can be used to identify inhibitors of the AR-RUNX2 AR alone could not disrupt the synergistic activation of SNAI2. interaction in prostate cancer cells. Introduction invasiveness and tissue destruction (Akech et al., 2010; at ASPET Journals on September 25, 2021 Baniwal et al., 2010). Runt-related transcription factor 2 (RUNX2) is a member of Androgen receptor (AR) signaling regulates prostatic ho- the mammalian RUNX family of transcription factors, which meostasis; however, its activity becomes oncogenic during have well-established roles in development and cancer (Blyth prostate carcinogenesis to promote cellular proliferation, et al., 2005; Ito, 2008). RUNX2, best known for its roles in survival, and aerobic glycolysis (Wang et al., 2009; Massie skeletal development (Komori et al., 1997), has been impli- et al., 2011). These changes, mediated by AR coactivators and cated in the evolution of breast and prostate cancer (PCa) collaborating transcription factors, are associated with re- metastasis, primarily through promotion of epithelial- distribution of AR across the genome and alterations to its mesenchymal transition (Pratap et al., 2008; Akech et al., transcriptional regulation (Massie et al., 2007; Wang et al., 2010; Baniwal et al., 2010). RUNX2 immunoreactivity is 2007; Jia et al., 2008; Baniwal et al., 2009; Sahu et al., 2011). higher in human PCa than in normal prostate epithelium RUNX2 has been implicated in AR signaling in physiologic and correlates with cancer grade and stage (Chua et al., 2009; and pathologic contexts, but the underlying mechanisms have Yun et al., 2012). Likewise, RUNX2 phosphorylation corre- not been fully defined (Kawate et al., 2007; Baniwal et al., lates with aggressive PCa (Ge et al., 2016). RUNX2 expression 2009; Frenkel et al., 2010). In PCa and other cell types, also increases during PCa development in a mouse PTEN physical interaction between AR and the RUNX2 DNA- conditional knockout model (Lim et al., 2010). RUNX2 activity binding domains was found to inhibit the ability of RUNX2 in PCa is negatively regulated by the tumor suppressor PTEN, to recruit and activate target genes (Kawate et al., 2007; which is often lost in PCa, again suggesting the importance of Baniwal et al., 2009; Frenkel et al., 2010; Baniwal et al., 2012). activating RUNX2 signaling as PCa progresses (Zhang et al., The reciprocal interaction, those of RUNX2 on AR, led to 2011). Furthermore, manipulation of RUNX2 in tissue cul- conflicting results indicating either inhibition (McCarthy ture and xenograft mouse models of PCa metastasis alters et al., 2003; Kawate et al., 2007) or stimulation (van der Deen et al., 2010; Baniwal et al., 2012) of AR activity. Recently, it was shown that RUNX2 modulates AR activity This work was solely supported by institutional funds. dx.doi.org/10.1124/jpet.116.234567. in PCa cells in a locus-dependent manner (Little et al., 2014). s This article has supplemental material available at jpet.aspetjournals.org. This work revealed several important facets of AR-RUNX2 ABBREVIATIONS: AR, androgen receptor; C4-2bRx2dox, doxycycline-inducible RUNX2 C4-2b cells; CSS, charcoal-dextran stripped serum; DHT, dihydrotestosterone; Dox, doxycycline; EGFR, epidermal growth factor receptor; MMTV, mouse mammary tumor virus; NSC659174, 1-chloro-6- [chloro(difluoro)methyl]-1,1,7,7,7-pentafluoro-2,6-dihydroxy-2-(trifluoromethyl)heptan-4-one; NSC689857, 1-adamantylmethyl 4-[(2,5- dihydroxyphenyl)methylamino]benzoate; PCa, prostate cancer; RT-PCR, reverse-transcription polymerase chain reaction; RUNX2, Runt-related transcription factor 2; siRNA, small-interfering RNA; SNAI2, snail family zinc finger 2; YFP, yellow fluorescent protein. 256 HTS for AR-RUNX2 Inhibitors 257 interaction that suggest a more nuanced RUNX2 influence on Library compounds were initially screened in duplicate between PCa progression. At most affected loci, RUNX2 antagonizes separate plates. Compounds selected as hits were screened in AR recruitment to, and stimulation of, target genes including quadruplicate for the dose–response validation screen. the NKX3.1 and TMPRSS2 tumor suppressors (type I genes). Hit Selection. Compounds were conditionally selected as hits In other cases, type IIa genes including the pro-oncogenes based upon binary categorization as either an attenuator or not, contingent on classification as minimally cytotoxic, on both duplicate snail family zinc finger 2 (SNAI2) and SRY-box 9 are synergis- plates. Attenuation was defined as having a lower YFP/mCherry tically up-regulated by RUNX2 and AR. Most importantly, the signal, Scompound, than 1.5 S.D. of the average YFP/mCherry signal of cooperative signaling appears to induce invasiveness of PCa via Dox 1 DHT–treated controls, Sreference (eq. 1). Compounds were SNAI2 on a physiologic level as coexpression of AR, RUNX2, determined to be minimally cytotoxic if their mCherry signals, and SNAI2 in PCa biopsies predicts disease recurrence. T , were greater than half of the average mCherry signal compound Based on these observations we developed a screen to identify across the plate, Tplate (eq. 2). Results from the hit selection were inhibitors of the AR-RUNX2 interactions and activation of plotted using Sʹ versus Tʹ, the normalized compound toxicity and prometastatic type IIa genes, especially SNAI2. Such com- modulation signals from both plates as shown in eqs. 3 and 4. Hits had ʹ ʹ pounds may have the potential to treat AR-RUNX2-driven PCa. an S lower than 1 and an R greater than 1. Conditions for hit selection were as follows: À Á S , S 2 1:5 SD (1) Materials and Methods compound reference Downloaded from dox Tplate Cell Culture. A modified human PCa cell subline, C4-2bRx , Tcompound . (2) dox 2 was used for all experiments (Baniwal et al., 2009). C4-2bRx cells were engineered from the LNCaP C4-2b cell line to conditionally Scompound 9 5 S ,1 (3) express RUNX2 at levels similar to the PC-3 PCa cell line and Sreference 2 1:5 SD osteoblast cells upon treatment with doxycycline (Dox). The cells were maintained in RPMI-1640 medium (Cellgro/Mediatech, Manassas, Tcompound 9 5 T .1 (4) VA) supplemented with penicillin–streptomycin and 10% fetal bovine Tplate jpet.aspetjournals.org 2 serum or 5% charcoal-dextran stripped serum (CSS, Gemini Bio- Products, West Sacramento, CA). After transfection or conditioning Quantitative Reverse-Transcription Polymerase Chain Re- alone in CSS, the cells were treated with distilled water, 0.25 mg/ml action. Total RNA was isolated from the treated C4-2bRxdox cells Dox, 1 nM dihydrotestosterone (DHT), Dox with DHT, or library using the GeneJet RNA purification kit (Thermo Fisher Scientific, compound with Dox and DHT. Waltham, MA). The isolated RNA was then reverse-transcribed with Transfection. One day before transfection, the cells were split into MMLV-reverse transcriptase (Invitrogen). Relative target-gene ex- a 10-cm plate for pooled transfection. On the next day, a dual- pression was then assessed by quantitative reverse-transcription transfection was prepared with a mouse mammary tumor virus yellow polymerase chain reaction (RT-PCR) with a SYBR green detection at ASPET Journals on September 25, 2021 fluorescent protein (MMTV-YFP) reporter construct (8 mg) and a dye (Invitrogen) and Rox reference dye (Invitrogen) on the StepOne pIRES-mCherry control plasmid (3 mg) using Lipofectamine LTX with Real Time PCR System (Applied Biosystems, Foster City, CA). Using Plus reagent (Invitrogen/Life Technologies, Carlsbad, CA). Transfection the DDCt relative quantification method, target gene readouts were complexes were prepared
Recommended publications
  • Jdp2 Downregulates Trp53 Transcription to Promote Leukaemogenesis in the Context of Trp53 Heterozygosity
    Oncogene (2013) 32, 397 --402 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc SHORT COMMUNICATION Jdp2 downregulates Trp53 transcription to promote leukaemogenesis in the context of Trp53 heterozygosity L van der Weyden1, AG Rust1,4, RE McIntyre1,4, CD Robles-Espinoza1, M del Castillo Velasco-Herrera1, R Strogantsev2, AC Ferguson-Smith2, S McCarthy1, TM Keane1, MJ Arends3 and DJ Adams1 We performed a genetic screen in mice to identify candidate genes that are associated with leukaemogenesis in the context of Trp53 heterozygosity. To do this we generated Trp53 heterozygous mice carrying the T2/Onc transposon and SB11 transposase alleles to allow transposon-mediated insertional mutagenesis to occur. From the resulting leukaemias/lymphomas that developed in these mice, we identified nine loci that are potentially associated with tumour formation in the context of Trp53 heterozygosity, including AB041803 and the Jun dimerization protein 2 (Jdp2). We show that Jdp2 transcriptionally regulates the Trp53 promoter, via an atypical AP-1 site, and that Jdp2 expression negatively regulates Trp53 expression levels. This study is the first to identify a genetic mechanism for tumour formation in the context of Trp53 heterozygosity. Oncogene (2013) 32, 397--402; doi:10.1038/onc.2012.56; published online 27 February 2012 Keywords: p53; Jdp2; transposon; heterozygosity; lymphoma; mice INTRODUCTION targeted by transposon insertion events leading to upregulated Genetic alterations of TP53 are frequent events in tumourigenesis Jdp2 expression and a decrease in Trp53 expression levels. Further and promote genomic instability, impair apoptosis, and contribute we illustrate that Jdp2 regulates the Trp53 promoter via an atypical to aberrant self-renewal.1--4 The spectrum of mutations that occur AP-1 binding site.
    [Show full text]
  • A Dissertation Entitled the Androgen Receptor
    A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen.
    [Show full text]
  • Regulation of Runx2 Accumulation and Its Consequences
    Regulation of Runx2 Accumulation and Its Consequences Junko Shimazu Submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 ©2016 Junko Shimazu All Rights Reserved ABSTRACT Regulation of Runx2 Accumulation and Its Consequences Junko Shimazu Osteoblasts are bone-forming cells and therefore they are responsible of the synthesis of type I collagen, the main component of bone matrix. However, there is an apparent disconnect between the regulation of osteoblast differentiation and bone formation since the synthesis of Type I collagen precedes the expression of Runx2, the earliest determinant of osteoblast differentiation. Recently, genetic experiments in the mouse have revealed the existence of an unexpected cross-regulation between bone and other organs. In particular this body of work has highlighted the importance of osteoblasts as endocrine cells to regulate whole-body glucose homeostasis by secretion of a hormone, osteocalcin. However, the fundamental question of why bone regulates glucose homeostasis remained to be answered. Therefore, in my thesis, considering that bone is a metabolically demanding organ that constantly renews itself, I hypothesized that characterizing the connection between the need of glucose as a main nutrient in osteoblasts and bone development will provide a key to deeper understanding of why bone regulates glucose homeostasis. My work shows here that glucose uptake through GLUT1 in osteoblasts is needed for osteoblast differentiation by suppressing the AMPK-dependent activation by phosphorylation at S148 of Smurf1 that targets Runx2 for degradation. I also uncovered the mechanism of action of Smurf1 in this setting.
    [Show full text]
  • Effects of Estrogen Receptor and Wnt Signaling Activation On
    International Journal of Molecular Sciences Article Effects of Estrogen Receptor and Wnt Signaling Activation on Mechanically Induced Bone Formation in a Mouse Model of Postmenopausal Bone Loss 1, , 1, 1 1 Astrid Liedert * y, Claudia Nemitz y, Melanie Haffner-Luntzer , Fabian Schick , Franz Jakob 2 and Anita Ignatius 1 1 Institute of Orhopedic Research and Biomechanics, Trauma Research Center Ulm, University Medical Center Ulm, 89081 Ulm, Germany; [email protected] (C.N.); melanie.haff[email protected] (M.H.-L.); [email protected] (F.S.); [email protected] (A.I.) 2 Orthopaedic Center for Musculoskeletal Research, University of Würzburg, 97074 Würzburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-731-500-55333; Fax: +49-731-500-55302 These authors contributed equally to the study. y Received: 14 September 2020; Accepted: 31 October 2020; Published: 5 November 2020 Abstract: In the adult skeleton, bone remodeling is required to replace damaged bone and functionally adapt bone mass and structure according to the mechanical requirements. It is regulated by multiple endocrine and paracrine factors, including hormones and growth factors, which interact in a coordinated manner. Because the response of bone to mechanical signals is dependent on functional estrogen receptor (ER) and Wnt/β-catenin signaling and is impaired in postmenopausal osteoporosis by estrogen deficiency, it is of paramount importance to elucidate the underlying mechanisms as a basis for the development of new strategies in the treatment of osteoporosis. The present study aimed to investigate the effectiveness of the activation of the ligand-dependent ER and the Wnt/β-catenin signal transduction pathways on mechanically induced bone formation using ovariectomized mice as a model of postmenopausal bone loss.
    [Show full text]
  • Supplementary Information
    Osa et al Supplementary Information Clinical implications of monitoring nivolumab immunokinetics in previously treated non– small cell lung cancer patients Akio Osa, Takeshi Uenami, Shohei Koyama, Kosuke Fujimoto, Daisuke Okuzaki, Takayuki Takimoto, Haruhiko Hirata, Yukihiro Yano, Soichiro Yokota, Yuhei Kinehara, Yujiro Naito, Tomoyuki Otsuka, Masaki Kanazu, Muneyoshi Kuroyama, Masanari Hamaguchi, Taro Koba, Yu Futami, Mikako Ishijima, Yasuhiko Suga, Yuki Akazawa, Hirotomo Machiyama, Kota Iwahori, Hyota Takamatsu, Izumi Nagatomo, Yoshito Takeda, Hiroshi Kida, Esra A. Akbay, Peter S. Hammerman, Kwok-kin Wong, Glenn Dranoff, Masahide Mori, Takashi Kijima, Atsushi Kumanogoh Supplemental Figures 1 – 8 1 Osa et al Supplemental Figure 1. The frequency of nivolumab-bound T cells was maintained in patients who continued treatment. Nivolumab binding in CD8 and CD4 T cells was analyzed at two follow-up points, as indicated, in fresh peripheral blood from three representative cases from protocol 1 that continued treatment. 2 Osa et al Supplemental Figure 2. Long-term follow-up of nivolumab binding to T cells from fresh whole blood. Nivolumab binding was followed up in fresh peripheral blood from an additional case, Pt.7. 3 Osa et al Supplemental Figure 3. Long-term duration of nivolumab binding is due to sustained circulation of residual nivolumab in plasma. (A) PBMCs acquired from Pt.8 and 9 at pretreatment (pre PBMCs) and after a single dose (post 1 PBMCs) were cultured in regular medium without nivolumab (top and middle). Pre PBMCs were also incubated with 10 µg/ml nivolumab in vitro before the cultures were started (bottom). Nivolumab binding status was monitored at the indicated time points.
    [Show full text]
  • RUNX2 Regulates Leukemic Cell Metabolism and Chemotaxis in High-Risk T Cell Acute Lymphoblastic Leukemia
    RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia Filip Matthijssens, … , Pieter Van Vlierberghe, Ksenia Matlawska-Wasowska J Clin Invest. 2021;131(6):e141566. https://doi.org/10.1172/JCI141566. Research Article Oncology Graphical abstract Find the latest version: https://jci.me/141566/pdf The Journal of Clinical Investigation RESEARCH ARTICLE RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia Filip Matthijssens,1,2 Nitesh D. Sharma,3,4 Monique Nysus,3,4 Christian K. Nickl,3,4 Huining Kang,4,5 Dominique R. Perez,4,6 Beatrice Lintermans,1,2 Wouter Van Loocke,1,2 Juliette Roels,1,2 Sofie Peirs,1,2 Lisa Demoen,1,2 Tim Pieters,1,2 Lindy Reunes,1,2 Tim Lammens,2,7 Barbara De Moerloose,2,7 Filip Van Nieuwerburgh,8 Dieter L. Deforce,8 Laurence C. Cheung,9,10 Rishi S. Kotecha,9,10 Martijn D.P. Risseeuw,2,11 Serge Van Calenbergh,2,11 Takeshi Takarada,12 Yukio Yoneda,13 Frederik W. van Delft,14 Richard B. Lock,15 Seth D. Merkley,5 Alexandre Chigaev,4,6 Larry A. Sklar,4,6 Charles G. Mullighan,16 Mignon L. Loh,17 Stuart S. Winter,18 Stephen P. Hunger,19 Steven Goossens,1,2,20 Eliseo F. Castillo,5 Wojciech Ornatowski,21 Pieter Van Vlierberghe,1,2 and Ksenia Matlawska-Wasowska3,4 1Department of Biomolecular Medicine, Ghent University, Ghent, Belgium. 2Cancer Research Institute Ghent (CRIG), Ghent, Belgium. 3Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
    [Show full text]
  • BMP9 Prevents Induction of Osteopontin in JNK-Inactivated
    International Journal of Biochemistry and Cell Biology 116 (2019) 105614 Contents lists available at ScienceDirect International Journal of Biochemistry and Cell Biology journal homepage: www.elsevier.com/locate/biocel BMP9 prevents induction of osteopontin in JNK-inactivated osteoblasts via Hey1-Id4 interaction T ⁎ Joji Kusuyamaa,b, , Changhwan Seonga,c, Toshiaki Nakamurad, Tomokazu Ohnishia, Muhammad Subhan Amira,c,e, Kaori Shimaf, Ichiro Sembaf, Kazuyuki Noguchid, Tetsuya Matsuguchia a Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan b Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA, 02215, USA c Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, 8- 35-1 Sakuragaoka, Kagoshima, 890-8544, Japan d Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan e Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Campus A UNAIR, JL. Mayjen Professor Doktor Moestopo No. 47, Pacar Kembang, Tambaksari, Kota SBY, Surabaya, Jawa Timur, 60132, Indonesia f Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan ARTICLE INFO ABSTRACT Keywords: Osteopontin (OPN) is an osteoblast-derived secretory protein that plays a role in bone remodeling, osteoblast BMP9 responsiveness, and inflammation. We recently found that osteoblast differentiation is type-specific, with con- Osteopontin ditions of JNK inactivation inducing osteoblasts that preferentially express OPN (OPN-type).
    [Show full text]
  • The Role of P53-Induced Mir-145A in Senescence and Osteogenesis of Mesenchymal Stem Cells
    The Role of p53-induced miR-145a in Senescence and Osteogenesis of Mesenchymal Stem Cells Chao Xia Shanghai Jiaotong University School of Medicine Xinhua Hospital Tianyuan Jiang Shanghai Jiaotong University School of Medicine Xinhua Hospital Yonghui Wang Shanghai Jiaotong University School of Medicine Xinhua Hospital Xiaoting Chen Shanghai Jiaotong University School of Medicine Xinhua Hospital Yan Hu Shanghai Jiaotong University School of Medicine Xinhua Hospital Yanhong Gao ( [email protected] ) https://orcid.org/0000-0003-4173-4855 Research Keywords: microRNAs, osteogenesis, senescence, mesenchymal stem cells, p53, Cbfb Posted Date: March 17th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-17497/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Background: The osteogenic differentiation capacity of senescent bone marrow mesenchymal stem cells (MSCs) is diminished. However, little is known about the mechanisms. p53 not only regulates cellular senescence but also, as a negative regulator, is involved in bone formation. This study investigated the molecular mechanism of p53 in cellular senescence and osteogenesis. Methods: The expression of p53 and its downstream gene p21 were measured during cellular senescence and osteogenesis differentiation of primary bone marrow MSCs. Then miR-145a was picked out from those p53-induced miRNAs as its expression change in bone marrow MSCs senescence and osteogenesis induced by H2O2 and BMP-9, respectively. The function of p53 induced miR-145a was analyzed by transfected with miRNA mimic in osteogenic differentiation of MSCs. Western blot and luciferase reporter assay were used for validating the target of miR-145a.
    [Show full text]
  • Estrogen Promotes Mandibular Condylar Fibrocartilage
    www.nature.com/scientificreports OPEN Estrogen Promotes Mandibular Condylar Fibrocartilage Chondrogenesis and Inhibits Received: 27 November 2017 Accepted: 18 May 2018 Degeneration via Estrogen Published: xx xx xxxx Receptor Alpha in Female Mice Jennifer L. Robinson 1,3, Paola Soria2, Manshan Xu2, Mark Vrana1, Jefrey Luchetti1, Helen H. Lu3, Jing Chen2 & Sunil Wadhwa2 Temporomandibular joint degenerative disease (TMJ-DD) is a chronic form of TMJ disorder that specifcally aficts people over the age of 40 and targets women at a higher rate than men. Prevalence of TMJ-DD in this population suggests that estrogen loss plays a role in the disease pathogenesis. Thus, the goal of the present study was to determine the role of estrogen on chondrogenesis and homeostasis via estrogen receptor alpha (ERα) during growth and maturity of the joint. Young and mature WT and ERαKO female mice were subjected to ovariectomy procedures and then given placebo or estradiol treatment. The efect of estrogen via ERα on fbrocartilage morphology, matrix production, and protease activity was assessed. In the young mice, estrogen via ERα promoted mandibular condylar fbrocartilage chondrogenesis partly by inhibiting the canonical Wnt signaling pathway through upregulation of sclerostin (Sost). In the mature mice, protease activity was partly inhibited with estrogen treatment via the upregulation and activity of protease inhibitor 15 (Pi15) and alpha-2- macroglobulin (A2m). The results from this work provide a mechanistic understanding of estradiol on TMJ growth and homeostasis and can be utilized for development of therapeutic targets to promote regeneration and inhibit degeneration of the mandibular condylar fbrocartilage. Temporomandibular joint degenerative disease (TMJ-DD) is marked by degradation and premature calcifcation of the extracellular matrix (ECM) of the articular mandibular condylar fbrocartilage.
    [Show full text]
  • Identification of Shared and Unique Gene Families Associated with Oral
    International Journal of Oral Science (2017) 9, 104–109 OPEN www.nature.com/ijos ORIGINAL ARTICLE Identification of shared and unique gene families associated with oral clefts Noriko Funato and Masataka Nakamura Oral clefts, the most frequent congenital birth defects in humans, are multifactorial disorders caused by genetic and environmental factors. Epidemiological studies point to different etiologies underlying the oral cleft phenotypes, cleft lip (CL), CL and/or palate (CL/P) and cleft palate (CP). More than 350 genes have syndromic and/or nonsyndromic oral cleft associations in humans. Although genes related to genetic disorders associated with oral cleft phenotypes are known, a gap between detecting these associations and interpretation of their biological importance has remained. Here, using a gene ontology analysis approach, we grouped these candidate genes on the basis of different functional categories to gain insight into the genetic etiology of oral clefts. We identified different genetic profiles and found correlations between the functions of gene products and oral cleft phenotypes. Our results indicate inherent differences in the genetic etiologies that underlie oral cleft phenotypes and support epidemiological evidence that genes associated with CL/P are both developmentally and genetically different from CP only, incomplete CP, and submucous CP. The epidemiological differences among cleft phenotypes may reflect differences in the underlying genetic causes. Understanding the different causative etiologies of oral clefts is
    [Show full text]
  • Impact of RUNX2 on Drug-Resistant Human Pancreatic Cancer Cells with P53 Mutations
    Ozaki et al. BMC Cancer (2018) 18:309 https://doi.org/10.1186/s12885-018-4217-9 REVIEWARTICLE Open Access Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations Toshinori Ozaki1*†, Meng Yu2†, Danjing Yin3, Dan Sun4, Yuyan Zhu4, Youquan Bu5 and Meixiang Sang3 Abstract Background: Despite the remarkable advances in the early diagnosis and treatment, overall 5-year survival rate of patients with pancreatic cancer is less than 10%. Gemcitabine (GEM), a cytidine nucleoside analogue and ribonucleotide reductase inhibitor, is a primary option for patients with advanced pancreatic cancer; however, its clinical efficacy is extremely limited. This unfavorable clinical outcome of pancreatic cancer patients is at least in part attributable to their poor response to anti-cancer drugs such as GEM. Thus, it is urgent to understand the precise molecular basis behind the drug-resistant property of pancreatic cancer and also to develop a novel strategy to overcome this deadly disease. Review: Accumulating evidence strongly suggests that p53 mutations contribute to the acquisition and/or maintenance of drug-resistant property of pancreatic cancer. Indeed, certain p53 mutants render pancreatic cancer cells much more resistant to GEM, implying that p53 mutation is one of the critical determinants of GEM sensitivity. Intriguingly, runt-related transcription factor 2 (RUNX2) is expressed at higher level in numerous human cancers such as pancreatic cancer andosteosarcoma,indicatingthat,inadditiontoits pro-osteogenic role, RUNX2 has a pro-oncogenic potential. Moreover, a growing body of evidence implies that a variety of miRNAs suppress malignant phenotypes of pancreatic cancer cells including drug resistance through the down-regulation of RUNX2.
    [Show full text]
  • Retinoblastoma Binding Protein-1 (RBP1) Is a Runx2 Coactivator and Promotes Osteoblastic Differentiation BMC Musculo- Skeletal Disorders 2010, 11:104
    Monroe et al. BMC Musculoskeletal Disorders 2010, 11:104 http://www.biomedcentral.com/1471-2474/11/104 RESEARCH ARTICLE Open Access RetinoblastomaResearch article binding protein-1 (RBP1) is a Runx2 coactivator and promotes osteoblastic differentiation David G Monroe*, John R Hawse, Malayannan Subramaniam and Thomas C Spelsberg Abstract Background: Numerous transcription factors are involved in the establishment and maintenance of the osteoblastic phenotype, such as Runx2, osterix and Dlx5. The transcription factor retinoblastoma binding protein-1 (RBP1) was recently identified as an estrogen regulated gene in an osteosarcoma cell model. Since the function of RBP1 in osteoblastic differentiation and mineralization is unknown, we investigated the role of RBP1 in these processes. Methods: To create a cell model with suppressed RBP1 expression, primary calvarial osteoblasts were infected with a shRNA lentiviral vector specific for mouse RBP1 (CalOB-ΔRBP1) or a scrambled control shRNA lentivirus (CalOB-Control). Stable cell lines were generated and their mineralization potential was determined using osteoblastic differentiation medium, Alizarin Red staining, and quantitative PCR (QPCR) analyses. Runx2 coactivation by RBP1 was determined through the use of transient transfection assays. Results: Stable expression of the RBP1 shRNA lentivirus in CalOB-ΔRBP1 cells resulted in a 65-70% suppression of RBP1 expression. Osteoblastic mineralization assays demonstrated that suppression of RBP1 results in a potent delay in osteoblastic nodule formation in the CalOB-ΔRBP1 cells with a concomitant decrease in the expression of the osteogenic transcription factors Runx2 and osterix, along with decreases in BMP2, alkaline phosphatase, osteocalcin and bone sialoprotein. Regulation of Runx2 expression by RBP1 was shown to be mediated through the proximal P2 Runx2 promoter.
    [Show full text]