Concise Guide to Hematology Dr

Total Page:16

File Type:pdf, Size:1020Kb

Concise Guide to Hematology Dr Concise Guide to Hematology Dr. Schmaier dedicates this book to his life partner Linda and to Alec and Lauren who are contributing to the next generation of physicians. Dr. Lazarus dedicates this book to his loving wife Joan and sons Jeffrey and Adam and spouses Jana and Sarah for their unwavering support. Concise Guide to Hematology EDITED BY Alvin H. Schmaier MD Robert W. Kellermeyer Professor of Hematology/Oncology Case Western Reserve University University Hospitals Case Medical Center Cleveland, OH, USA Hillard M. Lazarus MD, FACP Professor of Medicine Case Western Reserve University University Hospitals Case Medical Center Cleveland, OH, USA A John Wiley & Sons, Ltd., Publication This edition fi rst published 2012 © 2012 by Blackwell Publishing Ltd. Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell’s publishing program has been merged with Wiley’s global Scientifi c, Technical and Medical business to form Wiley-Blackwell. Registered offi ce: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial offi ces: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offi ces, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell The right of the author to be identifi ed as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. The contents of this work are intended to further general scientifi c research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting a specifi c method, diagnosis, or treatment by physicians for any particular patient. The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including without limitation any implied warranties of fi tness for a particular purpose. In view of ongoing research, equipment modifi cations, changes in governmental regulations, and the constant fl ow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. Readers should consult with a specialist where appropriate. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom. Library of Congress Cataloging-in-Publication Data Concise guide to hematology / edited by Alvin H. Schmaier, Hillard M. Lazarus. p. ; cm. Includes bibliographical references and index. ISBN-13: 978-1-4051-9666-6 (hardcover : alk. paper) ISBN-10: 1-4051-9666-1 (hardcover : alk. paper) 1. Blood–Diseases. 2. Hematology. I. Schmaier, Alvin H. II. Lazarus, Hillard M. [DNLM: 1. Hematologic Diseases. 2. Hematopoiesis. 3. Neoplasms, Plasma Cell. WS 39] RC633.C66 2011 616.1′5–dc23 2011015323 A catalogue record for this book is available from the British Library. This book is published in the following electronic formats: ePDF 9781444345223; Wiley Online Library 9781444345254; ePub 9781444345230; Mobi 9781444345247 Set in 9.5/12 pt Palatino by Toppan Best-set Premedia Limited 1 2012 Contents List of Contributors, ix Preface, xii 1 Introduction to Hematology, 1 Alvin H. Schmaier 2 Hematopoiesis, 6 Yuan Lin and Stanton L. Gerson 3 Red Blood Cell Biochemistry and Physiology, 16 Kevin T. McDonagh 4 Anemia: Clinical Approach, 24 Peter W. Marks 5 Iron Defi ciency, 35 Alice Ma 6 Vitamin-B12 (Cobalamin) and Folate Defi ciency, 44 As´ok C. Antony 7 Congenital Hemolytic Anemias, 62 Archana M. Agarwal and Josef T. Prchal 8 Acquired Hemolytic Anemias, 75 Scott D. Gitlin 9 Overview of Hemostasis, 91 Alvin H. Schmaier 10 Approach to the Bleeding Patient, 103 Alvin H. Schmaier v vi Contents 11 Congenital Bleeding Disorders, 112 Anjali A. Sharathkumar and Steven W. Pipe 12 Acquired Bleeding Disorders, 131 Howard A. Liebman 13 Platelet Function in Hemostasis and Inherited Disorders of Platelet Number and Function, 140 A. Koneti Rao and David W. Essex 14 Acquired Thrombocytopenia, 154 Theodore E. Warkentin and Andrew E. Warkentin 15 Thrombosis and Anticoagulation, 174 Alvin H. Schmaier 16 Myeloid Cell Physiology and Disorders, 184 Alvin H. Schmaier, Lilli M. Petruzzelli, Niels Borregaard and Laurence A. Boxer 17 Bone Marrow Structure and Diagnostic Testing, 197 Howard J. Meyerson and Hillard M. Lazarus 18 Myeloproliferative Neoplasms and Myelodysplastic Syndromes, 220 Gabriela Motyckova and Richard M. Stone 19 Acute Leukemia, 235 Tsila Zuckerman and Jacob M. Rowe 20 Classifi cation of Lymphoma, 251 Yi-Hua Chen and Amy Chadburn 21 Clinical Evaluation and Management of Lymphoma, 268 Makiko Ban-Hoefen, Jonathan W. Friedberg and Richard I. Fisher 22 Plasma Cell Disorders, 287 Sumit Madan and Philip R. Greipp 23 Pediatric Hematology, 307 Sanjay P. Ahuja 24 Blood Banking, 319 Lawrence Tim Goodnough 25 Transfusion Therapy, 332 Beth H. Shaz and Christopher D. Hillyer Contents vii 26 Hematopoietic Cell Transplantation, 344 Hillard M. Lazarus 27 Atlas of Hematology Slides, 363 Alvin H. Schmaier Index, 389 Contributors Archana M. Agarwal MD Amy Chadburn MD Assistant Professor, Pathology Professor of Pathology University of Utah and ARUP Laboratories Division of Hematopathology Salt Lake City, UT, USA Department of Pathology Northwestern University, Feinberg School of Medicine MD, MS Sanjay P. Ahuja Chicago, IL, USA Assistant Professor, Pediatric Hematology/ Oncology Director, Hemostasis and Thrombosis Center Yi - Hua Chen MD Rainbow Babies and Children ’ s Hospital Assistant Professor of Pathology Case Western Reserve University Division of Hematopathology Cleveland, OH, USA Department of Pathology Northwestern University, Feinberg School of Medicine MD, FACP A s´ ok C. Antony Chicago, IL, USA Professor of Medicine Indiana University School of Medicine Indianapolis, IN, USA David W. Essex MD Associate Professor of Medicine Sol Sherry Thrombosis Research Center and MD Makiko Ban- Hoefen Division of Hematology Hematology/Oncology Fellow Temple University School of Medicine James P. Wilmot Cancer Center Philadelphia, PA, USA University of Rochester Medical Center Rochester, NY, USA Richard I. Fisher MD Director, James P. Wilmot Cancer Center MD, PhD Niels Borregaard Samuel E. Durand Chair in Medicine Professor of Hematology and Internal Medicine Professor of Medicine University of Copenhagen; University of Rochester Medical Center Department of Hematology Rochester, NY, USA Rigshospitalet Copenhagen, Denmark Jonathan W. Friedberg MD, MMSc Professor of Medicine and Oncology Laurence A. Boxer MD Chief, Hematology Oncology Division Henry and Mala Dorfman Family Professor of James P. Wilmot Cancer Center Pediatric Hematology/Oncology University of Rochester Medical Center Department of Pediatrics and Communicable Rochester, NY, USA Diseases University of Michigan Ann Arbor, MI, USA ix x Contributors Stanton L. Gerson MD Yuan Lin PhD Director, Case Comprehensive Cancer Center Division of Hematology and Oncology Director, Seidman Cancer Center Case Western Reserve University Asa and Patricia Shiverik Professor of University Hospitals Case Medical Center Hematology and Oncology Seidman Cancer Center Case Western Reserve University Cleveland, OH, USA University Hospitals Case Medical Center Cleveland, OH, USA Alice Ma MD Associate Professor of Medicine Scott D. Gitlin MD, FACP Department of Medicine Associate Professor of Internal Medicine Division of Hematology/Oncology Division of Hematology/Oncology University of North Carolina University of Michigan Chapel Hill, NC, USA Ann Arbor VA Health System Ann Arbor, MI, USA Sumit Madan MD Research Fellow Lawrence
Recommended publications
  • Thrombotic Microangiopathy Score As a New Predictor for Neurologic Outcome in Patients Undergoing Targeted Temperature Management After Out-Of-Hospital Cardiac Arrest
    Thrombotic Microangiopathy Score as a New Predictor for Neurologic Outcome in Patients Undergoing Targeted Temperature Management After Out-of-hospital Cardiac Arrest Taeyoung Kong Yonsei University College of Medicine Hye Sun Lee Yonsei University College of Medicine Soyoung Jeon Yonsei University College of Medicine Jong Wook Lee Konyang University Hospital Hyun Soo Chung Yonsei University College of Medicine Sung Phil Chung Yonsei University College of Medicine Je Sung You ( [email protected] ) Yonsei University College of MedicineGangnam Severance Hospital https://orcid.org/0000-0002-2074- 6745 Original research Keywords: Out-of-hospital cardiac arrest, Targeted temperature management, Thrombotic microangiopathy score, Mortality, Predictor, Schistocytes Posted Date: July 8th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-40096/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Background: Given the morphological characteristics of schistocytes, thrombotic microangiopathy (TMA) score can be benecial as it can be quickly and serially measured without additional effort or costs. This study aimed to investigate whether the serial TMA scores until 48 h post admission are associated with clinical outcomes in patients undergoing targeted temperature management (TTM) after out-of-hospital cardiac arrest (OHCA). Methods:We retrospectively evaluated a cohort of 185 patients using a prospective registry. We analyzed the TMA score at admission and after 12, 24, and
    [Show full text]
  • Morphological Study of Human Blood for Different Diseases
    Research Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2020.30.004893 Morphological Study of Human Blood for Different Diseases Muzafar Shah1*, Haseena1, Kainat1, Noor Shaba1, Sania1, Sadia1, Akhtar Rasool2, Fazal Akbar2 and Muhammad Israr3 1Centre for Animal Sciences & Fisheries, University of Swat, Pakistan 2Centre for Biotechnology and Microbiology, University of Swat, Pakistan 3Department of Forensic Sciences, University of Swat, Pakistan *Corresponding author: Muzafar Shah, Centre for Animal Sciences & Fisheries, University of Swat, Pakistan ARTICLE INFO ABSTRACT Received: August 25, 2020 The aim of our study was the screening of blood cells on the basis of morphology for different diseased with Morphogenetic characters I e. ear lobe attachment, clinodactyly Published: September 07, 2020 and tongue rolling. For this purpose, 318 blood samples were collected randomly. Samples were examined under the compound microscopic by using 100x with standard Citation: Muzafar Shah, Haseena, method. The results show 63 samples were found normal while in 255 samples, different Kainat, Noor Shaba, Sania, Sadia, et al. types of morphological changes were observed which was 68.5%, in which Bite cell 36%, Morphological Study of Human Blood for Elliptocyte 34%, Tear drop cell 30%, Schistocyte 26%, Hypochromic cell 22.5%, Irregular Different Diseases. Biomed J Sci & Tech Res contracted cell 16%, Echinocytes 15.5%, Roleaux 8%, Boat shape 6.5%, Sickle cell 5%, Keratocyte 4% and Acanthocytes 1.5%. During the screening of slides, bite cell, elliptocyte, tear drop cell, schistocytes, hypochromic cell, irregular contracted cells were found 30(1)-2020.Keywords: BJSTR.Human MS.ID.004893. blood; Diseases; frequently while echinocytes, boat shape cell, acanthocytes, sickle cells and keratocytes Morphological; Acanthocytes; Keratocyte were found rarely.
    [Show full text]
  • TOPIC 5 Lab – B: Diagnostic Tools & Therapies – Blood & Lymphatic
    TOPIC 5 Lab – B: Diagnostic Tools & Therapies – Blood & Lymphatic Disorders Refer to chapter 17 and selected online sources. Refer to the front cover of Gould & Dyer for normal blood test values. Complete and internet search for videos from reliable sources on blood donations and blood tests. Topic 5 Lab - A: Blood and Lymphatic Disorders You’ll need to refer to an anatomy & physiology textbook or lab manual to complete many of these objectives. Blood Lab Materials Prepared slides of normal blood Prepared slides of specific blood pathologies Models of formed elements Plaque models of formed elements Blood typing model kits Blood Lab Objectives – by the end of this lab, students should be able to: 1. Describe the physical characteristics of blood. 2. Differentiate between the plasma and serum. 3. Identify the formed elements on prepared slides, diagrams and models and state their main functions. You may wish to draw what you see in the space provided. Formed Element Description / Function Drawing Erythrocyte Neutrophil s e t y c Eosinophils o l u n a r Basophils Leukocytes G e Monocytes t y c o l u n Lymphocytes a r g A Thrombocytes 4. Define differential white blood cell count. State the major function and expected range (percentage) of each type of white blood cell in normal blood. WBC Type Function Expected % Neutrophils Eosinophils Basophils Monocytes Lymphocytes 5. Calculation of the differential count? 6. Define and use in proper context: 1. achlorhydria 5. amyloidosis 2. acute leukemia 6. anemia 3. agnogenic myeloid metaplasia 7. autosplenectomy 4. aleukemic leukemia 8. basophilic stippling 9.
    [Show full text]
  • Hematology & Oncology
    First Aid Express 2016 workbook: HEMATOLOGY & ONCOLOGY page 1 Hematology & Oncology How to Use the Workbook with the Videos Using this table as a guide, read the Facts in First Aid for the USMLE Step 1 2016, watch the corresponding First Aid Express 2016 videos, and then answer the workbook questions. Facts in First Aid for Corresponding First Aid Workbook the USMLE Step 1 2016 Express 2016 videos questions 378.1–381.1 Anatomy (2 videos) 1–10 381.2–385.2 Physiology (2 videos) 11–14 386.1–404.2 Pathology (9 videos) 15–30 405.1–413.4 Pharmacology (3 videos) 31–35 Copyright © 2016 by MedIQ Learning, LLC All rights reserved v1.0 page 2 First Aid Express 2016 workbook: HEMATOLOGY & ONCOLOGY Questions ANATOMY 1. Define the following terms. (p 378) A. Anisocytosis _______________________________________________________________ B. Poikilocytosis _______________________________________________________________ C. Thrombocytopenia __________________________________________________________ 2. What do the dense granules of platelets contain? (p 378) ________________________________ 3. What do the α-granules of platelets contain? (p 378) ____________________________________ 4. List the types of white blood cells in order of decreasing prevalence. (pp 378) ________________ ______________________________________________________________________________ 5. What conditions can cause hypersegmentation of neutrophils? (p 378) _____________________ ______________________________________________________________________________ 6. CD14 is a cell surface marker
    [Show full text]
  • Plasmapheresis in Sepsis-Induced Thrombotic Microangiopathy
    CASE REPORT Plasmapheresis in Sepsis-induced Thrombotic Microangiopathy: A Case Series Sushmita RS Upadhya1, Chakrapani Mahabala2, Jayesh G Kamat3, Jayakumar Jeganathan4, Sushanth Kumar5, Mayur V Prabhu6 ABSTRACT Introduction: Cytokines and granulocyte elastase produced in sepsis cleave a disintegrin and metalloprotease with thrombospondin type I motif 13 (ADAMTS13) and deplete its levels. By this mechanism, sepsis results in microangiopathic hemolytic anemia (MAHA) with thrombocytopenia. Hence, the hypothesis is that plasmapheresis may help in sepsis-induced thrombotic microangiopathy (sTMA), by removing the factors responsible for low levels of ADAMTS13. In tropical countries like India, the contribution of sepsis to intensive care unit (ICU) mortality is high; and hence, it is essential to look out for newer modalities of sepsis treatment. There is abundant literature on the use of plasmapheresis in sepsis but data on its use in sTMA are limited, thus necessitating further research in this field. Case description: This case series studies the outcomes of five patients admitted with sTMA in the ICU and attempts to evaluate the effectiveness of plasmapheresis in improving their outcomes. All patients diagnosed with sTMA and treated with plasmapheresis, between January 2016 and August 2018 at our tertiary care center, were selected for the study. The diagnosis of sepsis was based on sepsis-3 definition. Results: Four different gram-negative organisms were found to have caused MAHA, with the commonest source being either urinary tract infection (UTI) or lower respiratory tract infection. Three of five patients required hemodialysis and two had disseminated intravascular coagulation (DIC). All five had good outcome and recovered well from the acute episode post plasmapheresis.
    [Show full text]
  • Lipopolysaccharide-Induced Hemolysis Is Abolished by Inhibition of Thrombin Generation but Not Inhibition of Platelet Aggregation
    Inflammation, Vol. 42, No. 5, October 2019 ( # 2019) DOI: 10.1007/s10753-019-01038-6 ORIGINAL ARTICLE Lipopolysaccharide-Induced Hemolysis Is Abolished by Inhibition of Thrombin Generation but Not Inhibition of Platelet Aggregation Stephan Brauckmann,1,2 Katharina Effenberger-Neidnicht,2 Michael Nagel,3 Christian Mayer,3 Jürgen Peters,1 and Matthias Hartmann 1,4 Abstract—In human sepsis, hemolysis is an independent predictor of mortality, but the mech- anisms evoking hemolysis have not been fully elucidated. Therefore, we tested the hypoth- eses that (1) lipopolysaccharide (LPS)-induced hemolysis is dependent on thrombin gener- ation or platelet aggregation and (2) red cell membranes are weakened by LPS. Anesthetized male Wistar rats were subjected to LPS or vehicle for 240 min. The effects of hemostasis inhibition on LPS-induced hemolysis were investigated by use of the thrombin inhibitor argatroban or the platelet function inhibitor eptifibatide. Free hemoglobin concentration, red cell membrane stiffness and red cell morphological changes were determined by spectropho- tometry, atomic force microscopy, and light microscopy. Efficacy of argatroban and eptifibatide was assessed by rotational thrombelastometry and impedance aggregometry, respectively. LPS markedly increased free hemoglobin concentration (20.8 μmol/l ± 3.6 vs. 3.5 ± 0.3, n =6, p < 0.0001) and schistocytes, reduced red cell membrane stiffness, and induced disseminated intravascular coagulation. Inhibition of thrombin formation with argatroban abolished the increase in free hemoglobin concentration, schistocyte formation, and disseminated intravascular coagulation in LPS-treated animals. Eptifibatide had no inhibitory effect. The LPS evoked decrease of red cell stiffness that was not affected by argatroban or eptifibatide. LPS causes hemolysis, schistocyte formation, and red cell mem- brane weakening in rats.
    [Show full text]
  • WO 2015/073587 A2 21 May 2015 (21.05.2015) P O P CT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/073587 A2 21 May 2015 (21.05.2015) P O P CT (51) International Patent Classification: Noubar, B.; c/o Rubius Therapeutics, Inc., 1 Memorial B82Y5/00 (201 1.01) Drive, 7th Floor, Cambridge, MA 02142 (US). (21) International Application Number: (74) Agents: YEE, Gene et al; Fenwick & West LLP, 801 PCT/US2014/065304 California Street, Mountain View, CA 94041 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 12 November 2014 (12.1 1.2014) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, English (25) Filing Language: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 61/962,867 18 November 2013 (18. 11.2013) US MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 61/919,432 20 December 201 3 (20. 12.2013) US PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 61/973,764 1 April 2014 (01.04.2014) us SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 61/991,3 19 9 May 2014 (09.05.2014) us TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Fluctuating Neurological Symptoms: Should I Call the Neurologist Or The
    Adv Lab Med 2021; 2(1): 129–132 Case Report Rita Losa-Rodríguez*, Carmen Pérez Martínez, Gabriel Rodríguez Pérez, Ignacio de la Fuente Graciani and Lara M. Gómez García Fluctuating neurological symptoms: should I call the neurologist or the hematologist? https://doi.org/10.1515/almed-2020-0082 Keywords: schistocytes; thrombocytopenia; thrombotic Received March 25, 2020; accepted June 30, 2020; microangiopathy. published online November 12, 2020 Abstract Introduction Objectives: The objective of this study was to highlight the Thrombotic thrombocytopenic purpura (TTP) is a life- role of the clinical laboratory and the relevance of reporting threatening, acute hematologic process characterized by the case immediately to the unit of hematology for the microangiopathic hemolytic anemia and thrombocyto- diagnosis and early administration of treatment in the penia. Its clinical manifestations are the result of its presence of such an urgent hematologic disease as physiopathology: nonautoimmune hemolytic anemia, thrombotic thrombocytopenic purpura (TTP). severe thrombocytopenia, fluctuating neurological mani- Case presentation: An elderly patient was referred to the festations, renal dysfunction and fever, although the two emergency department of our hospital by his general latter are less frequent [1, 2]. practitioner for speech difficulty, facial asymmetry and The disease can be congenital or acquired as a result of weakness in the upper limb. Stroke code was activated. a deficiency or dysfunction of protein disintegrin and However, laboratory findings (anemia, thrombocytopenia, metalloproteinase with a thrombospondin type 1 motif, elevated creatinine, total bilirubin and LDH, negative direct member 13 (ADAMTS13). This protease mediates the Coombs test) and presence of schistocytes in the peripheral breakdown of large multimers of von Willebrand factor blood smear test were consistent with a completely different (vWF) into smaller units.
    [Show full text]
  • Anemia Evaluation and Diagnostic Tests
    Anemia Evaluation and Diagnostic Tests a b,c, Michael J. Cascio, MD , Thomas G. DeLoughery, MD, MACP, FAWM * KEYWORDS Red cell indices Schistocytes Microcytic Macrocytic Cytogenetics Anemia Diagnostic testing KEY POINTS Both the red cell indices and blood smear can offer clues to diagnosis and help to guide laboratory testing. Classification of anemia by either size of the red cell or mechanism (decreased production or increased loss) can narrow down the differential diagnosis. New molecular technologies may offer improved diagnostic sensitivity and specificity. ANEMIA: DEFINITION Although anemia is common, the exact cutoff to establish a diagnosis can be elusive. The standard definition is population-based and varies by gender and race. Current hemoglobin cutoff recommendations range from 13 to 14.2 g/dL in men and 11.6 to 12.3 g/dL in women.1 Data from large population studies suggests that hemoglobin levels for African Americans tend to be 0.8 to 0.7 g/dL lower, perhaps owing to the high frequency of alpha-thalassemia in this population.2 Another important factor is the trend of hemoglobin. For example, a patient with previous hemoglobin values at the higher end of the normal range, who now presents with a hemoglobin concentra- tion at the lower end of the normal range, can now be considered anemic. SYMPTOMS AND SIGNS OF ANEMIA In general, the signs and symptoms of anemia are unreliable in predicting the degree of anemia. Several factors determine the symptomatology of anemia, with time of The authors report no conflict of
    [Show full text]
  • HLS Final 2020 {018}
    HLS-MID.018 Lina Abdelhadi Samia Simrin ﷽ HLS-Final 018 1-All of the following represents correct examples of targeted therapy in hematolymphoid neoplasms EXCEPT: a. Daclizumab (anti CD25)- Sezary syndrome b. Imatinib (anti bcr/abl) - CML c. ATRA - acute promyelocytic leukemia d. Enasidenib (anti IDH) - AML e. Vemurafenib (anti BRAF)- hairy cell leukemia 2-Which one of the following substances is found exactly in the same percentage in both plasma and interstitial fluid? a. Glucose b. Proteins c. Lipids d. Bicarbonate e. Chloride 3-Cerebral malaria is seen in: a. P. falciparum b. P. ovale c. P. knowlesi d. P. malariae e. Plasmodium vivax 4-Which of the following is used to dissolve intravascular clots through activation of plasmin? a. Aminocaproic acid b. Warfarin c. Tissue plasminogen- activator (t-PA) d. Heparin e. Lepirudin 5-Patients with Hand Shuller Christian disease have all of the following EXCEPT: a. Skull bony lesions b. Exophthalmous c. CDla expression d. Diabetes insipidus e. Pulmonary nodules 6-Which of the following statements regarding infection with B19 virus is FALSE? a. Pure red-cell aplasia patients have persistent high levels of B19V IgG b. Host's immune status is the determine rule in in B19 infection outcome c. B19 viral replication is dependent on functions supplied by replicating host cells d. Only primary erythroid progenitors are known to be permissive for B19 infection e. Co-infection with Plasmodium plays role in the development of severe anemia in young children. 7-Which developmental stage of leishmania is the infective stage? a. Metacyclic trypanomastigot b. Promastigot c.
    [Show full text]
  • 5 6 Intravascular Underproducti
    Red Blood Cell Disorders 49 i. Disease—90% HbS, 8% HbF, 2% HbA2 (no HbA) ii. Trait—55% HbA, 43% HbS, 2% HbA2 III. HEMOGLOBIN C A. Autosomal recessive mutation in β chain of hemoglobin 1. Normal glutamic acid is replaced by lysine. 2. Less common than sickle cell disease B. Presents with mild anemia due to extravascular hemolysis C. Characteristic HbC crystals are seen in RBCs on blood smear (Fig. 5.10). Copyright NORMOCYTIC ANEMIAS WITH PREDOMINANT INTRAVASCULAR HEMOLYSIS Purchase I. PAROXYSMAL NOCTURNAL HEMOGLOBINURIa (PNH) A. Acquired defect in myeloid stem cells resulting in absent glycosylphosphatidylinositol (GPI); renders cells susceptible to destruction by complement Pathoma 1. Blood cells coexist with complement. 2. Decay accelerating factor (DAF) on the surface of blood cells protects against online complement-mediated damage by inhibiting C3 convertase. 3. DAF is secured to the cell membrane by GPI (an anchoring protein). 4. Absence of GPI leads to absence of DAF, rendering cells susceptible to complement-mediated damage. LLC. B. Intravascular hemolysis occurs episodically, often at night during sleep. at 1. Mild respiratory acidosis develops with shallow breathing during sleep and activates complement. www.pathoma.com 2. RBCs, WBCs, and platelets are lysed. All 3. Intravascular hemolysis leads to hemoglobinemia and hemoglobinuria (especially in the morning); hemosiderinuria is seen days after hemolysis. C. Sucrose test is used to screen for disease; confirmatory test is the acidified serum test Rights or flow cytometry to detect lack of CD55 (DAF) on blood cells. D. Main cause of death is thrombosis of the hepatic, portal, or cerebral veins. 1.
    [Show full text]
  • SNODENT (Systemized Nomenclature of Dentistry)
    ANSI/ADA Standard No. 2000.2 Approved by ANSI: December 3, 2018 American National Standard/ American Dental Association Standard No. 2000.2 (2018 Revision) SNODENT (Systemized Nomenclature of Dentistry) 2018 Copyright © 2018 American Dental Association. All rights reserved. Any form of reproduction is strictly prohibited without prior written permission. ADA Standard No. 2000.2 - 2018 AMERICAN NATIONAL STANDARD/AMERICAN DENTAL ASSOCIATION STANDARD NO. 2000.2 FOR SNODENT (SYSTEMIZED NOMENCLATURE OF DENTISTRY) FOREWORD (This Foreword does not form a part of ANSI/ADA Standard No. 2000.2 for SNODENT (Systemized Nomenclature of Dentistry). The ADA SNODENT Canvass Committee has approved ANSI/ADA Standard No. 2000.2 for SNODENT (Systemized Nomenclature of Dentistry). The Committee has representation from all interests in the United States in the development of a standardized clinical terminology for dentistry. The Committee has adopted the standard, showing professional recognition of its usefulness in dentistry, and has forwarded it to the American National Standards Institute with a recommendation that it be approved as an American National Standard. The American National Standards Institute granted approval of ADA Standard No. 2000.2 as an American National Standard on December 3, 2018. A standard electronic health record (EHR) and interoperable national health information infrastructure require the use of uniform health information standards, including a common clinical language. Data must be collected and maintained in a standardized format, using uniform definitions, in order to link data within an EHR system or share health information among systems. The lack of standards has been a key barrier to electronic connectivity in healthcare. Together, standard clinical terminologies and classifications represent a common medical language, allowing clinical data to be effectively utilized and shared among EHR systems.
    [Show full text]