If(Z)
COMPATIBLE SEMINORMS IN A VECTOR LATTICE* BY CASPER GOFFMAN UNIVERSITY OF OKLAHOMA Communicated by S. Bochner, May 16, 1956 Let X be a vector space. A locally convex topology r in X is given by a system of seminorms pal A, for which XJ is a Hausdorff space. We suppose that there is an order relation w in X for which X<, is a vector lattice. We suppose, further, that the order dual, X,', which consists of all bounded linear forms on Xs, is a total subspace of the algebraic dual X' of X, i.e., for every x $ 0 there is a bounded f such that f(x) $ 0. In particular, this implies that X, is Archimedean. A seminorm p is compatible with w if x| > yI implies p(x) > p(y). A locally convex topology r is compatible with co if its seminorms may be chosen so as to be compatible with W. For general information see N. Bourbaki, Elements de mathcmatique.' Under the above assumptions, we observe that for every w there is a finest r compatible with w. In particular, we show that there is at most one Banach topology compatible with w, and, if it exists, it is the finest locally convex topology compatible with w. Thus, for various function spaces, the norm in use is seen to yield the only possible Banach space compatible with the natural order relation of the space. We first note that if p is a seminorm compatible with w, then the continuity semi- norm set of p is contained in X,'.
[Show full text]