ON ORDER PRESERVING AND ORDER REVERSING MAPPINGS DEFINED ON CONES OF CONVEX FUNCTIONS MANUSCRIPT Lixin Cheng∗ Sijie Luo School of Mathematical Sciences Yau Mathematical Sciences Center Xiamen University Tsinghua University Xiamen 361005, China Beijing 100084, China
[email protected] [email protected] ABSTRACT In this paper, we first show that for a Banach space X there is a fully order reversing mapping T from conv(X) (the cone of all extended real-valued lower semicontinuous proper convex functions defined on X) onto itself if and only if X is reflexive and linearly isomorphic to its dual X∗. Then we further prove the following generalized “Artstein-Avidan-Milman” representation theorem: For every fully order reversing mapping T : conv(X) → conv(X) there exist a linear isomorphism ∗ ∗ ∗ U : X → X , x0, ϕ0 ∈ X , α> 0 and r0 ∈ R so that ∗ (Tf)(x)= α(Ff)(Ux + x0)+ hϕ0, xi + r0, ∀x ∈ X, where F : conv(X) → conv(X∗) is the Fenchel transform. Hence, these resolve two open questions. We also show several representation theorems of fully order preserving mappings de- fined on certain cones of convex functions. For example, for every fully order preserving mapping S : semn(X) → semn(X) there is a linear isomorphism U : X → X so that (Sf)(x)= f(Ux), ∀f ∈ semn(X), x ∈ X, where semn(X) is the cone of all lower semicontinuous seminorms on X. Keywords Fenchel transform · order preserving mapping · order reversing mapping · convex function · Banach space 1 Introduction An elegant theorem of Artstein-Avidan and Milman [5] states that every fully order reversing (resp.