(Coleoptera, Curculionidae, Scolytinae) of the Ecuadorian Amazonian Forest Canopy

Total Page:16

File Type:pdf, Size:1020Kb

(Coleoptera, Curculionidae, Scolytinae) of the Ecuadorian Amazonian Forest Canopy ZooKeys 1044: 797–813 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1044.57849 SHORT COMMUNICATION https://zookeys.pensoft.net Launched to accelerate biodiversity research Species-rich bark and ambrosia beetle fauna (Coleoptera, Curculionidae, Scolytinae) of the Ecuadorian Amazonian Forest Canopy Stephanie A. Dole1, Jiri Hulcr2, Anthony I. Cognato3 1 Department of Entomology, California Academy of Sciences 55 Music Concourse Drive, San Francisco, CA 94118, USA 2 School of Forest Research and Conservation, University of Florida 136 Newins-Ziegler Hall, Gainesville, FL 32611, USA 3 Department of Entomology, Michigan State University 288 Farm Ln. East Lansing, MI 48824, USA Corresponding author: Anthony I. Cognato ([email protected]) Academic editor: M. Alonso-Zarazaga | Received 20 August 2020 | Accepted 3 October 2020 | Published 16 June 2021 http://zoobank.org/D4EB9324-A5B4-48FD-8609-7F260B245010 Citation: Dole SA, Hulcr J, Cognato AI (2021) Species-rich bark and ambrosia beetle fauna (Coleoptera, Curculionidae, Scolytinae) of the Ecuadorian Amazonian Forest Canopy. In: Spence J, Casale A, Assmann T, Liebherr JK, Penev L (Eds) Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940–2020). ZooKeys 1044: 797–813. https://doi.org/10.3897/zookeys.1044.57849 Abstract Canopy fogging was used to sample the diversity of bark and ambrosia beetles (Coleoptera, Curculioni- dae, Scolytinae) at two western Amazonian rainforest sites in Ecuador. Sampling was conducted by Dr Terry Erwin and assistants from 1994–2006 and yielded 1158 samples containing 2500 scolytine speci- mens representing more than 400 morphospecies. Here, we analyze a subset of these data representing two ecological groups: true bark beetles (52 morphospecies) and ambrosia beetles (69 morphospecies). A high percentage of these taxa occurred as singletons and doubletons and their species accumulation curves did not reach an asymptote. Diversity estimates placed the total scolytine species richness for this taxon subset present at the two sites between 260 and 323 species. Theα -diversity was remarkably high at each site, while the apparently high β-diversity was an artifact of undersampling, as shown by a Monte Carlo resampling analysis. This study demonstrates the utility of canopy fogging for the discovery of new scolytine taxa and for approximate diversity assessment, but a substantially greater sampling effort would be needed for conclusive alpha as well as beta diversity estimates. Keywords ambrosia beetles, bark beetles, diversity, neotropical, rainforest, Terry Erwin Copyright Stephanie A. Dole et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 798 Stephanie A. Dole et al. / ZooKeys 1044: 797–813 (2021) Introduction First pioneered by Southwood (1961) in temperate forests and then later adapted for tropical research by numerous others (Lowman and Wittman 1996), canopy fogging methods use insecticide to collect arthropods from the upper architecture of the forest habitat. These methods have been used in surveying arthropod diversity, particularly in lowland rain forests and at several neotropical localities (Erwin 1982; Basset 2001; Rice 2015). These data in part were used to make Erwin’s (1982) bold estimate of 30–50 million arthropod species which was a stark contrast to previous estimates of 1.5–10 million (Erwin 1982). Although this provocative publication produced im- mediate criticism, it initiated focused scientific inquiry for an improved estimate of the number of worldwide arthropod species (e.g., May 1988; Adis 1990; Gaston 1991; Erwin 1991; Ødegaard 2000; Hamilton et al. 2010). For a more than a decade, Erwin and colleagues sampled arthropod diversity in the Ecuadorian Amazon rainforest canopy at two lowland sites with identified trees, separated by 21 km of contiguous primary forest, using a standardized insecticidal fogging protocol (Erwin 1983a, 1983b; Pitman et al. 2001; Erwin et al. 2005). Sampling occurred during dry, wet, and transitional seasons to measure temporal turnover in species composition. Over nine million specimens were collected from these fogging events (Rice 2015) and many new taxa have been described from the specimens (e.g., Erwin 2010). The Scolytinae (Coleoptera, Curculionidae) is comprised of approximately 257 genera containing 6000 species worldwide (Hulcr et al. 2015). Scolytine species feed sub-cortically on a wide variety of woody and herbaceous plants. The typical life cycle of scolytines consists of a brief dispersal flight period after adult emergence, followed by colonization of new hosts. Once a suitable host has been located, adults bore galler- ies into the host tissue, where eggs are laid, and larvae complete their development into the next generation of adults (Kirkendall et al. 2015). Scolytines are divided into two main ecological groups: bark and ambrosia beetles. The degree to which scolytines specialize on specific hosts varies considerably depend- ing on these ecological groups. Bark beetles bore into the phloem of trees, feed on tree tissues, and tend to have more specialized host preferences. Ambrosia beetles bore into the xylem, feed on species of symbiotic fungi, which grow along the walls of their galleries, and tend to have more generalized tree host preferences (Beaver 1979; Hulcr et al. 2007; Kirkendall et al. 2015). The majority of scolytine diversity occurs in tropical regions of the world, and many tropical species remain undescribed (Wood 2007; Hulcr et al. 2015; Smith et al. 2017). The Ecuadorian canopy fogging samples collected in Erwin’s surveys offer a rich source of new scolytine specimens because of observed scolytine species specialization to tree taxa, tree parts, and other microclimate factors (e.g., Hulcr et al. 2007; Kirkendall et al. 2015). In addition, only fewer than 200 species have been recorded for Ecuador (Wood 2007; Martínez et al. 2019; Jordal and Smith 2020), but the Ecuadorian species richness is likely underestimated given the continuous discovery of new species (e.g., Petrov and Flechtmann 2013; Petrov and Mandelshtam 2018; Smith and Cognato, in prep.). Scolytine Amazonian canopy diversity 799 Remarkably few studies have addressed the spatial and temporal turnover of sco- lytine species (β-diversity) (Deyrup and Atkinson 1987; Thunes 1998; Peltonen et al. 1998; Hulcr et al. 2008a, b). The majority of studies have focused on the com- position of the scolytine fauna of temperate regions and examined the distributions of a few economically important species (Deyrup and Atkinson 1987; Jakus 1998; Peltonen et al. 1998; Oliver and Mannion 2001; Gaylord et al. 2006). Several stud- ies in the tropics have attempted to determine the effects of seasonal changes in rainfall and temperature on the composition of scolytine communities (Beaver and Löyttyniemi 1991; Madoffe and Bakke 1995; Morales et al. 2000; Flechtmann et al. 2001; Hulcr et al. 2008a; Sandoval Rodríguez et al. 2017; Martinez et al. 2019; Sanguansub et al. 2020). Studies in Malaysian forests have examined the spatial dis- tribution of scolytines across horizontal (Maeto et al. 1999; Chung 2004) and ver- tical gradients (Maeto and Fukuyama 2003; Simon et al. 2003). Recent studies in Thailand (Hulcr et al. 2008a; Sanguansub et al. 2020) and Papua New Guinea (Hulcr et al. 2008b) have used quantitative sampling to examine scolytine community com- position and attempt to determine the proximate causes of the distribution of species in tropical habitats. Scolytine communities in lowland homogeneous Papua New Guinean rainforests have a low β-diversity, thus contradicting the expected trend of high β-diversity in the tropics. Novotny et al. (2007) similarly demonstrated low species turnover for insect communities when examined on a large scale across Papua New Guinea. In Thailand, two study sites separated by only 5 km were found to have significantly different scolytine species composition (Hulcr et al. 2008a), however the differences were attributed to differences in forest type, elevation, seasonality, mean annual temperature and humidity (Hulcr et al. 2008a; Sanguansub et al. 2020). Giv- en the scenarios above, it is uncertain whether Amazonian forests will produce the same trend of low β-diversity seen in Papua New Guinea or high β-diversity, as was observed between different Thai forests. In tropical ecosystems, an increase in host specificity combined with an increase in plant diversity is often used to explain high levels of species diversity. However, bark and ambrosia beetles show a reverse trend with at least some groups exhibiting lower host specificity in tropical regions. This is largely due to the greater abundance of ambrosial feeding scolytines which, as discussed above, tend to be relative host plant generalists (Beaver 1979), with high symbiont specificity. Nevertheless, most scolyt- ine groups have higher species diversity in tropical regions than they do in temperate ones (Beaver 1979; Deyrup and Atkinson 1987; Hulcr et al. 2015). It is therefore expected that canopy fogging will yield a high number of scolytine species, but that the β-diversity of scolytines across the Amazonian canopy may not necessarily be high. In this study, we use a subset of scolytine specimens representing both the bark beetle and ambrosia beetle ecological groups to assess the diversity of scolytines
Recommended publications
  • Celtis Tenuifolia) in Ontario
    Photo: Allen Woodliffe Dwarf Hackberry (Celtis tenuifolia) in Ontario Ontario Recovery Strategy Series Recovery strategy prepared under the Endangered Species Act, 2007 2013 Ministry of Natural Resources About the Ontario Recovery Strategy Series This series presents the collection of recovery strategies that are prepared or adopted as advice to the Province of Ontario on the recommended approach to recover species at risk. The Province ensures the preparation of recovery strategies to meet its commitments to recover species at risk under the Endangered Species Act (ESA) and the Accord for the Protection of Species at Risk in Canada. What is recovery? What’s next? Recovery of species at risk is the process by which the Nine months after the completion of a recovery strategy decline of an endangered, threatened, or extirpated a government response statement will be published species is arrested or reversed, and threats are which summarizes the actions that the Government of removed or reduced to improve the likelihood of a Ontario intends to take in response to the strategy. species’ persistence in the wild. The implementation of recovery strategies depends on the continued cooperation and actions of government agencies, individuals, communities, land users, and What is a recovery strategy? conservationists. Under the ESA a recovery strategy provides the best available scientific knowledge on what is required to For more information achieve recovery of a species. A recovery strategy outlines the habitat needs and the threats to the To learn more about species at risk recovery in Ontario, survival and recovery of the species. It also makes please visit the Ministry of Natural Resources Species at recommendations on the objectives for protection and Risk webpage at: www.ontario.ca/speciesatrisk recovery, the approaches to achieve those objectives, and the area that should be considered in the development of a habitat regulation.
    [Show full text]
  • Harmful Non-Indigenous Species in the United States
    Harmful Non-Indigenous Species in the United States September 1993 OTA-F-565 NTIS order #PB94-107679 GPO stock #052-003-01347-9 Recommended Citation: U.S. Congress, Office of Technology Assessment, Harmful Non-Indigenous Species in the United States, OTA-F-565 (Washington, DC: U.S. Government Printing Office, September 1993). For Sale by the U.S. Government Printing Office ii Superintendent of Documents, Mail Stop, SSOP. Washington, DC 20402-9328 ISBN O-1 6-042075-X Foreword on-indigenous species (NIS)-----those species found beyond their natural ranges—are part and parcel of the U.S. landscape. Many are highly beneficial. Almost all U.S. crops and domesticated animals, many sport fish and aquiculture species, numerous horticultural plants, and most biologicalN control organisms have origins outside the country. A large number of NIS, however, cause significant economic, environmental, and health damage. These harmful species are the focus of this study. The total number of harmful NIS and their cumulative impacts are creating a growing burden for the country. We cannot completely stop the tide of new harmful introductions. Perfect screening, detection, and control are technically impossible and will remain so for the foreseeable future. Nevertheless, the Federal and State policies designed to protect us from the worst species are not safeguarding our national interests in important areas. These conclusions have a number of policy implications. First, the Nation has no real national policy on harmful introductions; the current system is piecemeal, lacking adequate rigor and comprehensiveness. Second, many Federal and State statutes, regulations, and programs are not keeping pace with new and spreading non-indigenous pests.
    [Show full text]
  • Use of Etanol in the Collector Recipiente of Ethanolic Traps As
    Volumen 38, Nº 1. Páginas 99-104 IDESIA (Chile) Marzo, 2020 Use of etanol in the collector recipiente of ethanolic traps as attractive bait for Scolytinae (Coleoptera: Curculionidae) in eucalyptus stands in region of Cerrado Uso de trampas de etanol con y sin cebo para subfamilia Scolytinae (Coleoptera: Curculionidae) en bosques de eucalipto en la Región de Cerrado Rejane Soares Gusmão1, Otávio Peres Filho1, Alberto Dorval1, Marcelo Dias de Souza2, Diego Arcanjo do Nascimento3 ABSTRACT Trap models for Scolytinae generally use attractive bait-holders and a collector with ethanol to store the insects. The aim of this paper was verify if the ethanol in the container insect collector can be used as an attractive substance, without need of an extra compartment. The study was carried out in Cuiabá, state of Mato Grosso, Brazil, between June 2009 and May 2010 in stands of Eucalyptus camaldulensis, Eucalyptus urophylla x Eucalyptus camaldulensis, Eucalyptus urophylla x Eucalyptus grandis and native cerrado. Eight escolitídeo-curitiba model traps were installed in each environment, four with 96% ethanol bait holders and the others without attractive. In all traps 70% ethanol was used in the insect collecting container. In the bait traps 2,246 insects and 2100 insects were collected in the no bait, totaling 4,436 insects distributed in 13 genus and 24 species. The use of traps with ethanol baits had no significant effect on insect collection during the evaluated period and regardless of the environments. Keywords: Ambrosia beetles, ethanol, insect bait. RESUMEN Los modelos de trampa para insectos, subfamilia Scolytinae, generalmente usan portadores de cebo atrayentes y un receptor de etanol para conservar los insectos.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • Bark Beetle (Curculionidae: Scolytinae) Record in the La Primavera Forest, Jalisco State
    Revista Mexicana de Ciencias Forestales Vol. 9 (48) DOI: https://doi.org/10.29298/rmcf.v8i48.122 Article Bark beetle (Curculionidae: Scolytinae) record in the La Primavera Forest, Jalisco State Antonio Rodríguez-Rivas1* Sara Gabriela Díaz-Ramos1 Héctor Jesús Contreras-Quiñones1 Lucía Barrientos-Ramírez1 Teófilo Escoto García1 Armando Equihua-Martínez2 1Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara. México. 2Posgrado Fitosanidad, Colegio de Postgraduados, Campus Montecillos. México. *Autor por correspondencia; correo-e: [email protected] Abstract: The first registers of Scolytinae were obtained for the La Primavera Forest, Jalisco (a protected natural area), with 11 species and six genera, as well as their altitudinal distribution. The insects were captured by means of two Lindgren traps with ten funnels each (baited with Dendroctonus ponderosa and Ips typographus pheromones), installed on pine-oak vegetation, and three traps with the shape of a metal funnel (baited with 70 % ethyl alcohol and antifreeze on the outside, and thinner on the inside); of the latter, two were placed on pine and oak vegetation, and the third, in an acacia association. The five traps were distributed within an altitude range of 1 380 to 1 580 masl. The group that most abounded in bark beetle species included Xyleborus affinis, X. ferruginueus, X. volvulus and Gnathotrichus perniciosus. Three new species —Hylurgops subcostulatus alternans, Premnobius cavipenni and Xyleborus horridus— were collected and registered in the state of Jalisco, and two more —Ips calligraphus and I. cribicollis—, at a local level. The traps and baits elicited a good response and proved to be efficient for capturing bark beetle insects.
    [Show full text]
  • Enhancing Our Partnerships Fomentando Nuestra Colaboración
    Proceedings of the 1st Joint Meeting of the 12th National Symposium on Forest Parasites and the 54th Western Forest Insect Work Conference (WFIWC) Memorias de la Primera Reunión Conjunta XII Simposio Nacional de Parasitología Forestal y 54ava Conferencia de Entomología Forestal del Oeste Guadalajara, México November 3-6, 2003 Enhancing our Partnerships Fomentando Nuestra Colaboración i Proceedings of the 1st Joint Meeting of the 12th National Symposium on Forest Parasites and the 54th Western Forest Insect Work Conference (WFIWC) Memorias de la Primera Reunión Conjunta XII Simposio Nacional de Parasitología Forestal y 54ava Conferencia de Entomología Forestal del Oeste Guadalajara, Mexico November 3-6, 2003 Enhancing our Partnerships Fomentando Nuestra Colaboración Compiled by / Recopilación de: Brytten E. Steed USDA Forest Service Forest Health Protection 4746 S. 1900 E. Ogden UT 84403, USA NOT FOR CITATION / NO USAR PARA REFERENCIA INFORMATION FOR CONFERENCE MEMBERS ONLY / INFORMACIÓN SOLAMENTE PARA MIEMBROS DE LA CONFERENCIA The contents of these proceedings are not available for citation or publication without consent of the author. Articles were reformatted but printed approximately as submitted. Authors are responsible for content. El contenido de este documento no esta disponible para citar o publicar sin el consentimiento del autor. Los artículos fueron reformateados pero impresos aproximadamente como fueron remitidos. Los autores son los responsables del contenido. i ORGANIZATIONAL COMMITTEES / COMITES ORGANIZADORES Steering
    [Show full text]
  • Coleoptera, Curculionidae: Scolytinae)
    Zootaxa 4722 (6): 540–554 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.6.2 http://zoobank.org/urn:lsid:zoobank.org:pub:4ADBCE90-97D2-4A34-BCDC-5E207D8EDF0D Two new genera of Oriental xyleborine ambrosia beetles (Coleoptera, Curculionidae: Scolytinae) ANTHONY I. COGNATO1,3, SARAH M. SMITH1 & ROGER A. BEAVER2 1Michigan State University, Department of Entomology, 288 Farm Lane, room 243, East Lansing, MI 48824, USA. 2161/2 Mu 5, Soi Wat Pranon, T. Donkaew, A. Maerim, Chiangmai 50180, Thailand. 3Corresponding author. E-mail: [email protected] Abstract As part of an ongoing revision of the Southeast Asian fauna two distinct species groups were identified and hypothesized as new genera. These species groups were monophyletic as evidenced by a Bayesian analysis of DNA sequences from four genes for 181 xyleborine taxa augmented by 18 species newly included in this phylogenetic analysis. The species groups and newly discovered species demonstrated unique combinations of diagnostic characters and levels of DNA sequence difference commensurable to other xyleborine taxa. Hence, two new genera and three new species were described: Fraudatrix gen. n., Tricosa gen. n., Tricosa cattienensis sp. n., T. indochinensis sp. n., T. jacula sp. n.. The following new combinations are proposed: Fraudatrix cuneiformis (Schedl, 1958) (Xyleborus) comb. n., Fraudatrix melas (Eggers, 1927) comb. n., F. pileatula (Schedl, 1975) (Xyleborus) comb. n., F. simplex (Browne, 1949), (Cryptoxyleborus) comb. n., Tricosa mangoensis (Schedl, 1942) (Xyleborus) comb. n., T. metacuneola (Eggers, 1940) (Xyleborus) comb. n.
    [Show full text]
  • Dwarf Hackberry RS 2010
    Species at Risk Act Recovery Strategy Series Recovery Strategy for the Dwarf Hackberry (Celtis tenuifolia) in Canada Dwarf Hackberry 2011 Recommended citation: Parks Canada Agency. 2011. Recovery Strategy for Dwarf Hackberry (Celtis tenuifolia) in Canada. Species at Risk Act Recovery Strategy Series. Parks Canada Agency. Ottawa. vi + 43 pp. For copies of the recovery strategy, or for additional information on species at risk, including COSEWIC Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk Public Registry (www.sararegistry.gc.ca). Cover illustration: K. Dunster, 2009. Également disponible en français sous le titre « Programme de rétablissement du micocoulier rabougri (Celtis tenuifolia) au Canada » © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2011. All rights reserved. ISBN : 978-1-100-19304-5 Catalogue no.: En3-4/118-2011E-PDF Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. Recovery Strategy for the Dwarf Hackberry 2011 PREFACE The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of recovery strategies for listed Extirpated, Endangered, and Threatened species and are required to report on progress within five years. The Minister responsible for the Parks Canada Agency and Environment Canada (the Minister of the Environment) is the competent minister for the recovery of the Dwarf Hackberry and has prepared this strategy, as per section 37 of SARA.
    [Show full text]
  • Vol. 14, No. 1 Spring 1981 the GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 14 No
    The GREAT LAKES ENTOMOLOGIST Vol. 14, No. 1 Spring 1981 THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 14 No. 1 ISSN 0090-0222 TABLE OF CONTENTS Annotated List of Indiana Scolytidae (Coleoptera) Mark Deyrup .................................................. Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 2. Coreoida J. E. McPherson and B. C. Weber .......................................... 11 Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 3. Reduvioidea J. E. McPherson and B. C. Weber .......................................... 15 Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 4. Cimicoidea J. E. McPherson and B. C. Weber .......................................... 19 Fourlined Plant Bug (Hemiptera: Miridae), A Reappraisal: Life History, Host Plants, and Plant Response to Feeding A. G. Wheeler, Jr. and Gary L. Miller.. ..................................... 23 Hawthorn Lace Bug (Hemiptera: Tingidae), First Record of Injury to Roses, with a Review of Host Plants A. G. Wheeler, Jr. ........................................................ 37 Notes on the Biology of Nersia florens (Homoptera: Fulgoroidea: Dictyopharidae) with Descriptions of Eggs, and First, Second, and Fifth Instars S. W. Wilson and J. E. McPherson.. ...................... Ontogeny of the Tibial Spur in Megamelus davisi (Homoptera: Delphacidae) and its Bearing on Delphacid Classification S. W. Wilson and J. E. McPherson.. .....................
    [Show full text]
  • Screening Aid Ips Typographus (Linnaeus)
    European Spruce Bark Beetle Screening Aid Ips typographus (Linnaeus) Joseph Benzel 1) Identification Technology Program (ITP) / Colorado State University, USDA-APHIS-PPQ-Science & Technology (S&T), 2301 Research Boulevard, Suite 108, Fort Collins, Colorado 80526 U.S.A. (Email: [email protected]) This CAPS (Cooperative Agricultural Pest Survey) screening aid produced for and distributed by: Version 6 USDA-APHIS-PPQ National Identification Services (NIS) 30 June 2015 This and other identification resources are available at: http://caps.ceris.purdue.edu/taxonomic_services The European Spruce Bark Beetle, Ips typographus (Linnaeus) (Fig. 1), is a widely distributed pest in Europe. This species’ primary hosts are spruce trees (Picea) but it is known to be able to infest a number of other conifers including Pinus (pine), Larix (larch), Abies (fir),Juniperus (juniper), and Pseudotsuga (Douglas fir). Larvae feed in the cambium of tree branches and in the trunk, damaging the tree by girdling it and spreading blue stain fungus (Figs. 2-4). Ips typographus is considered the most economically destructive bark beetle in Europe. This species is often associated with Pityogenes chalcographus and the two will often emerge simultaneously and attack the same individual trees. Fig. 1: Ips typographus on tree (photo by William S. Ciesla). Ips typographus is a member of the Curculionidae (subfamily Scolytinae) which is comprised of weevils and bark beetles. Members of this family are highly variable but almost all species share a distinct club on the end of their antennae consisting of three antennomers. The Scolytinae, to which Ips belongs, consists of the bark beetles. In general, members of Scolytinae are small (<10mm long) pill shaped beetles of a reddish brown, black or tan color.
    [Show full text]
  • Proceedings from the Third Workshop on Genetics of Bark Beetles and Associated Microorganisms
    Reconstructing the Phylogeny of Scolytinae and Close Allies: Major Obstacles and Prospects for a Solution Bjarte H. Jordal 1 Abstract—To enable the resolution of deep phylogenetic divergence in Scolytinae and closely related weevils, several new molecular markers were screened for their phylogenetic potential. The nuclear protein encoding genes, CAD and Arginine Kinase, were particularly promising and will be added to future phylogenetic studies in combination with 28S, COI, and Elongation Factor 1α. The combined analysis of multiple molecular markers and wide taxon sampling is expected to resolve many previously unresolved nodes in scolytine phylogeny, but a completely resolved topology seems dependent on the inclusion of a large number of morphological characters. A well founded phylogeny will provide a powerful framework for testing evolutionary hypotheses on habitat selection and reproductive biology. Introduction Bark and timber beetles in the weevil subfamily Scolytinae (Kuschel and others 2000) comprise nearly 6,000 species worldwide and constitute a signif- icant factor in forest ecosystems. These insects receive increased attention, not only from forest entomologists concerned with forest health, but from evolu- tionary biologists fascinated by an unprecedented wide range of different biological and ecological features. Host plants and diets include most woody substrates imaginable, from living to dead trees and shrubs, dry to soggy substrates, large logs to herbs and tiny seeds, to the cultivation of asexual “ambrosia” fungi as food for adults and larvae. Their reproductive biology varies even more, including various forms of monogyny, harem polygamy, inbreeding by regular sibling mating, and parthenogenesis. As a key to understanding how these features may have influenced diver- sification in Scolytinae, the generation of a baseline phylogenetic hypothesis is of paramount importance.
    [Show full text]
  • Environment and Local Substrate Availability Effects on Harem Formation in a Polygynous Bark Beetle
    insects Article Environment and Local Substrate Availability Effects on Harem Formation in a Polygynous Bark Beetle Melissa J. Griffin * and Matthew R. E. Symonds Centre for Integrative Ecology, School of Life and Environment Sciences, Deakin University, Burwood, VIC 3125, Australia; [email protected] * Correspondence: melissa.griffi[email protected] Simple Summary: Harem polygyny is a mating system where a single male defends a group of females for the purpose of securing multiple mating. While this mating system is well-known in mammals it is uncommon in insect groups. The mating aggregations that occur in insect groups may be driven by environmental conditions or resources available for feeding and breeding. We aimed to determine how the local availability of breeding substrate affects the formation of harems in the five-spined bark beetle, Ips grandicollis. Aggregations are formed when a male bores under the bark of felled pine trees and makes a nuptial chamber. The male then releases an aggregation pheromone that attracts females for mating and other males to also exploit the resource. When the population density was higher the number of females associated with each male was greater. The population density was determined by environmental circumstances with higher density in a pine plantation that was being harvested than in a plantation that was still standing. The amount of substrate (logs per replicate pile) available to the bark beetles also influences the number of beetles attracted to a log and size of individual harems. The environment and local substrate availability did not affect how females distribute themselves around the male.
    [Show full text]