Comparison of Bioactivities, Binding Properties and Intrafollicular Levels
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Versatile Roles of K63-Linked Ubiquitin Chains in Trafficking
Cells 2014, 3, 1027-1088; doi:10.3390/cells3041027 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Versatile Roles of K63-Linked Ubiquitin Chains in Trafficking Zoi Erpapazoglou 1,2, Olivier Walker 3 and Rosine Haguenauer-Tsapis 1,* 1 Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; E-Mail: [email protected] 2 Current address: Brain and Spine Institute, CNRS UMR 7225, Inserm, U 1127, UPMC-P6 UMR S 1127, 75013 Paris, France 3 Institut des Sciences Analytiques, UMR5280, Université de Lyon/Université Lyon 1, 69100 Villeurbanne, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]. External Editor: Hanjo Hellmann Received: 14 July 2014; in revised form: 14 October 2014 / Accepted: 21 October 2014 / Published: 12 November 2014 Abstract: Modification by Lys63-linked ubiquitin (UbK63) chains is the second most abundant form of ubiquitylation. In addition to their role in DNA repair or kinase activation, UbK63 chains interfere with multiple steps of intracellular trafficking. UbK63 chains decorate many plasma membrane proteins, providing a signal that is often, but not always, required for their internalization. In yeast, plants, worms and mammals, this same modification appears to be critical for efficient sorting to multivesicular bodies and subsequent lysosomal degradation. UbK63 chains are also one of the modifications involved in various forms of autophagy (mitophagy, xenophagy, or aggrephagy). Here, in the context of trafficking, we report recent structural studies investigating UbK63 chains assembly by various E2/E3 pairs, disassembly by deubiquitylases, and specifically recognition as sorting signals by receptors carrying Ub-binding domains, often acting in tandem. -
Nus a Thesis Submitted
EPAS1 REGULATION AND FUNCTION IN THE HUMAN TROPHOBLAST NORHAM ERLYANI BTE ABDUL HAMID B.Sc. (Hons.), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NUS GRADUATE SCHOOL FOR INTEGRATIVE SCIENCES AND ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2013 ACKNOWLEDGEMENTS Writing this doctoral dissertation has been most challenging and it would not have been possible without the support of many people. First of all, my gratitude goes to A*STAR, NGS, and GIS for giving me the opportunity to pursue the Doctor of Philosophy. I would like to thank A/P Paul Robson for being a tremendous mentor, and for his invaluable guidance. Under his care, I was able to develop and grow into an independent researcher. His unyielding encouragement gave me confidence to pursue the work I have achieved today. For always pointing me in the right direction and having the student’s best interest at heart, I must thank the panel of advisors at GIS as well as my thesis advisory committee; A/P Neil Clarke, Asst. Prof. Tara Huber, Asst. Prof. Thilo Hagen, and Dr. Shyam Prabhakar. I owe special thanks to my co-workers, Dr. Wishva Herath and Dr. Li Juntao. Their indispensable expertise in Bioinformatics is deeply appreciated, without which much of the data would have been rendered unintelligible to me. To my peers Mehran Rahmani, Nani Djunaidi, and Tapan Mistri, I thank you all for the sharing of ideas as well as laboratory material. Together, we can conquer the PhD! Additionally, I would also like to extend my thanks to Sun Lili, Jameelah Sheikh, Woon Chow Thai, and all members of the lab for their support and cooperation, ensuring research in the Robson lab proceeds as smoothly as possible. -
DNA Methylation Variants at HIF3A Locus, B-Vitamin Intake, and Long-Term Weight Change: Gene-Diet Interactions in Two U.S
3146 Diabetes Volume 64, September 2015 Tao Huang,1 Yan Zheng,1 Qibin Qi,2 Min Xu,3 Sylvia H. Ley,1 Yanping Li,1 Jae H. Kang,4 Janey Wiggs,5 Louis R. Pasquale,4,5 Andrew T. Chan,6 Eric B. Rimm,1,4,7 David J. Hunter,1,7 JoAnn E. Manson,4,7,8 Walter C. Willett,1,4,7 Frank B. Hu,1,4,7 and Lu Qi1,4 DNA Methylation Variants at HIF3A Locus, B-Vitamin Intake, and Long-term Weight Change: Gene-Diet Interactions in Two U.S. Cohorts Diabetes 2015;64:3146–3154 | DOI: 10.2337/db15-0264 The first epigenome-wide association study of BMI not induced by changes in the DNA sequence (1). Increasing identified DNA methylation at an HIF3A locus associated evidence indicates that DNA methylation plays a pivotal role with BMI. We tested the hypothesis that DNA methylation in regulating body adiposity (2–5). In a recent large-scale variants are associated with BMI according to intake of epigenome-wide association study, Dick et al. (4) found B vitamins. In two large cohorts, we found significant inter- that DNA methylation at HIF3A was associated with BMI. actions between the DNA methylation–associated HIF3A However, genetic variants in this locus were not associated single nucleotide polymorphism (SNP) rs3826795 and in- with BMI, although they were associated with HIF3A meth- take of B vitamins on 10-year changes in BMI. The asso- ylationlevelsinbloodandadiposeandskintissues.The ciation between rs3826795 and BMI changes consistently authors suggested that the association between HIF3A meth- increased across the tertiles of total vitamin B and B 2 12 ylation and BMI might not be operating by the Mendelian intake (all P for interaction <0.01). -
PGC-1A Protects from Notch-Induced Kidney Fibrosis Development
BASIC RESEARCH www.jasn.org PGC-1a Protects from Notch-Induced Kidney Fibrosis Development † ‡ ‡ Seung Hyeok Han,* Mei-yan Wu, § Bo Young Nam, Jung Tak Park,* Tae-Hyun Yoo,* ‡ † † † † Shin-Wook Kang,* Jihwan Park, Frank Chinga, Szu-Yuan Li, and Katalin Susztak *Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea; †Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; ‡Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University College of Medicine, Seoul, Korea; and §Department of Nephrology, The First Hospital of Jilin University, Changchun, China ABSTRACT Kidney fibrosis is the histologic manifestation of CKD. Sustained activation of developmental pathways, such as Notch, in tubule epithelial cells has been shown to have a key role in fibrosis development. The molecular mechanism of Notch-induced fibrosis, however, remains poorly understood. Here, we show that, that expression of peroxisomal proliferation g-coactivator (PGC-1a) and fatty acid oxidation-related genes are lower in mice expressing active Notch1 in tubular epithelial cells (Pax8-rtTA/ICN1) compared to littermate controls. Chromatin immunoprecipitation assays revealed that the Notch target gene Hes1 directly binds to the regulatory region of PGC-1a. Compared with Pax8-rtTA/ICN1 transgenic animals, Pax8-rtTA/ICN1/Ppargc1a transgenic mice showed improvement of renal structural alterations (on his- tology) and molecular defect (expression of profibrotic genes). Overexpression of PGC-1a restored mi- tochondrial content and reversed the fatty acid oxidation defect induced by Notch overexpression in vitro in tubule cells. Furthermore, compared with Pax8-rtTA/ICN1 mice, Pax8-rtTA/ICN1/Ppargc1a mice exhibited improvement in renal fatty acid oxidation gene expression and apoptosis. -
Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7 -
The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression
International Journal of Molecular Sciences Review The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression Tingting Zou and Zhenghong Lin * School of Life Sciences, Chongqing University, Chongqing 401331, China; [email protected] * Correspondence: [email protected] Abstract: The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs. Keywords: cell cycle regulation; CDKs; cyclins; CKIs; UPS; E3 ubiquitin ligases; Deubiquitinases (DUBs) Citation: Zou, T.; Lin, Z. The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. 1. Introduction Int. J. Mol. Sci. 2021, 22, 5754. https://doi.org/10.3390/ijms22115754 The cell cycle is a ubiquitous, complex, and highly regulated process that is involved in the sequential events during which a cell duplicates its genetic materials, grows, and di- Academic Editors: Kwang-Hyun Bae vides into two daughter cells. -
HIF3A Antibody Product Type
PRODUCT INFORMATION Product name:HIF3A antibody Product type: Primary antibodies Description: Rabbit polyclonal to HIF3A Immunogen:3 synthetic peptides (human) conjugated to KLH Reacts with: Human, Mouse Tested applications: ELISA, WB & IF GENE INFORMATION Gene Symbol:HIF3A Gene Name:hypoxia inducible factor 3, alpha subunit Ensembl ID:ENSG00000124440 Entrez GeneID:64344 GenBank Accession number:AK027725 Omim ID:609976 SwissProt:Q9Y2N7 Molecular weight of HIF3A: 72.4kDa Function:Involved in adaptive response to hypoxia. Suppresses hypoxiainducible expression of HIF1A and EPAS1. Binds to core DNA sequence 5'TACGTG3' within the hypoxia response element (HRE) of target gene promoters. The complex HIF3AARNT activates the transcription of reporter genes driven by HRE. Isoform 4 has a dominant negative function of inactivating HIF1Amediated transcription. Isoform 4 attenuates the binding of HIF1A to hypoxiaresponsive elements (HRE), thus inhibiting HREdriven transcription. Hypoxia induces downregulation of isoform 4, leading to activation of HIF1A in hypoxia. Conversely, upon restoring normoxia, the expression of isoform 4 increases and thereby secure an inhibition of HIF1A activity. Isoform 4 may be a negative regulator of hypoxiainducible gene expression in the kidney and may be involved in renal tumorigenesis. Functions as an inhibitor of angiogenesis in the cornea Expected subcellular localization:Nucleus. Cytoplasm. Note: In the nuclei of all periportal and perivenous hepatocytes. In the distal perivenous zone, detected in the cytoplasm of the hepatocytes Summary:The protein encoded by this gene is the alpha3 subunit of one of several alpha/betasubunit heterodimeric transcription factors that regulate many adaptive responses to low oxygen tension (hypoxia). -
Folding, Function and Subcellular Localization of Parkin
Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universtität München Folding, function and subcellular localization of parkin Julia Schlehe aus München 2008 Erklärung Diese Dissertation wurde im Sinne von §13 Abs. 3 der Promotionsordnung vom 29. Januar 1998 von PD Dr. Winklhofer betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, am 07.10.2008 …………………………………….. (Julia Schlehe) Dissertation eingereicht am 09.10.2008 1. Gutachter PD Dr. Konstanze Winklhofer 2. Gutachter Prof. Dr. Ulrich Hartl Mündliche Prüfung am 10.11.2008 Summary ...............................................................................................................................................................1 Introduction ..........................................................................................................................................................3 Parkinson’s Disease........................................................................................................................................3 History......................................................................................................................................................3 Clinical characteristics, symptoms and treatment ....................................................................................4 Neuropathological characteristics ............................................................................................................6 -
Open Full Page
Published OnlineFirst January 12, 2016; DOI: 10.1158/0008-5472.CAN-15-1859 Cancer Tumor and Stem Cell Biology Research Formation of Renal Cysts and Tumors in Vhl/Trp53-Deficient Mice Requires HIF1a and HIF2a Desir ee Schonenberger€ 1, Sabine Harlander1,2, Michal Rajski1, Robert A. Jacobs1,2,3, Anne-Kristine Lundby1,2, Mojca Adlesic1, Tomas Hejhal1, Peter J. Wild4, Carsten Lundby1,2, and Ian J. Frew1,2 Abstract The von Hippel–Lindau (VHL) tumor suppressor gene is inac- chondrial abundance and oxidative capacity, glycogen accu- tivated in the majority of clear cell renal cell carcinomas (ccRCC), mulation, and acquisition of a clear cell phenotype in Vhl- but genetic ablation of Vhl alone in mouse models is insufficient deficient renal epithelial cells. HIF1a, but not HIF2a, induced to recapitulate human tumorigenesis. One function of pVHL is to Warburg-like metabolism characterized by increased glycoly- regulate the stability of the hypoxia-inducible factors (HIF), sis, decreased oxygen consumption, and decreased ATP pro- which become constitutively activated in the absence of pVHL. duction in mouse embryonic fibroblasts, providing insights In established ccRCC, HIF1a has been implicated as a renal tumor into the cellular changes potentially occurring in Vhl mutant suppressor, whereas HIF2a is considered an oncoprotein. In this renal cells before ccRCC formation. Importantly, deletion of study, we investigated the contributions of HIF1a and HIF2a to either Hif1a or Hif2a completely prevented the formation of ccRCC initiation in the context of Vhl deficiency. We found that renal cysts and tumors in Vhl/Trp53 mutant mice. These find- deleting Vhl plus Hif1a or Hif2a specifically in the renal ings argue that both HIF1a and HIF2a exert protumorigenic epithelium did not induce tumor formation. -
1 the Functional Interplay Between the HIF Pathway and the Ubiquitin System
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 The functional interplay between the HIF pathway and the ubiquitin system – more than a one-way road Günter, Julia ; Ruiz-Serrano, Amalia ; Pickel, Christina ; Wenger, Roland H ; Scholz, Carsten C Abstract: The hypoxia inducible factor (HIF) pathway and the ubiquitin system represent major cellular processes that are involved in the regulation of a plethora of cellular signaling pathways and tissue func- tions. The ubiquitin system controls the ubiquitination of proteins, which is the covalent linkage of one or several ubiquitin molecules to specific targets. This ubiquitination is catalyzed by approximately 1000 different E3 ubiquitin ligases and can lead to different effects, depending on the type of internal ubiquitin chain linkage. The best-studied function is the targeting of proteins for proteasomal degradation. The activity of E3 ligases is antagonized by proteins called deubiquitinases (or deubiquitinating enzymes), which negatively regulate ubiquitin chains. This is performed in most cases by the catalytic removal of these chains from the targeted protein. The HIF pathway is regulated in an oxygen-dependent manner by oxygen-sensing hydroxylases. Covalent modification of HIF subunits leads to the recruitment ofan E3 ligase complex via the von Hippel-Lindau (VHL) protein and the subsequent polyubiquitination and proteasomal degradation of HIF subunits, demonstrating the regulation of the HIF pathway by the ubiq- uitin system. This unidirectional effect of an E3 ligase on the HIF pathway is the beststudied example for the interplay between these two important cellular processes. However, additional regulatory mechanisms of the HIF pathway through the ubiquitin system are emerging and, more recently, also the reciprocal regulation of the ubiquitin system through components of the HIF pathway. -
Role of RUNX1 in Aberrant Retinal Angiogenesis Jonathan D
Page 1 of 25 Diabetes Identification of RUNX1 as a mediator of aberrant retinal angiogenesis Short Title: Role of RUNX1 in aberrant retinal angiogenesis Jonathan D. Lam,†1 Daniel J. Oh,†1 Lindsay L. Wong,1 Dhanesh Amarnani,1 Cindy Park- Windhol,1 Angie V. Sanchez,1 Jonathan Cardona-Velez,1,2 Declan McGuone,3 Anat O. Stemmer- Rachamimov,3 Dean Eliott,4 Diane R. Bielenberg,5 Tave van Zyl,4 Lishuang Shen,1 Xiaowu Gai,6 Patricia A. D’Amore*,1,7 Leo A. Kim*,1,4 Joseph F. Arboleda-Velasquez*1 Author affiliations: 1Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114 2Universidad Pontificia Bolivariana, Medellin, Colombia, #68- a, Cq. 1 #68305, Medellín, Antioquia, Colombia 3C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114 4Retina Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114 5Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115 6Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA 7Department of Pathology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115 Corresponding authors: Joseph F. Arboleda-Velasquez: [email protected] Ph: (617) 912-2517 Leo Kim: [email protected] Ph: (617) 912-2562 Patricia D’Amore: [email protected] Ph: (617) 912-2559 Fax: (617) 912-0128 20 Staniford St. Boston MA, 02114 † These authors contributed equally to this manuscript Word Count: 1905 Tables and Figures: 4 Diabetes Publish Ahead of Print, published online April 11, 2017 Diabetes Page 2 of 25 Abstract Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world’s working adult population, and affects those with type 1 and type 2 diabetes mellitus. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase