Automatic Rigging Tool for Centipedes and Millipedes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Easy Facial Rigging and Animation Approaches
Pedro Tavares Barata Bastos EASY FACIAL RIGGING AND ANIMATION APPROACHES A dissertation in Computer Graphics and Human-Computer Interaction Presented to the Faculty of Engineering of the University of Porto in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Digital Media Supervisor: Prof. Verónica Costa Orvalho April 2015 ii This work is financially supported by Fundação para a Ciência e a Tecnologia (FCT) via grant SFRH/BD/69878/2010, by Fundo Social Europeu (FSE), by Ministério da Educação e Ciência (MEC), by Programa Operacional Potencial Humano (POPH), by the European Union (EU) and partially by the UT Austin | Portugal program. Abstract Digital artists working in character production pipelines need optimized facial animation solutions to more easily create appealing character facial expressions for off-line and real- time applications (e.g. films and videogames). But the complexity of facial animation has grown exponentially since it first emerged during the production of Toy Story (Pixar, 1995), due to the increasing demand of audiences for better quality character facial animation. Over the last 15 to 20 years, companies and artists developed various character facial animation techniques in terms of deformation and control, which represent a fragmented state of the art in character facial rigging. Facial rigging is the act of planning and building the mechanical and control structures to animate a character's face. These structures are the articulations built by riggers and used by animators to bring life to a character. Due to the increasing demand of audiences for better quality facial animation in films and videogames, rigging faces became a complex field of expertise within character production pipelines. -
MYRIAPODS 767 Volume 2 (M-Z), Pp
In: R. Singer, (ed.), 1999. Encyclopedia of Paleontology, MYRIAPODS 767 volume 2 (M-Z), pp. 767-775. Fitzroy Dearborn, London. MYRIAPODS JVlyriapods are many-legged, terrestrial arthropods whose bodies groups, the Trilobita, Chelicerata, Crustacea, and the Uniramia, the are divided into two major parts, a head and a trunk. The head last consisting of the Myriapoda, Hexapoda, and Onychophora (vel- bears a single pair of antennae, highly differentiated mandibles (or vet worms). However, subsequent structural and molecular evidence jaws), and at least one pair of maxillary mouthparts; the trunk indicates that there are several characters uniting major arthropod region consists of similar "metameres," each of which is a func- taxa. Moreover, paleobiologic, embryologie, and other evidence tional segment that bears one or two pairs of appendages. Gas demonstrates that myriapods and hexapods are fiindamentally exchange is accomplished by tracheae•a branching network of polyramous, having two major articulating appendages per embry- specialized tubules•although small forms respire through the ological body segment, like other arthropods. body wall. Malpighian organs are used for excretion, and eyes con- A fourth proposal (Figure ID) suggests that myriapods are sist of clusters of simple, unintegrated, light-sensitive elements an ancient, basal arthropod lineage, and that the Hexapoda that are termed ommatidia. These major features collectively char- emerged as an independent, relatively recent clade from a rather acterize the five major myriapod clades: Diplopoda (millipeds), terminal crustacean lineage, perhaps the Malacostraca, which con- Chilopoda (centipeds), Pauropoda (pauropods), Symphyla (sym- tains lobsters and crabs (Ballard et al. 1992). Because few crusta- phylans), and Arthropleurida (arthropleurids). Other features cean taxa were examined in this analysis, and due to the Cambrian indicate differences among these clades. -
Permian Millipedes from the Fort Sill fissures of Southwestern Oklahoma, with Comments on Allied Taxa and Millipedes Preserved in Karstic Environments
Journal of Paleontology, 95(3), 2021, p. 586–600 Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http:// creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use. 0022-3360/21/1937-2337 doi: 10.1017/jpa.2020.100 Permian millipedes from the Fort Sill fissures of southwestern Oklahoma, with comments on allied taxa and millipedes preserved in karstic environments Joseph T. Hannibal1 and William J. May2 1Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, Ohio 44106, USA <[email protected]> 2Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, Oklahoma 73072, USA <[email protected]> Abstract.—Permian millipedes are rare, especially so considering the relative abundance of millipedes in Carboniferous rocks. We report an early Permian millipede fauna containing three new genera and species of millipedes (Oklahoma- soma richardsspurense new genus new species, Karstiulus fortsillensis new genus new species, and Dolesea subtila new genus new species) found in fossil-producing pockets of the Fort Sill fissures exposed in the Dolese Quarry near Richards Spur, southwest Oklahoma, USA. These are the first new genera of invertebrates to be described from this site, one of the most prolific fossil-vertebrate sites in the world. -
Lighting a 3D Model
International Journal For Technological Research In Engineering Volume 8, Issue 5, January-2021 ISSN (Online): 2347 - 4718 LIGHTING A 3D MODEL 1Jatin Bal, 2Prof. Indu Khatri 1Student, 2Assistant Professor Department of Computer Science Bhagwan Mahaveer College of Engineering and Management, Sonipat, Harayana Abstract: This paper describes detailed lighting procedure 1. Lights of 3D scene using blender software package. The aim is to define and describe all procedure, step by step, that provide Light or visible light is an electromagnetic radiation. When the final result. Two different scenes have been lit in this light falls on an object that object reflects the light and when paper: one with proper instructions and other for showing that light enters our eye, we “humans” are able to see that the extent of technique. Since it is possible to make a objects. The more object reflects the light the more clearly, theoretically unlimited number of light sources in virtual we are able to see the object. That’s why we are able to see 3D studio, the theoretical part of the paper outlines the our hands and we can see through glass as hands reflects basic guidelines for understanding the nature of the light in more amount of light than glass (glass refracts the light). computer-generated environment and for its more quality Computer graphics cannot faithfully simulate the complex and more realistic implementation. nature of light, we are forced to use various additional lights to enrich computer graphics and skillfully, artistically Key words: blender, lights, 3-point lighting, eevee render simulate real-world phenomena. -
2D Animation Software You’Ll Ever Need
The 5 Types of Animation – A Beginner’s Guide What Is This Guide About? The purpose of this guide is to, well, guide you through the intricacies of becoming an animator. This guide is not about leaning how to animate, but only to breakdown the five different types (or genres) of animation available to you, and what you’ll need to start animating. Best software, best schools, and more. Styles covered: 1. Traditional animation 2. 2D Vector based animation 3. 3D computer animation 4. Motion graphics 5. Stop motion I hope that reading this will push you to take the first step in pursuing your dream of making animation. No more excuses. All you need to know is right here. Traditional Animator (2D, Cel, Hand Drawn) Traditional animation, sometimes referred to as cel animation, is one of the older forms of animation, in it the animator draws every frame to create the animation sequence. Just like they used to do in the old days of Disney. If you’ve ever had one of those flip-books when you were a kid, you’ll know what I mean. Sequential drawings screened quickly one after another create the illusion of movement. “There’s always room out there for the hand-drawn image. I personally like the imperfection of hand drawing as opposed to the slick look of computer animation.”Matt Groening About Traditional Animation In traditional animation, animators will draw images on a transparent piece of paper fitted on a peg using a colored pencil, one frame at the time. Animators will usually do test animations with very rough characters to see how many frames they would need to draw for the action to be properly perceived. -
Softimage|Xsi
Installation Guide For Windows® Systems Copyright and Disclaimer © 2009 Autodesk, Inc. All rights reserved. Except as otherwise permitted by Autodesk, Inc., this publication, or parts thereof, may not be reproduced in any form, by any method, for any purpose. Certain materials included in this publication are reprinted with the permission of the copyright holder. The following are registered trademarks or trademarks of Autodesk, Inc., in the USA and other countries: 3DEC (design/logo), 3December, 3December.com, 3ds Max, ADI, Alias, Alias (swirl design/logo), AliasStudio, Alias|Wavefront (design/logo), ATC, AUGI, AutoCAD, AutoCAD Learning Assistance, AutoCAD LT, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface, Autodesk, Autodesk Envision, Autodesk Insight, Autodesk Intent, Autodesk Inventor, Autodesk Map, Autodesk MapGuide, Autodesk Streamline, AutoLISP, AutoSnap, AutoSketch, AutoTrack, Backdraft, Built with ObjectARX (logo), Burn, Buzzsaw, CAiCE, Can You Imagine, Character Studio, Cinestream, Civil 3D, Cleaner, Cleaner Central, ClearScale, Colour Warper, Combustion, Communication Specification, Constructware, Content Explorer, Create>what's>Next> (design/logo), Dancing Baby (image), DesignCenter, Design Doctor, Designer's Toolkit, DesignKids, DesignProf, DesignServer, DesignStudio, Design|Studio (design/logo), Design Web Format, Discreet, DWF, DWG, DWG (logo), DWG Extreme, DWG TrueConvert, DWG TrueView, DXF, Ecotect, Exposure, Extending the Design Team, Face Robot, FBX, Filmbox, Fire, Flame, Flint, FMDesktop, Freewheel, -
HP and Autodesk Create Stunning Digital Media and Entertainment with HP Workstations
HP and Autodesk Create stunning digital media and entertainment with HP Workstations. Does your workstation meet your digital Performance: Advanced compute and visualization power help speed your work, beat deadlines, and meet expectations. At the heart of media challenges? HP Z Workstations are the new Intel® processors with advanced processor performance technologies and NVIDIA Quadro professional It’s no secret that the media and entertainment industry is constantly graphics cards with the NVIDIA CUDA parallel processing architecture; evolving, and the push to deliver better content faster is an everyday delivering real-time previewing and editing of native, high-resolution challenge. To meet those demands, technology matters—a lot. You footage, including multiple layers of 4K video. Intel® Turbo Boost1 need innovative, high-performing, reliable hardware and software tools is designed to enhance the base operating frequency of processor tuned to your applications so your team can create captivating content, cores, providing more processing speed for single and multi-threaded meet tight production schedules, and stay on budget. HP offers an applications. The HP Z Workstation cooling design enhances this expansive portfolio of integrated workstation hardware and software performance. solutions designed to maximize the creative capabilities of Autodesk® software. Together, HP and Autodesk help you create stunning digital Reliability: HP product testing includes application performance, media. graphics and comprehensive ISV certification for maximum productivity. All HP Workstations come with a limited 3-year parts, 3-year labor and The HP Difference 3-year onsite service (3/3/3) standard warranty that is extendable up to 5 years.2 You can be confident in your HP and Autodesk solution. -
The Joggins Fossil Cliffs UNESCO World Heritage Site: a Review of Recent Research
The Joggins Fossil Cliffs UNESCO World Heritage site: a review of recent research Melissa Grey¹,²* and Zoe V. Finkel² 1. Joggins Fossil Institute, 100 Main St. Joggins, Nova Scotia B0L 1A0, Canada 2. Environmental Science Program, Mount Allison University, Sackville, New Brunswick E4L 1G7, Canada *Corresponding author: <[email protected]> Date received: 28 July 2010 ¶ Date accepted 25 May 2011 ABSTRACT The Joggins Fossil Cliffs UNESCO World Heritage Site is a Carboniferous coastal section along the shores of the Cumberland Basin, an extension of Chignecto Bay, itself an arm of the Bay of Fundy, with excellent preservation of biota preserved in their environmental context. The Cliffs provide insight into the Late Carboniferous (Pennsylvanian) world, the most important interval in Earth’s past for the formation of coal. The site has had a long history of scientific research and, while there have been well over 100 publications in over 150 years of research at the Cliffs, discoveries continue and critical questions remain. Recent research (post-1950) falls under one of three categories: general geol- ogy; paleobiology; and paleoenvironmental reconstruction, and provides a context for future work at the site. While recent research has made large strides in our understanding of the Late Carboniferous, many questions remain to be studied and resolved, and interest in addressing these issues is clearly not waning. Within the World Heritage Site, we suggest that the uppermost formations (Springhill Mines and Ragged Reef), paleosols, floral and trace fossil tax- onomy, and microevolutionary patterns are among the most promising areas for future study. RÉSUMÉ Le site du patrimoine mondial de l’UNESCO des falaises fossilifères de Joggins est situé sur une partie du littoral qui date du Carbonifère, sur les rives du bassin de Cumberland, qui est une prolongation de la baie de Chignecto, elle-même un bras de la baie de Fundy. -
[CIM] International Society for Myriapodology
Centre International de Myriapodologie [CIM] International Society for Myriapodology Newsletter n°4 (December 2019) Edited by Stylianos Simaiakis 1 New CIM Council and Board 2019-2021 The new CIM Council 2019-2021 comprises 13 members: Peter Decker (Germany) [President] Nesrine Akkari (Tunisia) [Vice-President] Stylianos Simaiakis (Greece) [General-Secretary] Jean-Jacques Geoffroy (France) [Associate-Secretary] Hans Reip (Germany) [Treasurer] Dragan Antic (Serbia) Lucio Bonato (Italy) Amazonas Chagas-Junior (Brazil) László Dányi (Hungary) Carsten Müller (Germany) Piyatida Pimvichai (Thailand) Petra Sierwald (USA) Varpu Vahtera (Finland) Cover Image: A micro-CT scan of a 100-million-year old millipede preserved in amber (offered by T. Wesener) 2 The 19TH International Congress of Myriapodology, Quindío, COLOMBIA, August 2021 FIRST MESSAGE TO THE MYRIAPODOLOGICAL COMMUNITY Warm greetings to all myriapodologists and onychophorologists of the World! We are pleased to announce that the next Congress of the International Society of Myriapodology will be held in Colombia, August 2021. First, we would like to thank the assistants to the 18th ICM in Budapest, Hungary, for their trust in our proposal for the headquarters of the 19th ICM. We have formed a Committee, that is eagerly working in organizing an event that lives up to your expectations. At the moment, we can communicate to the international myriapodological community that the event is going to take place in a country hotel located in the Colombian department of Quindío (within the coffee-producing region of Colombia), nestled in the Central Andes Mountain Range, with a pleasant mild climate throughout the year. We have selected this region for its breathtaking landscapes, its multiple tourist attractions, and because it was the location of previous international academic events, with excellent results. -
The Joggins Cliffs of Nova Scotia: B2 the Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H
GAC-MAC-CSPG-CSSS Pre-conference Field Trips A1 Contamination in the South Mountain Batholith and Port Mouton Pluton, southern Nova Scotia HALIFAX Building Bridges—across science, through time, around2005 the world D. Barrie Clarke and Saskia Erdmann A2 Salt tectonics and sedimentation in western Cape Breton Island, Nova Scotia Ian Davison and Chris Jauer A3 Glaciation and landscapes of the Halifax region, Nova Scotia Ralph Stea and John Gosse A4 Structural geology and vein arrays of lode gold deposits, Meguma terrane, Nova Scotia Rick Horne A5 Facies heterogeneity in lacustrine basins: the transtensional Moncton Basin (Mississippian) and extensional Fundy Basin (Triassic-Jurassic), New Brunswick and Nova Scotia David Keighley and David E. Brown A6 Geological setting of intrusion-related gold mineralization in southwestern New Brunswick Kathleen Thorne, Malcolm McLeod, Les Fyffe, and David Lentz A7 The Triassic-Jurassic faunal and floral transition in the Fundy Basin, Nova Scotia Paul Olsen, Jessica Whiteside, and Tim Fedak Post-conference Field Trips B1 Accretion of peri-Gondwanan terranes, northern mainland Nova Scotia Field Trip B2 and southern New Brunswick Sandra Barr, Susan Johnson, Brendan Murphy, Georgia Pe-Piper, David Piper, and Chris White The Joggins Cliffs of Nova Scotia: B2 The Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H. Calder, M.R. Gibling, and M.C. Rygel Lyell & Co's "Coal Age Galapagos” B3 Geology and volcanology of the Jurassic North Mountain Basalt, southern Nova Scotia Dan Kontak, Jarda Dostal, -
The First Permian Centipedes from Russia
The first Permian centipedes from Russia ALEXANDER V. KHRAMOV, WILLIAM A. SHEAR, RANDY MERCURIO, and DMITRY KOPYLOV Khramov, A.V., Shear, W.A., Mercurio, R., and Kopylov, D. 2018. The first Permian centipedes from Russia. Acta Palaeontologica Polonica 63 (3): 549–555. While fossils of myriapods are well-known from the Devonian and Carboniferous, until recently sediments from the Permian have been largely devoid of the remains of this important group of terrestrial arthropods. Only one locality reported to yield fossils of a single species of millipede has been cited for the Permian, and that through a reevalu- ation of strata previously thought to be Triassic. We report fossils of two species of scolopendromorph centipedes (Chilopoda), Permocrassacus novokshonovi gen. et sp. nov., from the lower Permian of Tshekarda (the Urals, Russia) and Permocryptops shelleyi gen. et sp. nov., from the upper Permian of Isady (North European Russia). These are the first centipedes to be reported and the second and third myriapods to be formally named from the Permian Period. They are compared to previously described scolopendromorphs from the Carboniferous and Cretaceous. The new species possess enlarged ultimate legs, which probably were used as means of anchoring themselves to the substrate, or to aid in defense and prey capture. Key words: Chilopoda, Scolopendromorpha, Permian, Russia, Tshekarda, Isady. Alexander V. Khramov [[email protected]] and Dmitry Kopylov [[email protected]], Borissiak Paleontological Institute of Russian Academy of Sciences, Profsoyuznaya str. 123, 117997 Moscow, Russia; Cherepovets State University, Lunacharskogo str 5, 162600 Cherepovets, Russia; William A. Shear [[email protected]], Hampden-Sydney College, Hampden-Sydney, VA 23943, USA; Randy Mercurio [[email protected]], Eastern Research Group, Inc., Engineer- ing and Science Division, 601 Keystone Park Drive, Suite 700, Morrisville, NC 27560, USA. -
08-Schneider Et Al. (Arthropleura).P65
Lucas et al., eds., 2010, Carb-Permian transition in Cañon del Cobre. New Mexico Museum of Natural History and Science Bulletin 49. 49 EURAMERICAN LATE PENNSYLVANIAN / EARLY PERMIAN ARTHROPLEURID/TETRAPOD ASSOCIATIONS – IMPLICATIONS FOR THE HABITAT AND PALEOBIOLOGY OF THE LARGEST TERRESTRIAL ARTHROPOD JÖRG W. SCHNEIDER1, SPENCER G. LUCAS2, RALF WERNEBURG3 AND RONNY RÖßLER4 1 TU Bergakademie Freiberg, Institut für Geologie, B.v.Cotta-Strasse 2, D-09596 Freiberg, Germany; 2 New Mexico Museum of Natural History and Science, 1801 Mountain Road N.W., Albuquerque, New Mexico 87104; 3 Naturhistorisches Museum Schloss Bertholdsburg, Burgstrasse 6, D-98553 Schleusingen, Germany; 4 Museum für Naturkunde, Moritzstrasse 20, D-09111 Chemnitz, Germany Abstract—The giant arthropod Arthropleura was a common member of the late Paleozoic continental biota of paleo-equatorial biomes for more than 35 million years, from the Early Carboniferous late Visean (FOD; Middle Mississippian, Asbian/Brigantian) up to the Early Permian lower Rotliegend (LOD = ?LAD; Asselian). In Upper Pennsylvanian red beds in Cañon del Cobre of northern New Mexico, trackways of Arthropleura are present in strata that also yield body fossils of the amphibian Eryops. We review the Arthropleura tracksite from Cañon del Cobre, New Mexico, as well as other tracksites of this animal and arthropleurid/eryopid associations in order to better interpret the paleoenvironmental preference and the paleobiology of Arthropleura. This review supports the conclusion that Arthropleura was well adapted to alluvial environments of ever wet humid to seasonally dry and semihumid climates. Preferred habitats of semi-adult and adult Arthropleura were open, vegetated, river landscapes. They co-occurred in these habitats with semi-aquatic eryopid amphibians and terrestrial pelycosaurs.