Cranefly Recording Scheme Newsletter Spring 2007
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeny and Biogeography of the Enigmatic Ghost Lineage
www.nature.com/scientificreports OPEN Phylogeny and biogeography of the enigmatic ghost lineage Cylindrotomidae (Diptera, Nematocera) Iwona Kania‑Kłosok 1*, André Nel 2, Jacek Szwedo 3, Wiktoria Jordan‑Stasiło1 & Wiesław Krzemiński 4 Ghost lineages have always challenged the understanding of organism evolution. They participate in misinterpretations in phylogenetic, clade dating, biogeographic, and paleoecologic studies. They directly result from fossilization biases and organism biology. The Cylindrotomidae are a perfect example of an unexplained ghost lineage during the Mesozoic, as its sister family Tipulidae is already well diversifed during the Cretaceous, while the oldest Cylindrotomidae are Paleogene representatives of the extant genus Cylindrotoma and of the enigmatic fossil genus Cyttaromyia. Here we clarify the phylogenetic position of Cyttaromyia in the stem group of the whole family, suggesting that the crown group of the Cylindrotomidae began to diversify during the Cenozoic, unlike their sister group Tipulidae. We make a comparative analysis of all species in Cyttaromyia, together with the descriptions of the two new species, C. gelhausi sp. nov. and C. freiwaldi sp. nov., and the revision of C. obdurescens. The cylindrotomid biogeography seems to be incongruent with the phylogenetic analysis, the apparently most derived subfamily Stibadocerinae having apparently a ‘Gondwanan’ distribution, with some genera only known from Australia or Chile, while the most inclusive Cylindrotominae are Holarctic. Cylindrotomidae Schinner, -
Vertical and Horizontal Trophic Networks in the Aroid-Infesting Insect Community of Los Tuxtlas Biosphere Reserve, Mexico
insects Article Vertical and Horizontal Trophic Networks in the Aroid-Infesting Insect Community of Los Tuxtlas Biosphere Reserve, Mexico Guadalupe Amancio 1 , Armando Aguirre-Jaimes 1, Vicente Hernández-Ortiz 1,* , Roger Guevara 2 and Mauricio Quesada 3,4 1 Red de Interacciones Multitróficas, Instituto de Ecología A.C., Xalapa, Veracruz 91073, Mexico 2 Red de Biologia Evolutiva, Instituto de Ecología A.C., Xalapa, Veracruz 91073, Mexico 3 Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190 Michoacán, Mexico 4 Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia 58190 Michoacán, Mexico * Correspondence: [email protected] Received: 20 June 2019; Accepted: 9 August 2019; Published: 15 August 2019 Abstract: Insect-aroid interaction studies have focused largely on pollination systems; however, few report trophic interactions with other herbivores. This study features the endophagous insect community in reproductive aroid structures of a tropical rainforest of Mexico, and the shifting that occurs along an altitudinal gradient and among different hosts. In three sites of the Los Tuxtlas Biosphere Reserve in Mexico, we surveyed eight aroid species over a yearly cycle. The insects found were reared in the laboratory, quantified and identified. Data were analyzed through species interaction networks. We recorded 34 endophagous species from 21 families belonging to four insect orders. The community was highly specialized at both network and species levels. Along the altitudinal gradient, there was a reduction in richness and a high turnover of species, while the assemblage among hosts was also highly specific, with different dominant species. -
Crane Flies (Diptera, Tipuloidea) from Southern Neotropical Salt Marshes: Survey with DNA Barcoding
Iheringia Série Zoologia Museu de Ciências Naturais e-ISSN 1678-4766 www.scielo.br/isz Fundação Zoobotânica do Rio Grande do Sul Crane flies (Diptera, Tipuloidea) from southern Neotropical salt marshes: survey with DNA barcoding Lucas Rodrigues1,2 , Ileana Ortega1 , Rony Vieira1 , Daiane Carrasco3 & Maíra Proietti2 1. Laboratório de Crustáceos Decápodes, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG, Av. Itália, Km 8, 96203-000 Rio Grande, RS, Brazil. ([email protected]) 2. Laboratório de Ecologia Molecular Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG. 3. Laboratório de Genética, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande – FURG. Received 26 November 2018 Accepted 22 February 2019 Published 28 March 2019 DOI 10.1590/1678-4766e2019013 ABSTRACT. Crane flies are the most diverse group within Diptera, but they are rarely studied in coastal ecosystems. Considering the scarcity of information on the biology and ecology of this group in the Neotropics, and the sparse literature available for taxonomic identification, we developed a descriptive checklist that incorporates morphology and DNA barcoding. We also created a generic identification key for crane flies of southern Brazilian salt marshes. We sampled crane flies continuously at three areas along the Patos Lagoon salt marshes over one year. A total of 14 genera/subgenera, 6 species, and 12 morphotypes belonging to Limoniidae and Tipulidae were identified. Distribution ranges ofSymplecta cana (Walker, 1848) and two Ormosia Rondani, 1856 species were expanded. mtDNA COI sequences were compared to the BOLD and NCBI databases, but were matched only at the family level. Therefore, we provided sequences to both platforms, updated to the genus level. -
Fragmenta Faunistica, 2004, 47, 1-Xx
FRAGMENTA FAUNISTICA 60 (2): 107–112, 2017 PL ISSN 0015-9301 © MUSEUM AND INSTITUTE OF ZOOLOGY PAS DOI 10.3161/00159301FF2017.60.2.107 First record of Cylindrotoma distinctissima (Meigen, 1818) from Serbia and new data on the occurrence of Cylindrotomidae (Diptera) in Bulgaria and Romania 1 1,2 1 Levente-Péter KOLCSÁR , Edina TÖRÖK and Lujza KERESZTES 1Hungarian Department of Biology and Ecology, Centre of Systems Biology, Biodiversity and Biorecourses, University of Babe -Bolyai Cluj-Napoca, Clinicilor 5-7, Romania; e-mail: [email protected] (corresponding author) 2Romanian Academy Institute of Biology, Splaiul Independenţei 296, 060031 Bucureşti, Romania; ș e-mail: [email protected] Abstract: Here we present the first records of Cylindrotoma distinctissima distinctissima (Meigen, 1818) from Serbia, which represents a new family (Cylindrotomidae, Diptera) to the dipteran fauna of the country. Additionally, new records on this species are given from Bulgaria and Romania. New records of two other rare species of Cylindrotomidae, i.e. Diogma glabrata (Meigen, 1818) and Triogma trisulcata Schummel, 1829) are listed from Romania. Key words: words: long-bodied craneflies, occurrence, Tipuloidea, Diogma glabrata, Triogma trisulcata INTRODUCTION Cylindrotomidae or long-bodied crane flies are a small diptera family, within Tipuloidea. Currently, 70 recognized species are known worldwide, from which eight species are reported from West Palaearctic (Paramonov 2005, Oosterbroek 2018, Salmela 2013). Most of the European species only occur in the northern part of Europe, nevertheless Cylindrotoma distinctissima distinctissima (Meigen, 1818) is the only species that is also reported from the Balkan region (Oosterboek 2017). Presence of Diogma glabrata (Meigen, 1818) and Triogma trisulcata (Schummel, 1829) is less possible in this area. -
The Diptera of Lancashire and Cheshire: Craneflies and Winter Gnats
The Diptera of Lancashire and Cheshire: Craneflies and Winter Gnats by Phil Brighton 32, Wadeson Way, Croft, Warrington WA3 7JS [email protected] Version 1.1 26 November 2017 1 Summary This document provides a new checklist for the craneflies and winter gnats (Tipuloidea, Ptychopteridae and Trichoceridae) to extend the lists of the diptera of Lancashire and Cheshire first published by Kidd and Bindle in 1959. Overall statistics on recording activity are given by decade and hectad. Checklists are presented for each of the three Watsonian vice-counties 58, 59, and 60 detailing for each species the number of records, year of earliest and most recent record, and the number of hectads with records. A combined checklist showing distribution by the three vice-counties is also included, covering a total of 264 species, amounting to 75% of the current British checklist. Introduction This report is the third in a series to update and extend the partial checklist of the diptera of Lancashire and Cheshire published in 1959 by Leonard Kidd and Alan Brindle1. There were two previous updates, in 19642 and 19713. The previous reports in this series cover the soldierflies and allies4 and the Sepsidae5, the latter family not having been covered in Ref 1. The reader is referred to the first two reports for the background and rationale of these checklists, as well as the history of diptera recording and available data sources. The description of methodology is also kept to a minimum in the present report: only significant differences from the previous publications will be outlined. -
Diptera) Diversity in a Patch of Costa Rican Cloud Forest: Why Inventory Is a Vital Science
Zootaxa 4402 (1): 053–090 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4402.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C2FAF702-664B-4E21-B4AE-404F85210A12 Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science ART BORKENT1, BRIAN V. BROWN2, PETER H. ADLER3, DALTON DE SOUZA AMORIM4, KEVIN BARBER5, DANIEL BICKEL6, STEPHANIE BOUCHER7, SCOTT E. BROOKS8, JOHN BURGER9, Z.L. BURINGTON10, RENATO S. CAPELLARI11, DANIEL N.R. COSTA12, JEFFREY M. CUMMING8, GREG CURLER13, CARL W. DICK14, J.H. EPLER15, ERIC FISHER16, STEPHEN D. GAIMARI17, JON GELHAUS18, DAVID A. GRIMALDI19, JOHN HASH20, MARTIN HAUSER17, HEIKKI HIPPA21, SERGIO IBÁÑEZ- BERNAL22, MATHIAS JASCHHOF23, ELENA P. KAMENEVA24, PETER H. KERR17, VALERY KORNEYEV24, CHESLAVO A. KORYTKOWSKI†, GIAR-ANN KUNG2, GUNNAR MIKALSEN KVIFTE25, OWEN LONSDALE26, STEPHEN A. MARSHALL27, WAYNE N. MATHIS28, VERNER MICHELSEN29, STEFAN NAGLIS30, ALLEN L. NORRBOM31, STEVEN PAIERO27, THOMAS PAPE32, ALESSANDRE PEREIRA- COLAVITE33, MARC POLLET34, SABRINA ROCHEFORT7, ALESSANDRA RUNG17, JUSTIN B. RUNYON35, JADE SAVAGE36, VERA C. SILVA37, BRADLEY J. SINCLAIR38, JEFFREY H. SKEVINGTON8, JOHN O. STIREMAN III10, JOHN SWANN39, PEKKA VILKAMAA40, TERRY WHEELER††, TERRY WHITWORTH41, MARIA WONG2, D. MONTY WOOD8, NORMAN WOODLEY42, TIFFANY YAU27, THOMAS J. ZAVORTINK43 & MANUEL A. ZUMBADO44 †—deceased. Formerly with the Universidad de Panama ††—deceased. Formerly at McGill University, Canada 1. Research Associate, Royal British Columbia Museum and the American Museum of Natural History, 691-8th Ave. SE, Salmon Arm, BC, V1E 2C2, Canada. Email: [email protected] 2. -
Mcabee Fossil Site Assessment
1 McAbee Fossil Site Assessment Final Report July 30, 2007 Revised August 5, 2007 Further revised October 24, 2008 Contract CCLAL08009 by Mark V. H. Wilson, Ph.D. Edmonton, Alberta, Canada Phone 780 435 6501; email [email protected] 2 Table of Contents Executive Summary ..............................................................................................................................................................3 McAbee Fossil Site Assessment ..........................................................................................................................................4 Introduction .......................................................................................................................................................................4 Geological Context ...........................................................................................................................................................8 Claim Use and Impact ....................................................................................................................................................10 Quality, Abundance, and Importance of the Fossils from McAbee ............................................................................11 Sale and Private Use of Fossils from McAbee..............................................................................................................12 Educational Use of Fossils from McAbee.....................................................................................................................13 -
FAMILY CYLINDROTOMIDAE Long-Bodied Craneflies Revised by John Kramer 2016
KEY TO THE FAMILY CYLINDROTOMIDAE Long-bodied Craneflies Revised by John Kramer 2016 Diagnostic features - Tip of vein R1 curves down to meet R2+3 (actually the end of 'R1' is vein r but this interpretation is not obvious). - Moderate size, body length 10-16mm, wing length 10-13mm. - Feeble species with abdomen looking too long for wings (can be the case in other families). - Ovipositor with broad blunt cerci. - Larvae with fleshy prominences, camouflaged in aquatic or terrestrial moss, or a green 'caterpillar' on herbaceous leaves. Key to Genera and Species 1. Top of thorax pale yellowish with 3 black stripes on prescutum. Head and antennae both partly yellow. 2 - Top of prescutum entirely dark (obscuring stripes). Head and antennae entirely black 3 2 First flagellar segment elongate (3-5 times longer than broad). No black spot below eye. Discal cell with 4 veins distally (or 3 with upper one forked). Male tergite 9 with a large apical angular indentation. Female tergite 10 with a long forked process. Cylindrotoma distinctissima - First flagellar segment short (1-2 times longer than broad). Black spot below eye. Discal cell with 3 veins distally. Male tergite 9 with projections at hind corners. Female tergite 10 simple. Diogma glabrata 1 3. Head and thorax smooth. Flagellar segments much longer than broad (antennal segment 4 much longer than 2). Vein R2 present (may look like extension to R1). Male tergite 9 with a broad v- shaped hind margin. Female tergite 10 with a strong median process on hind margin. Phalacrocera replicata - Coarse pits on head and on thorax (on prescutum at sides and along 2 sub-dorsal lines; on upper pleura and postnotum) . -
Frontenac Provincial Park
FRONTENAC PROVINCIAL PARK One Malaise trap was deployed at Frontenac Provincial Park in 2014 (44.51783, -76.53944, 176m ASL; Figure 1). This trap collected arthropods for twenty weeks from May 9 – September 25, 2014. All 10 Malaise trap samples were processed; every other sample was analyzed using the individual specimen protocol while the second half was analyzed via bulk analysis. A total of 3372 BINs were obtained. Half of the BINs captured were flies (Diptera), followed by bees, ants and wasps (Hymenoptera), moths and butterflies (Lepidoptera), and true bugs (Hemiptera; Figure 2). In total, 750 arthropod species were named, representing 24.6% of the BINs from the site (Appendix 1). All but 1 of the BINs were assigned Figure 1. Malaise trap deployed at Frontenac at least to family, and 58.2% were assigned to a genus Provincial Park in 2014. (Appendix 2). Specimens collected from Frontenac represent 232 different families and 838 genera. Diptera Hymenoptera Lepidoptera Hemiptera Coleoptera Trombidiformes Psocodea Trichoptera Araneae Mesostigmata Entomobryomorpha Thysanoptera Neuroptera Orthoptera Sarcoptiformes Blattodea Mecoptera Odonata Symphypleona Ephemeroptera Julida Opiliones Figure 2. Taxonomy breakdown of BINs captured in the Malaise trap at Frontenac. APPENDIX 1. TAXONOMY REPORT Class Order Family Genus Species Arachnida Araneae Clubionidae Clubiona Clubiona obesa Dictynidae Emblyna Emblyna annulipes Emblyna sublata Gnaphosidae Cesonia Cesonia bilineata Linyphiidae Ceraticelus Ceraticelus fissiceps Pityohyphantes Pityohyphantes -
Structure of the Coxa and Homeosis of Legs in Nematocera (Insecta: Diptera)
Acta Zoologica (Stockholm) 85: 131–148 (April 2004) StructureBlackwell Publishing, Ltd. of the coxa and homeosis of legs in Nematocera (Insecta: Diptera) Leonid Frantsevich Abstract Schmalhausen-Institute of Zoology, Frantsevich L. 2004. Structure of the coxa and homeosis of legs in Nematocera Kiev-30, Ukraine 01601 (Insecta: Diptera). — Acta Zoologica (Stockholm) 85: 131–148 Construction of the middle and hind coxae was investigated in 95 species of Keywords: 30 nematoceran families. As a rule, the middle coxa contains a separate coxite, Insect locomotion – Homeotic mutations the mediocoxite, articulated to the sternal process. In most families, this coxite – Diptera – Nematocera is movably articulated to the eucoxite and to the distocoxite area; the coxa is Accepted for publication: radially split twice. Some groups are characterized by a single split. 1 July 2004 The coxa in flies is restricted in its rotation owing to a partial junction either between the meron and the pleurite or between the eucoxite and the meropleurite. Hence the coxa is fastened to the thorax not only by two pivots (to the pleural ridge and the sternal process), but at the junction named above. Rotation is impossible without deformations; the role of hinges between coxites is to absorb deformations. This adaptive principle is confirmed by physical modelling. Middle coxae of limoniid tribes Eriopterini and Molophilini are compact, constructed by the template of hind coxae. On the contrary, hind coxae in all families of Mycetophiloidea and in Psychodidae s.l. are constructed like middle ones, with the separate mediocoxite, centrally suspended at the sternal process. These cases are considered as homeotic mutations, substituting one structure with a no less efficient one. -
Diptera) from Croatia 23 Doi: 10.3897/Zookeys.513.10066 RESEARCH ARTICLE Launched to Accelerate Biodiversity Research
A peer-reviewed open-access journal ZooKeys 513: 23–37 (2015)New records of Limoniidae and Pediciidae (Diptera) from Croatia 23 doi: 10.3897/zookeys.513.10066 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research New records of Limoniidae and Pediciidae (Diptera) from Croatia Levente-Péter Kolcsár1, Marija Ivković2, Ivančica Ternjej2 1 Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj- Napoca, Romania 2 Department of Zoology, Division of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia Corresponding author: Marija Ivković ([email protected]) Academic editor: Jukka Salmela | Received 28 May 2015 | Accepted 3 July 2015 | Published 15 July 2015 http://zoobank.org/2C72A937-34B0-4DD6-830F-A1E3C7011743 Citation: Kolcsár, L-P Ivković M, Ternjej I (2015) New records of Limoniidae and Pediciidae (Diptera) from Croatia. ZooKeys 513: 23–37. doi: 10.3897/zookeys.513.10066 Abstract New records are provided for Limoniidae and Pediciidae from Croatia, with new distribution records for species in 12 different genera. Four genera and 18 species are newly recorded for Croatia. Until now, including this data, 87 Limoniidae and eight Pediciidae have been recorded from Croatia. In this paper we confirm presence of Ormosia (Oreophila) bergrothi (Strobl, 1895) and we give the first records ofDicranota (Paradicranota) pavida (Haliday, 1833) and Molophilus (Molophilus) repentinus Starý, 1971 from Balkan Peninsula. Keywords Lipsothrix, Paradelphomyia, Rhabdomastix and Tricyphona, Plitvice Lakes, Krka River, distribution Introduction Pediciidae or hairy-eyed crane flies comprise slender tipuloid like flies. Species belong- ing to subfamily Pediciinae have carnivorous larvae and are connected with the wet environments (Kolcsár et al. -
Craneflies and Their Ecology John Kramer
???? From the craneflies point of view – Craneflies and their Ecology John Kramer What is a Cranefly ? Superfamily Tipuloidea – Families Super-family Tipuloidea 338 Family Family Family Family Tipulidae Cylindrotomidae Pediciidae Limoniidae 87 4 19 228 Family: Tipulidae Long-palped craneflies ???? Tipula fascipennis Photo: D. Bateson Ctenophora pectinicornis Photo: Alan Outen Photo: Alan Outen Tipula maxima Photo: G. Calow Tipula maxima - wing Photo: C. Spilling Larva of Tipula fulvipennis A ‘leather-jacket’ ? Photo: A. Rowland Tipulidae - Modes of Larval Nutrition Ctenophorines: Xylophage, with the help of symbiotic bacteria Tipulines: Saprophages. ‘Gross-feeders’ on soil, digesting the organic detritus. Seem to be opportunistic, feeding on whatever material is available. Gut bacteria ? Micromycetophage? Family Cylindrotomidae Cylindrotoma distinctissima Photo: D. Bateson Cylindrotoma distinctissima Photo: C. Spilling Larvae of Cylindrotomidae Alan Brindle 1967 Cylindrotomidae Larvae of Triogma trisulcata Photo: J. Webb Family: Pediciidae ‘Hairy-eyed’ Craneflies Pedicia occulta Photo: Khris Peeters Wing of Pedicia occulta Photo. C. Spilling **!! *!* Pediciidae Larva of Pedicia rivosa Photo: J. Webb Pediciidae Ula molissima Mycetophage Family – Limoniidae Sub-families of the Family Limoniidae Limoniidae - Modes of Larval Nutrition Chioneinae - Bulk-feeders on rotting vegetation. Dactylolabinae - Moss and algae Limnophilinae - Bulk-feeders and Predatory Limoniinae - Rotting vegetation, Moss/algae, decaying vegetation, fungi. Limoniinae Metalimnobia quadrimaculata A mycetophage Photo: P.D. Brock Cranefly Habitats Cranefly Habitats Le Ravin de Valbois Cranefly Habitats Le Ravin de Valbois 4 3 1 2 4 5 CRANEFLY HABITATS 1. SOILS a. Pasture - T. paludosa, T. vernalis b. Woodland – T. varipennis c. Wetlands – T. maxima, T. varicornis, Chioneinae, 2. AQUATIC: Larvae of some Tipula, and Pedicia and Dicranota.