Neuroprotective Effects of Creatine and Cyclocreatine in Animal Models of Huntington’S Disease

Total Page:16

File Type:pdf, Size:1020Kb

Neuroprotective Effects of Creatine and Cyclocreatine in Animal Models of Huntington’S Disease The Journal of Neuroscience, January 1, 1998, 18(1):156–163 Neuroprotective Effects of Creatine and Cyclocreatine in Animal Models of Huntington’s Disease Russell T. Matthews,1 Lichuan Yang,1 Bruce G. Jenkins,1 Robert J. Ferrante,2 Bruce R. Rosen,1 Rima Kaddurah-Daouk3 and M. Flint Beal1 1Neurochemistry Laboratory, Neurology Service and Massachusetts General Hospital Nuclear Magnetic Resonance Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, 2Geriatric Research Educational and Clinical Center, Bedford Veterans Administration Medical Center, Department of Neurology and Pathology, Boston University School of Medicine, Boston, Massachusetts 02115, and 3The Avicena Group, Inc., Cambridge, Massachusetts 02139 The gene defect in Huntington’s disease (HD) may result in produced by 3-NP.Creatine supplementation protected against an impairment of energy metabolism. Malonate and 3-NP induced increases in striatal lactate concentrations in vivo 3-nitropropionic acid (3-NP) are inhibitors of succinate dehy- as assessed by 1H magnetic resonance spectroscopy. Creatine drogenase that produce energy depletion and lesions that and cyclocreatine protected against malonate-induced in- closely resemble those of HD. Oral supplementation with cre- creases in the conversion of salicylate to 2,3- and 2,5- atine or cyclocreatine, which are substrates for the enzyme dihydroxybenzoic acid, biochemical markers of hydroxyl radical creatine kinase, may increase phosphocreatine (PCr) or phos- generation. Creatine administration protected against 3-NP- phocyclocreatine (PCCr) levels and ATP generation and thereby induced increases in 3-nitrotyrosine concentrations, a marker may exert neuroprotective effects. We found that oral supple- of peroxynitrite-mediated oxidative injury. Oral supplementa- mentation with either creatine or cyclocreatine produced sig- tion with creatine or cyclocreatine results in neuroprotective nificant protection against malonate lesions, and that creatine effects in vivo, which may represent a novel therapeutic strat- but not cyclocreatine supplementation significantly protected egy for HD and other neurodegenerative diseases. against 3-NP neurotoxicity. Creatine and cyclocreatine in- creased brain concentrations of PCr and PCCr, respectively, Key words: creatine; ATP; oxidative injury; 3-nitrotyrosine; and creatine protected against depletions of PCr and ATP 3-nitropropionic acid; Huntington There is substantial evidence that impairment of energy produc- ing energy requirements, including the brain (Chen et al., 1995). tion may play a role in the pathogenesis of neurodegenerative The enzyme catalyzes the reversible transfer of the phosphoryl diseases (Albin and Greenamyre, 1992; Beal, 1992). Impaired group from phosphocreatine (PCr) to ADP to generate ATP (for energy production may lead to activation of excitatory amino acid review, see Wallimann, 1992). Several cytoplasmic and mitochon- receptors, increases in intracellular calcium, and the generation of drial isoforms have been identified, which along with the sub- free radicals (Beal, 1995). In Huntington’s disease (HD) there is strates creatine and PCr constitute an intricate cellular energy reduced mitochondrial complex II–III activity in postmortem buffering and transport system, connecting sites of energy pro- tissue (Gu et al., 1996; Browne et al., 1997) and increased cerebral duction with sites of energy consumption (Hemmer and Walli- lactate concentrations in vivo (Jenkins et al., 1993). Animal mod- mann, 1993). els of Huntington’s disease involve defects in energy production. The mitochondrial isoform of creatine kinase (Mi-CK) is lo- Malonate and 3-nitropropionic acid are, respectively, reversible cated at contact sites between the inner and outer membranes, and irreversible inhibitors of mitochondrial complex II (succinate where it is associated with porin (Wallimann et al., 1992; Brdiczka dehydrogenase), which produce striatal lesions similar to those of et al., 1994). Mi-CK can convert intramitochondrially produced HD (Beal et al., 1993b; Greene et al., 1993; Brouillet et al., 1995). ATP to PCr directly, which then gets transported to sites of The pathogenesis of lesions produced by these compounds in- energy consumption. The mitochondrial isoform is also coupled volves energy depletion, followed by activation of excitatory to oxidative phosphorylation via the adenine nucleotide translo- amino acid receptors and free radical production (Schulz et al., cator, and a functional coupling between the isoenzyme and 1995a,b). The ensuing cell death involves both apoptosis and porin has been postulated (Hemmer and Wallimann, 1993). A necrosis (Pang and Geddes, 1997; Sato et al., 1997). complex between porin and the adenine nucleotide translocator Creatine kinase (CK) is a key enzyme involved in regulating appears to play a role in the mitochondrial permeability transi- energy metabolism in cells with intermittently high and fluctuat- tion, which is linked to both apoptotic and necrotic cell death Received Aug. 12, 1997; revised Sept. 30, 1997; accepted Oct. 23, 1997. (Beutner et al., 1997). This work was supported by National Institutes of Health Grants NS35255, If energy impairment plays a critical role in the aforementioned NS37102 (R.J.F.), NS32365, NS31579, NS16367, and NS35255 (M.F.B.). The secre- animal models of Huntington’s disease, then compounds that tarial assistance of Sharon Melanson is gratefully acknowledged. increase the cerebral energy reserve might be neuroprotective. Correspondence should be addressed to Dr. M. Flint Beal, Neurology Service, WRN 408, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114. Both creatine and cyclocreatine are substrates for mitochondrial Copyright © 1997 Society for Neuroscience 0270-6474/97/180156-08$05.00/0 creatine kinase and have been shown to modulate rates of ATP Matthews et al. • Neuroprotection of Creatine in Huntington’s Disease Models J. Neurosci., January 1, 1998, 18(1):156–163 157 production (Boehm et al., 1996). Cyclocreatine is the most kinet- lines that project along the superior–inferior axis in the rat brain from ically active analog of creatine in the CK reaction, leading to coronal slices. Because NAA is unaltered during the first few hours after formation of phosphocyclocreatine (PCCr). We therefore exam- 3-NP lesioning, lactate signal intensity of the lines projected through the striatum was measured and normalized to the NAA signal intensity in ined whether oral administration of either creatine or cyclocrea- the unaffected regions of the brain by direct integration of the extracted tine could exert neuroprotective effects against malonate and spectra. The NAA concentration was assumed to be 7 mM. The effects of 3-nitropropionic acid neurotoxicity. We also examined the ability feeding with 1% cyclocreatine on brain PCr and ATP levels were exam- of creatine and cyclocreatine to buffer malonate-induced ATP ined using 31P magnetic resonance spectroscopy at baseline and 1, 1.5, 2, depletions and whether neuroprotective effects correlated with and 6 weeks compared with normal controls (Koroshetz et al., 1997). To investigate the effects of 3-NP on energy metabolites further, we reduced free radical generation. administered 1% creatine in the diet and 1% cyclocreatine compared with a normal diet. In the group fed with creatine we also examined the MATERIALS AND METHODS effect of 3-NP compared with a control diet. Eight to 10 animals were We initially examined whether oral administration of creatine or its examined in each group. Animals were treated with 3-NP at a dose of 10 analog cyclocreatine could attenuate malonate lesions. Male Sprague mg/kg intraperitoneally every 12 hr until they developed symptoms, and Dawley rats (Charles River, Cambridge, MA) weighing 300–325 gm then they were killed 2 hr later by the freeze-clamp technique in pairs were used. Malonate, 3-nitrotyrosine, creatine, and 2,3- and 2,5- (either a control or a creatine-fed animal depending on which initially dihydroxybenzoic acid (DHBA) were obtained from Sigma (St. Louis, became ill). Creatine, lactate, PCr, inosine monophosphate (IMP), MO). Cyclocreatine was supplied by the Avicena Group and was synthe- AMP, nicotinamide adenine dinucleotide (NAD), GDP, ADP, and ATP sized as reported previously (Roberts and Walker, 1982). Creatine was were measured using a modification of published procedures (Bernocchi administered orally to rats in their feed at doses of 0.25–3% in the diet. et al., 1994). Cyclocreatine was administered at 0.25–1.0%. Controls received un- The apparatus consisted of a Perkin-Elmer (Norwalk, CT) gradient supplemented but otherwise identical diets. The compounds were ad- HPLC pump, a Waters Associates (Milford, MA) 409 multiple UV ministered for 2 weeks before intrastriatal administration of malonate wavelength detector, and a Shimadzu 501 integrator. Frozen striatal and then for a further week before sacrifice. Malonate was dissolved in tissue was dissected on a freezing cold plate (220°C) and placed in 0.4 M distilled, deionized water, and the pH was adjusted to 7.4 with 0.1 M HCl. perchloric acid (10 ml/mg wet weight), homogenized, and centrifuged. Intrastriatal injections of 1.5 ml of malonate containing 3 mmol were m m The supernatant was neutralized with 25 lof2M K2CO3 added to 200 made with a 10 l Hamilton syringe fitted with a 26 gauge blunt-tipped ml of the supernatant and recentrifuged. Supernatants were then stored needle, into
Recommended publications
  • In the Field of Clinical Examination, the Measurement of Creatine
    J. Clin. Biochem. Nutr., 3, 17-25, 1987 Bacterial Glucokinase as an Enzymic Reagent of Good Stability for Measurement of Creatine Kinase Activity Hitoshi KONDO, * Takanari SHIRAISHI, Masao KAGEYAMA, Kazuhiko NAGATA, and Kosuke TOMITA Research and Development Center, UNITIKA Ltd., Uji 611, Japan (Received January 10, 1987) Summary An enzymic reagent, that has long-term stability even in the liquid state, was successfully employed for the measurement of serum creatine kinase (CK, EC 2.7.3.2) activity. The enzyme used was the thermostable glucokinase (GlcK, EC 2.7.1.2) obtained from the thermo- phile Bacillus stearothermophilus. The reagent was found to be stable in solution for about one month at 6•Ž and for about one week at 30•Ž. This substitution of glucokinase for the hexokinase of the most commonly used hexokinase-glucose-6-phosphate dehydrogenase (HK-G6PDH) method results in a remarkable improvement of the method. The CK activity measured by the GlcK-G6PDH method was linear up to about 2,000 U/ liter at 37•Ž. The GlcK-G6PDH method was found to give a satisfactory precision and reproducibility (coefficient of variation less than 2.17%). Over a wide range of CK activity, an excellent agreement was obtained between the GlcK-G6PDH and the HK-G6PDH methods. Furthermore several coexistents and anticoagulants were found to have little effect on the measured value of CK activity by the GlcK-G6PDH method. Key Words: creatine kinase activity, glucokinase, improved stability of reagent, creatine kinase determination, thermostable enzyme In the field of clinical examination, the measurement of creatine kinase (CK, ATP : creatine phosphotransferase, EC 2.7.3.2) activity in serum is one of the important examinations usually employed for diagnosis of cardiac diseases such as myocardial infarction or muscular diseases such as progressive muscular dystrophy.
    [Show full text]
  • Creatine Kinase Assay Kit
    Creatine Kinase Assay Kit Catalog Number KA1665 100 assays Version: 03 Intended for research use only www.abnova.com Table of Contents Introduction ................................................................................................... 3 Intended Use ................................................................................................................. 3 Background ................................................................................................................... 3 Principle of the Assay .................................................................................................... 3 General Information ...................................................................................... 4 Materials Supplied ......................................................................................................... 4 Storage Instruction ........................................................................................................ 4 Materials Required but Not Supplied ............................................................................. 4 Precautions for Use ....................................................................................................... 4 Assay Protocol .............................................................................................. 5 Reagent Preparation ..................................................................................................... 5 Sample Preparation ......................................................................................................
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0317005 A1 Hardin Et Al
    US 20100317005A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0317005 A1 Hardin et al. (43) Pub. Date: Dec. 16, 2010 (54) MODIFIED NUCLEOTIDES AND METHODS (22) Filed: Mar. 15, 2010 FOR MAKING AND USE SAME Related U.S. Application Data (63) Continuation of application No. 11/007,794, filed on Dec. 8, 2004, now abandoned, which is a continuation (75) Inventors: Susan H. Hardin, College Station, in-part of application No. 09/901,782, filed on Jul. 9, TX (US); Hongyi Wang, Pearland, 2001. TX (US); Brent A. Mulder, (60) Provisional application No. 60/527,909, filed on Dec. Sugarland, TX (US); Nathan K. 8, 2003, provisional application No. 60/216,594, filed Agnew, Richmond, TX (US); on Jul. 7, 2000. Tommie L. Lincecum, JR., Publication Classification Houston, TX (US) (51) Int. Cl. CI2O I/68 (2006.01) Correspondence Address: (52) U.S. Cl. ............................................................ 435/6 LIFE TECHNOLOGES CORPORATION (57) ABSTRACT CFO INTELLEVATE Labeled nucleotide triphosphates are disclosed having a label P.O. BOX S2OSO bonded to the gamma phosphate of the nucleotide triphos MINNEAPOLIS, MN 55402 (US) phate. Methods for using the gamma phosphate labeled nucleotide are also disclosed where the gamma phosphate labeled nucleotide are used to attach the labeled gamma phos (73) Assignees: LIFE TECHNOLOGIES phate in a catalyzed (enzyme or man-made catalyst) reaction to a target biomolecule or to exchange a phosphate on a target CORPORATION, Carlsbad, CA biomolecule with a labeled gamme phosphate. Preferred tar (US); VISIGEN get biomolecules are DNAs, RNAs, DNA/RNAs, PNA, BIOTECHNOLOGIES, INC. polypeptide (e.g., proteins enzymes, protein, assemblages, etc.), Sugars and polysaccharides or mixed biomolecules hav ing two or more of DNAs, RNAs, DNA/RNAs, polypeptide, (21) Appl.
    [Show full text]
  • Regulation of Adenylate Kinase and Creatine Kinase Activities In
    Proc. Nat. Acad. Sci. USA Vol. 71, No. 6, pp. 2377-2381, June 1974 Regulation of Adenylate Kinase and Creatine Kinase Activities in Myogenic Cells (myogenesis/enzyme regulation) HELGI TARIKAS AND DAVID SCHUBERT Neurobiology Department, The Salk Institute, P. 0. Box 1809, San Diego, Califdr.nia 92112 Communicated by F. Jacob, March 8, 1974 ABSTRACT The regulation of the specific activities of not fuse in either situation. M3A shows a hyperpolarizing adenylate kinase (EC 2.7.4.3) and creatine kinase (EC response to iontophoretically applied acetylcholine compa- 2.7.3.2) in myogenic cell lines is independent of cell fusion. The observed increases in enzyme specific activities are cell rable to that observed in L6 myoblasts (A. J. Harris, personal density dependent, and may be further broken down into communication). The creatine kinase isozymes (8) of L6 and contributions from an increase in enzyme activity per cell M3A are indistinguishable. All cells were cultured in modified and a decrease in protein per cell. Only the former appears Eagle's medium (9) containing 10% fetal-calf serum at 360. to be affected by medium conditioning. Falcon plastic tissue culture or petri dishes were used as There is an increase in the specific activities (enzyme activity indicated. Cell number determinations and assays for creatine per unit of total cellular protein) of adenylate kinase (EC kinase and adenylate kinase were done as described (10). 2.7.4.3; ATP:AMP phosphotransferase) and creatine kinase Cells were dissociated for cell number determinations and (EC 2.7.3.2; ATP: creatine N-phosphotransferase) temporally replating with 0.25% (w/v) Viokase (Gibco).
    [Show full text]
  • AMP-Activated Protein Kinase: Screening for Novel Membrane
    AMP-activated protein kinase : Screening for novel membrane substrates and creatine kinase phosphorylation linked to specific subcellular compartment Sacnicte Ramirez Rios To cite this version: Sacnicte Ramirez Rios. AMP-activated protein kinase : Screening for novel membrane substrates and creatine kinase phosphorylation linked to specific subcellular compartment. Cellular Biology. Université de Grenoble, 2010. English. tel-00641109 HAL Id: tel-00641109 https://tel.archives-ouvertes.fr/tel-00641109 Submitted on 14 Nov 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Biologie Cellulaire Arrêté ministériel : 7 août 2006 Présentée par Sacnicte RAMIREZ RIOS Thèse dirigée par Uwe SCHLATTNER préparée au sein du Laboratoire de Bioénergétique Fondamentale et Appliquée dans l'École Doctorale Chimie et Sciences du Vivant La protéine kinase activée par AMP : Criblage de nouveaux substrats membranaires et phosphorylation de la créatine kinase liée à une compartimentation subcellulaire Thèse soutenue publiquement le « 20 décembre 2010 », devant le jury composé de : Pr. Theo WALLIMANN Professeur à l’ETH Hönggerberg HPM, (Rapporteur) Pr. Bé WIERINGA Professeur, Department of Cell Biology, Nijmegen University (Rapporteur) Dr. Marie-Lise LACOMBE Professeur INSERM UMRS (Examinateur) Pr.
    [Show full text]
  • Education Creatine Kinase (Total) Test
    Education Creatine Kinase (Total) Test What is the total creatine kinase test? This test measures an enzyme in the blood. The enzyme is called creatine kinase (CK). Muscle cells make this enzyme. When muscle cells are injured or diseased, enzymes leak out of the cells and enter the bloodstream. Why is this test done? The CK test can show if muscles have been injured. It also gives an idea of how bad the injury is, when it happened, and whether it is healing. The test may be done to: Find out if you have had a heart attack (myocardial infarction). Diagnose chest pain. Look for other muscle injuries or disease, such as muscular dystrophy or rhabdomyolysis. Check blood flow to the heart after heart surgery or other treatments that affect the heart muscle. If this test shows that some muscle has been injured, other tests may also be done to see which muscles are injured. How do I prepare for this test? If you are being checked for problems with your skeletal muscles, do not exercise for 24 hours before the test. You may need to avoid taking certain medicines before the test because they might affect the test result. Make sure your health care provider knows about any medicines, herbs, or supplements that you are taking. Don't stop any of your regular medicines without first consulting with your health care provider. Talk to your health care provider if you have any other questions. How is the test done? A small amount of blood is taken from your arm with a needle.
    [Show full text]
  • Changes in the Enzymes ALT, CK and AST During the Acute
    Full Article Rev. Bras. Parasitol. Vet., Jaboticabal, v. 21, n. 3, p. 243-248, jul.-set. 2012 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) Rangelia vitalii: changes in the enzymes ALT, CK and AST during the acute phase of experimental infection in dogs Rangelia vitalii: mudanças nas enzimas ALT, CK e AST na fase aguda da infecção experimental em cães Márcio Machado Costa1*; Raqueli Teresinha França1; Aleksandro Schafer Da Silva2; Carlos Breno Paim1, Francine Paim1; Carlos Henrique do Amaral3; Guilherme Lopes Dornelles1; João Paulo Monteiro Carvalho Mori da Cunha1; João Fabio Soares4; Marcelo Bahia Labruna4; Cinthia Melazzo Andrade Mazzanti1; Silvia Gonzalez Monteiro2; Sonia Terezinha dos Anjos Lopes1 1Department of Small Animals, Federal University of Santa Maria – UFSM, Santa Maria, RS, Brazil 2Department of Microbiology and Parasitology, Federal University of Santa Maria – UFSM, Santa Maria, RS, Brazil 3Department of Veterinary Medicine, Federal University of Paraná – UFPR, Curitiba, PR, Brazil 4Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo – USP, Brazil Received October 27, 2011 Accepted June 8, 2012 Abstract Rangelia vitalii is a protozoon that causes diseases in dogs, and anemia is the most common laboratory finding. However, few studies on the biochemical changes in dogs infected with this protozoon exist. Thus, this study aimed to investigate the biochemical changes in dogs experimentally infected with R. vitalii, during the acute phase of the infection. For this study, 12 female dogs (aged 6-12 months and weighing between 4 and 7 kg) were used, divided in two groups. Group A was composed of healthy dogs (n = 5); and group B consisted of infected animals (n = 7).
    [Show full text]
  • Kinase Inhibitors from Marine Sponges
    Mar. Drugs 2011, 9, 2131-2154; doi:10.3390/md9102131 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Kinase Inhibitors from Marine Sponges Danielle Skropeta 1,2,*, Natalie Pastro 1 and Ana Zivanovic 1 1 School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia; E-Mails: [email protected] (N.P.); [email protected] (A.Z.) 2 Centre for Medicinal Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-42214360; Fax: +61-2-42214287. Received: 6 September 2011; in revised form: 1 October 2011 / Accepted: 14 October 2011 / Published: 24 October 2011 Abstract: Protein kinases play a critical role in cell regulation and their deregulation is a contributing factor in an increasing list of diseases including cancer. Marine sponges have yielded over 70 novel compounds to date that exhibit significant inhibitory activity towards a range of protein kinases. These compounds, which belong to diverse structural classes, are reviewed herein, and ordered based upon the kinase that they inhibit. Relevant synthetic studies on the marine natural product kinase inhibitors have also been included. Keywords: marine sponges; marine natural products; protein kinase inhibitors; cell regulation; anticancer agents 1. Introduction The search for pharmaceutically active compounds from natural sources is well established, with approximately 70% of small molecule drugs produced between 1981 and 2006 possessing an important link to a natural product source [1]. The pharmaceutical value of natural products is even more exemplified in the critical area of anticancer drugs, whereupon of the 155 small-molecules produced from the 1940s, 73% are other than “synthetic”, with 47% being natural products or natural product derived [1].
    [Show full text]
  • Clinical Evaluation of Creatine Kinase and Aspartate Aminotransferase for Monitoring Muscle Effort in Working Dogs in Different Simulated Fieldworks
    animals Article Clinical Evaluation of Creatine Kinase and Aspartate Aminotransferase for Monitoring Muscle Effort in Working Dogs in Different Simulated Fieldworks Giuseppe Spinella 1, Simona Valentini 1,*, Vincenzo Musella 2, Enrico Bortolotti 3 and Mirella Lopedote 3 1 Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; [email protected] 2 Department of Health Sciences, University of Catanzaro, 88100 Catanzaro, Italy; [email protected] 3 Clinica Veterinaria San Michele, 38010 Grumo di San Michele all’Adige, Italy; [email protected] (E.B.); [email protected] (M.L.) * Correspondence: [email protected]; Tel.: +39-051-2097530 Simple Summary: Search and rescue dogs are increasingly involved in finding survivors during catastrophic events. The need to investigate the possible physical conditions that can lead to disabling pathologies is urgent. In this clinical study, muscular effort was investigated through the evaluation of two muscle enzymes: creatine kinase and aspartate aminotransferase. The results show that effective conditioning supports submaximal activity (about 20 min), without any specific muscular enzymatic alteration. Abstract: The clinical profiles of muscle biomarkers (Creatine Kinase–CK-and Aspartate Aminotrans- Citation: Spinella, G.; Valentini, S.; ferase–AST) performed during training may help in determining the fitness level of dogs and Musella, V.; Bortolotti, E.; Lopedote, their potentiality to perform specific activities. This study investigated the potential variations of M. Clinical Evaluation of Creatine physiological parameters and muscular biomarkers in trained search and rescue dogs during search Kinase and Aspartate activity in two different areas. The aim was to verify the absence of any muscular enzymes after Aminotransferase for Monitoring 20 min of search activity.
    [Show full text]
  • Understanding the Actions of a Dietary Anti-Oxidant at the Protein and Small
    3/8/2012 Mar 9, 2012 UAB BMG744 Understanding the actions of a dietary anti-oxidant at the protein and small molecule level using top-down proteomics, enzyme assays and mass spectrometry Helen Kim, Ph.D. and John Cutts Dept of Pharmacology & Toxicology University of Alabama at Birmingham [email protected] 205-934-3880 HelenKim/UAB/PharmTox OUTLINE I. Top-down proteomic analysis of actions of a dietary supplement, grape seed extract (GSE), in mammalian brain; II. FT-ICR MS mapping of reactive aldehyde 4HNE adduct sites on recombinant creatine kinase (CK- BB); III. Enzyme assays: HNE stoichiometrically poisons CK- BB; HelenKim/UAB/PharmTox 2 1 3/8/2012 Our principal goal: to understand the molecular basis of human chronic conditions/diseases, to develop prevention or therapies. Strategy: a proteomics approach Hypothesis: Actions of “beneficial” agents such as dietary anti- oxidants in normal and disease tissue will reveal subproteomes of proteins “at risk” for disease-relevant changes. HelenKim/UAB/PharmTox 3 POLYPHENOLS: similar structures among themselves, and with 17b-estradiol OH OH O GRAPE: OH TEA (grapes): resveratrol H catechin OH HO O H HO OH OH OH OH O HO O HO SOY: 17b-estradiol genistein HelenKim/UAB/PharmTox 4 2 3/8/2012 The experiment: give grapeseed powder in rat diet; examine brain proteomes AIN-76A diet; normal adult rats AIN-76A + 5% GSE; normal adult rats (n = 5) (n = 5) whole brain homogenates, triplicate 2D gels HelenKim/UAB/PharmTox 5 Image analysis indicated rat brain proteins were affected by GSE. Creatine kinase GSE Control Different in intensity Different in horizontal position HelenKim/UAB/PharmTox 6 3 3/8/2012 Database of protein differences in GSE vs CT brains Protein Name #matched Accession MOWSE Obs Pred Obs Pred Nature of pep # m.w.
    [Show full text]
  • Viral Myocarditis in Mice Metabolites Regulate Type I Ifns of Acute
    l-Tryptophan−Kynurenine Pathway Metabolites Regulate Type I IFNs of Acute Viral Myocarditis in Mice This information is current as Masato Hoshi, Keishi Matsumoto, Hiroyasu Ito, Hirofumi of September 30, 2021. Ohtaki, Yuko Arioka, Yosuke Osawa, Yasuko Yamamoto, Hidetoshi Matsunami, Akira Hara, Mitsuru Seishima and Kuniaki Saito J Immunol 2012; 188:3980-3987; Prepublished online 14 March 2012; Downloaded from doi: 10.4049/jimmunol.1100997 http://www.jimmunol.org/content/188/8/3980 References This article cites 37 articles, 20 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/188/8/3980.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 30, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology L-Tryptophan–Kynurenine Pathway Metabolites Regulate Type I IFNs of Acute Viral Myocarditis in Mice Masato Hoshi,*,1 Keishi Matsumoto,†,1 Hiroyasu Ito,* Hirofumi Ohtaki,* Yuko Arioka,† Yosuke Osawa,* Yasuko Yamamoto,† Hidetoshi Matsunami,‡ Akira Hara,x Mitsuru Seishima,* and Kuniaki Saito† The activity of IDO that catalyzes the degradation of tryptophan (Trp) into kynurenine (Kyn) increases after diseases caused by different infectious agents.
    [Show full text]