Catabolism in Skeletal Muscle the Phosphagen System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In the Field of Clinical Examination, the Measurement of Creatine
J. Clin. Biochem. Nutr., 3, 17-25, 1987 Bacterial Glucokinase as an Enzymic Reagent of Good Stability for Measurement of Creatine Kinase Activity Hitoshi KONDO, * Takanari SHIRAISHI, Masao KAGEYAMA, Kazuhiko NAGATA, and Kosuke TOMITA Research and Development Center, UNITIKA Ltd., Uji 611, Japan (Received January 10, 1987) Summary An enzymic reagent, that has long-term stability even in the liquid state, was successfully employed for the measurement of serum creatine kinase (CK, EC 2.7.3.2) activity. The enzyme used was the thermostable glucokinase (GlcK, EC 2.7.1.2) obtained from the thermo- phile Bacillus stearothermophilus. The reagent was found to be stable in solution for about one month at 6•Ž and for about one week at 30•Ž. This substitution of glucokinase for the hexokinase of the most commonly used hexokinase-glucose-6-phosphate dehydrogenase (HK-G6PDH) method results in a remarkable improvement of the method. The CK activity measured by the GlcK-G6PDH method was linear up to about 2,000 U/ liter at 37•Ž. The GlcK-G6PDH method was found to give a satisfactory precision and reproducibility (coefficient of variation less than 2.17%). Over a wide range of CK activity, an excellent agreement was obtained between the GlcK-G6PDH and the HK-G6PDH methods. Furthermore several coexistents and anticoagulants were found to have little effect on the measured value of CK activity by the GlcK-G6PDH method. Key Words: creatine kinase activity, glucokinase, improved stability of reagent, creatine kinase determination, thermostable enzyme In the field of clinical examination, the measurement of creatine kinase (CK, ATP : creatine phosphotransferase, EC 2.7.3.2) activity in serum is one of the important examinations usually employed for diagnosis of cardiac diseases such as myocardial infarction or muscular diseases such as progressive muscular dystrophy. -
Creatine Kinase Assay Kit
Creatine Kinase Assay Kit Catalog Number KA1665 100 assays Version: 03 Intended for research use only www.abnova.com Table of Contents Introduction ................................................................................................... 3 Intended Use ................................................................................................................. 3 Background ................................................................................................................... 3 Principle of the Assay .................................................................................................... 3 General Information ...................................................................................... 4 Materials Supplied ......................................................................................................... 4 Storage Instruction ........................................................................................................ 4 Materials Required but Not Supplied ............................................................................. 4 Precautions for Use ....................................................................................................... 4 Assay Protocol .............................................................................................. 5 Reagent Preparation ..................................................................................................... 5 Sample Preparation ...................................................................................................... -
1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN. -
(12) Patent Application Publication (10) Pub. No.: US 2010/0317005 A1 Hardin Et Al
US 20100317005A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0317005 A1 Hardin et al. (43) Pub. Date: Dec. 16, 2010 (54) MODIFIED NUCLEOTIDES AND METHODS (22) Filed: Mar. 15, 2010 FOR MAKING AND USE SAME Related U.S. Application Data (63) Continuation of application No. 11/007,794, filed on Dec. 8, 2004, now abandoned, which is a continuation (75) Inventors: Susan H. Hardin, College Station, in-part of application No. 09/901,782, filed on Jul. 9, TX (US); Hongyi Wang, Pearland, 2001. TX (US); Brent A. Mulder, (60) Provisional application No. 60/527,909, filed on Dec. Sugarland, TX (US); Nathan K. 8, 2003, provisional application No. 60/216,594, filed Agnew, Richmond, TX (US); on Jul. 7, 2000. Tommie L. Lincecum, JR., Publication Classification Houston, TX (US) (51) Int. Cl. CI2O I/68 (2006.01) Correspondence Address: (52) U.S. Cl. ............................................................ 435/6 LIFE TECHNOLOGES CORPORATION (57) ABSTRACT CFO INTELLEVATE Labeled nucleotide triphosphates are disclosed having a label P.O. BOX S2OSO bonded to the gamma phosphate of the nucleotide triphos MINNEAPOLIS, MN 55402 (US) phate. Methods for using the gamma phosphate labeled nucleotide are also disclosed where the gamma phosphate labeled nucleotide are used to attach the labeled gamma phos (73) Assignees: LIFE TECHNOLOGIES phate in a catalyzed (enzyme or man-made catalyst) reaction to a target biomolecule or to exchange a phosphate on a target CORPORATION, Carlsbad, CA biomolecule with a labeled gamme phosphate. Preferred tar (US); VISIGEN get biomolecules are DNAs, RNAs, DNA/RNAs, PNA, BIOTECHNOLOGIES, INC. polypeptide (e.g., proteins enzymes, protein, assemblages, etc.), Sugars and polysaccharides or mixed biomolecules hav ing two or more of DNAs, RNAs, DNA/RNAs, polypeptide, (21) Appl. -
Regulation of Adenylate Kinase and Creatine Kinase Activities In
Proc. Nat. Acad. Sci. USA Vol. 71, No. 6, pp. 2377-2381, June 1974 Regulation of Adenylate Kinase and Creatine Kinase Activities in Myogenic Cells (myogenesis/enzyme regulation) HELGI TARIKAS AND DAVID SCHUBERT Neurobiology Department, The Salk Institute, P. 0. Box 1809, San Diego, Califdr.nia 92112 Communicated by F. Jacob, March 8, 1974 ABSTRACT The regulation of the specific activities of not fuse in either situation. M3A shows a hyperpolarizing adenylate kinase (EC 2.7.4.3) and creatine kinase (EC response to iontophoretically applied acetylcholine compa- 2.7.3.2) in myogenic cell lines is independent of cell fusion. The observed increases in enzyme specific activities are cell rable to that observed in L6 myoblasts (A. J. Harris, personal density dependent, and may be further broken down into communication). The creatine kinase isozymes (8) of L6 and contributions from an increase in enzyme activity per cell M3A are indistinguishable. All cells were cultured in modified and a decrease in protein per cell. Only the former appears Eagle's medium (9) containing 10% fetal-calf serum at 360. to be affected by medium conditioning. Falcon plastic tissue culture or petri dishes were used as There is an increase in the specific activities (enzyme activity indicated. Cell number determinations and assays for creatine per unit of total cellular protein) of adenylate kinase (EC kinase and adenylate kinase were done as described (10). 2.7.4.3; ATP:AMP phosphotransferase) and creatine kinase Cells were dissociated for cell number determinations and (EC 2.7.3.2; ATP: creatine N-phosphotransferase) temporally replating with 0.25% (w/v) Viokase (Gibco). -
AMP-Activated Protein Kinase: Screening for Novel Membrane
AMP-activated protein kinase : Screening for novel membrane substrates and creatine kinase phosphorylation linked to specific subcellular compartment Sacnicte Ramirez Rios To cite this version: Sacnicte Ramirez Rios. AMP-activated protein kinase : Screening for novel membrane substrates and creatine kinase phosphorylation linked to specific subcellular compartment. Cellular Biology. Université de Grenoble, 2010. English. tel-00641109 HAL Id: tel-00641109 https://tel.archives-ouvertes.fr/tel-00641109 Submitted on 14 Nov 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Biologie Cellulaire Arrêté ministériel : 7 août 2006 Présentée par Sacnicte RAMIREZ RIOS Thèse dirigée par Uwe SCHLATTNER préparée au sein du Laboratoire de Bioénergétique Fondamentale et Appliquée dans l'École Doctorale Chimie et Sciences du Vivant La protéine kinase activée par AMP : Criblage de nouveaux substrats membranaires et phosphorylation de la créatine kinase liée à une compartimentation subcellulaire Thèse soutenue publiquement le « 20 décembre 2010 », devant le jury composé de : Pr. Theo WALLIMANN Professeur à l’ETH Hönggerberg HPM, (Rapporteur) Pr. Bé WIERINGA Professeur, Department of Cell Biology, Nijmegen University (Rapporteur) Dr. Marie-Lise LACOMBE Professeur INSERM UMRS (Examinateur) Pr. -
Education Creatine Kinase (Total) Test
Education Creatine Kinase (Total) Test What is the total creatine kinase test? This test measures an enzyme in the blood. The enzyme is called creatine kinase (CK). Muscle cells make this enzyme. When muscle cells are injured or diseased, enzymes leak out of the cells and enter the bloodstream. Why is this test done? The CK test can show if muscles have been injured. It also gives an idea of how bad the injury is, when it happened, and whether it is healing. The test may be done to: Find out if you have had a heart attack (myocardial infarction). Diagnose chest pain. Look for other muscle injuries or disease, such as muscular dystrophy or rhabdomyolysis. Check blood flow to the heart after heart surgery or other treatments that affect the heart muscle. If this test shows that some muscle has been injured, other tests may also be done to see which muscles are injured. How do I prepare for this test? If you are being checked for problems with your skeletal muscles, do not exercise for 24 hours before the test. You may need to avoid taking certain medicines before the test because they might affect the test result. Make sure your health care provider knows about any medicines, herbs, or supplements that you are taking. Don't stop any of your regular medicines without first consulting with your health care provider. Talk to your health care provider if you have any other questions. How is the test done? A small amount of blood is taken from your arm with a needle. -
Phosphocreatine/Adenosine Triphosphatesignature Of
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 1215-1220, February 1996 Physiology 31p magnetic resonance spectroscopy of the Sherpa heart: A phosphocreatine/adenosine triphosphate signature of metabolic defense against hypobaric hypoxia (hypoxia adaptation/heart hypoxia/heart ATP) P. W. HOCHACHKA*, C. M. CLARKt, J. E. HOLDENt, C. STANLEY*, K. UGURBIL§, AND R. S. MENON§1 *Department of Zoology and the Sports Medicine Division, University of British Columbia, Vancouver, BC Canada V6T 1Z4; tDepartment of Psychiatry, University of British Columbia, Vancouver, BC Canada V6T 2B9; tDepartment of Medical Physics, University of Wisconsin, Madison, WI 53706; and §Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 Conmmnicated by George N. Somero, Stanford University, Stanford, CA, October 13, 1995 (received for review December 21, 1994) ABSTRACT Of all humans thus far studied, Sherpas are in the human species and when do the biochemical responses considered by many high-altitude biomedical scientists as of the heart stop being adaptive or protective and start most exquisitely adapted for life under continuous hypobaric becoming pathological? We think that an absence of naturally hypoxia. However, little is known about how the heart is evolved models of defense against hypoxia in the human protected in hypoxia. Hypoxia defense mechanisms in the species (relative to which intervention concepts and strategies Sherpa heart were explored by in vivo, noninvasive 31p mag- could be compared and evaluated) has hindered examination -
Neuroprotective Effects of Creatine and Cyclocreatine in Animal Models of Huntington’S Disease
The Journal of Neuroscience, January 1, 1998, 18(1):156–163 Neuroprotective Effects of Creatine and Cyclocreatine in Animal Models of Huntington’s Disease Russell T. Matthews,1 Lichuan Yang,1 Bruce G. Jenkins,1 Robert J. Ferrante,2 Bruce R. Rosen,1 Rima Kaddurah-Daouk3 and M. Flint Beal1 1Neurochemistry Laboratory, Neurology Service and Massachusetts General Hospital Nuclear Magnetic Resonance Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, 2Geriatric Research Educational and Clinical Center, Bedford Veterans Administration Medical Center, Department of Neurology and Pathology, Boston University School of Medicine, Boston, Massachusetts 02115, and 3The Avicena Group, Inc., Cambridge, Massachusetts 02139 The gene defect in Huntington’s disease (HD) may result in produced by 3-NP.Creatine supplementation protected against an impairment of energy metabolism. Malonate and 3-NP induced increases in striatal lactate concentrations in vivo 3-nitropropionic acid (3-NP) are inhibitors of succinate dehy- as assessed by 1H magnetic resonance spectroscopy. Creatine drogenase that produce energy depletion and lesions that and cyclocreatine protected against malonate-induced in- closely resemble those of HD. Oral supplementation with cre- creases in the conversion of salicylate to 2,3- and 2,5- atine or cyclocreatine, which are substrates for the enzyme dihydroxybenzoic acid, biochemical markers of hydroxyl radical creatine kinase, may increase phosphocreatine (PCr) or phos- generation. -
Changes in the Enzymes ALT, CK and AST During the Acute
Full Article Rev. Bras. Parasitol. Vet., Jaboticabal, v. 21, n. 3, p. 243-248, jul.-set. 2012 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) Rangelia vitalii: changes in the enzymes ALT, CK and AST during the acute phase of experimental infection in dogs Rangelia vitalii: mudanças nas enzimas ALT, CK e AST na fase aguda da infecção experimental em cães Márcio Machado Costa1*; Raqueli Teresinha França1; Aleksandro Schafer Da Silva2; Carlos Breno Paim1, Francine Paim1; Carlos Henrique do Amaral3; Guilherme Lopes Dornelles1; João Paulo Monteiro Carvalho Mori da Cunha1; João Fabio Soares4; Marcelo Bahia Labruna4; Cinthia Melazzo Andrade Mazzanti1; Silvia Gonzalez Monteiro2; Sonia Terezinha dos Anjos Lopes1 1Department of Small Animals, Federal University of Santa Maria – UFSM, Santa Maria, RS, Brazil 2Department of Microbiology and Parasitology, Federal University of Santa Maria – UFSM, Santa Maria, RS, Brazil 3Department of Veterinary Medicine, Federal University of Paraná – UFPR, Curitiba, PR, Brazil 4Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo – USP, Brazil Received October 27, 2011 Accepted June 8, 2012 Abstract Rangelia vitalii is a protozoon that causes diseases in dogs, and anemia is the most common laboratory finding. However, few studies on the biochemical changes in dogs infected with this protozoon exist. Thus, this study aimed to investigate the biochemical changes in dogs experimentally infected with R. vitalii, during the acute phase of the infection. For this study, 12 female dogs (aged 6-12 months and weighing between 4 and 7 kg) were used, divided in two groups. Group A was composed of healthy dogs (n = 5); and group B consisted of infected animals (n = 7). -
Kinase Inhibitors from Marine Sponges
Mar. Drugs 2011, 9, 2131-2154; doi:10.3390/md9102131 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Kinase Inhibitors from Marine Sponges Danielle Skropeta 1,2,*, Natalie Pastro 1 and Ana Zivanovic 1 1 School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia; E-Mails: [email protected] (N.P.); [email protected] (A.Z.) 2 Centre for Medicinal Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-42214360; Fax: +61-2-42214287. Received: 6 September 2011; in revised form: 1 October 2011 / Accepted: 14 October 2011 / Published: 24 October 2011 Abstract: Protein kinases play a critical role in cell regulation and their deregulation is a contributing factor in an increasing list of diseases including cancer. Marine sponges have yielded over 70 novel compounds to date that exhibit significant inhibitory activity towards a range of protein kinases. These compounds, which belong to diverse structural classes, are reviewed herein, and ordered based upon the kinase that they inhibit. Relevant synthetic studies on the marine natural product kinase inhibitors have also been included. Keywords: marine sponges; marine natural products; protein kinase inhibitors; cell regulation; anticancer agents 1. Introduction The search for pharmaceutically active compounds from natural sources is well established, with approximately 70% of small molecule drugs produced between 1981 and 2006 possessing an important link to a natural product source [1]. The pharmaceutical value of natural products is even more exemplified in the critical area of anticancer drugs, whereupon of the 155 small-molecules produced from the 1940s, 73% are other than “synthetic”, with 47% being natural products or natural product derived [1]. -
The Effects of Creatine and Related Compounds on Cardiovascular System
METHODOLOGY REPORT METODOLOŠKI RAD METHODOLOGY REPORT METODOLOŠKI RAD REVIEW PAPER REVIJALNI RAD REVIEW PAPER REVIJALNI RAD REVIEW PAPER THE EFFECTS OF CREATINE AND RELATED COMPOUNDS ON CARDIOVASCULAR SYSTEM: FROM BASIC TO APPLIED STUDIES Nevena Draginic1, Veljko Prokic2, Marijana Andjic1, Aleksandra Vranic1, Suzana Pantovic2 1 University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Kragujevac, Serbia 2 University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Kragujevac, Serbia UTICAJI KREATINA I SRODNIH SUPSTANCI NA KARDIOVASKULARNI SISTEM: OD BAZIČNIH DO PRIMENJENIH STUDIJA Nevena Draginić1, Veljko Prokić2, Marijana Anđić1, Aleksandra Vranić1, Suzana Pantović2 1 Univerzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za farmaciju, Kragujevac, Srbija 2 Univerzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za fiziologiju, Kragujevac, Srbija Received/Primljen: 08.11.2019. Accepted/Prihvaćen: 17.11.2019. ABSTRACT SAŽETAK Beneficial effects of creatine were firstly shown in sport, Pozitivni efekti kreatina pokazani su najpre u sportu, gde je where itself has been recognized as an ergogenic substance, in- prepoznat kao ergogena supstanca, povećavajući otpornost na creasing exercise endurancе, muscle strength and lean body vežbanje, snagu mišića i telesnu masu. Suplementacija kreatinom mass. Creatine supplementation is very interesting, due to the fact pokazala je pozitivne efekte na veliki broj bolesti i stanja kao što that creatine supplementation have been reported to be beneficial su neurodegenerativne, reumatske bolesti, miopatije, karcinom, for wide spectrum of diseases and conditions referring neuro- dijabetes tip 2. Kreatin je glavna komponenta kreatin kinaza fos- degenerative, rheumatic diseases, myopathies, cancer, type 2 di- fagenog sistema. U kardiomiocitima igra važnu ulogu u tran- abetes. Creatine is a principle component of the creatine ki- sportu hemijske energije čime obezbeđuje energetske potrebe nase/phosphagen system.