University of Groningen Copper-Catalyzed Asymmetric

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen Copper-Catalyzed Asymmetric University of Groningen Copper-catalyzed asymmetric allylic alkylation and asymmetric conjugate addition in natural product synthesis Huang, Yange IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2013 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Huang, Y. (2013). Copper-catalyzed asymmetric allylic alkylation and asymmetric conjugate addition in natural product synthesis. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 25-09-2021 Copper-catalyzed Asymmetric Allylic Alkylation and Asymmetric Conjugate Addition in Natural Product Synthesis Yange Huang This Ph.D. thesis was carried out at the Stratingh Institute for Chemistry, University of Groningen, The Netherlands. The authors of this thesis wish to thank the NRSC-Catalysis for scientific research funding. Printed by: Ipskamp Drukkers B.V., Enschede, The Netherlands RIJKSUNIVERSITEIT GRONINGEN Copper-catalyzed Asymmetric Allylic Alkylation and Asymmetric Conjugate Addition in Natural Product Synthesis Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. E. Sterken, in het openbaar te verdedigen op vrijdag 20 september 2013 om 12.45 uur door Yange Huang Geboren op 1 september 1984 te Taicang, China Promotores: Prof. dr. B. L. Feringa Prof. dr. ir. A. J. Minnaard Copromotor: Dr. M. Fañanás-Mastral Beoordelingscommissie: Prof. dr. F. J. Dekker Prof. dr. G. Roelfes Prof. dr. J. G. de Vries ISBN: 978-90-367-6343-1 (book) 978-90-367-6342-4 (electronic) Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning. -Sir Winston Churchill To Yang (my wife) & Xiyuan (my son) Table of Contents 1. Copper-catalyzed Asymmetric Allylic Alkylation and Asymmetric Conjugate Addition in Natural Product Synthesis 1 1.1 Introduction 2 1.2 Copper-catalyzed ACA 2 1.2.1 ACA with organozincs 3 1.2.2 ACA with organoaluminum 9 1.2.3 ACA with Grignard reagents 13 1.2.4 ACA with organosilicon reagent 18 1.3 Copper-catalyzed AAA 18 1.3.1 AAA with organozinc reagents 18 1.3.2 AAA with organoaluminum reagents 19 1.3.3 AAA with Grignard reagents 20 1.3.4 AAA with organoboranes 22 1.3.5 AAA with organolithiums 23 1.4 Conclusion 24 1.5 Outline of this thesis 24 1.6 References 25 2. Formal synthesis of (R)-(+)-Lasiodiplodin 29 2.1 Introduction 30 2.2 Biosynthesis of Lasiodiplodin 30 2.3 Previous catalytic asymmetric syntheses 31 2.4 Formal synthesis of (R)-(+)-Lasiodiplodin 33 2.4.1 First retrosynthetic analysis 33 2.4.2 Results and discussion 34 2.4.3 Second retrosynthetic analysis 34 2.4.4 Results and discussion 35 2.5 Conclusion 36 2.6 Experimental Section 36 2.7 References and notes 40 3. A Concise Asymmetric Synthesis of (-)-Rasfonin 43 3.1 Introduction 44 3.2 Previous total syntheses of Rasfonin 44 3.3 Total synthesis of Rasfonin 46 3.3.1 Retrosynthetic analysis 46 3.3.2 Synthesis of upper half of Rasfonin 47 3.3.3 Synthesis of lower half of Rasfonin 48 3.4 Conclusion 53 3.5 Experimental Section 53 3.6 References 63 4. A Novel Catalytic Asymmetric Route towards Skipped Dienes with a Methyl-Substituted Central Stereogenic Carbon 65 4.1 Introduction 66 4.2 Previous methodologies 66 4.3 Synthesis of starting materials 68 4.4 Results of the Cu-catalyzed AAA and discussion 74 4.5 Conclusion 78 4.6 Experimental Section 78 4.7 References and notes 95 5. Towards a Total Synthesis and Structure Elucidation of Phorbasin B 99 5.1 Introduction 100 5.2 Previous synthesis of Phorbasins 100 5.3 First retrosynthetic analysis of Phorbasin B 101 5.4 Results and discussion 102 5.5 Second retrosynthesis of Phorbasin B 104 5.6 Results and discussion 105 5.7 Conclusion 108 5.8 Experimental Section 109 5.9 References 118 6. Total Synthesis of (S)-(–)-zearalenone 121 6.1 Introduction 122 6.2 Biosynthesis of zearalenone 122 6.3 Previous synthesis of zearalenone 123 6.4 Retrosynthetic analysis 125 6.5 Results and discussion 125 6.6 Biological studies 128 6.7 Conclusion 129 6.8 Experimental Section 129 6.9 References and notes 137 Summary Summary (English) 139 Samenvatting (Nederlands) 143 Acknowledgements 147 Chapter 1 Chapter 1 Copper‐Catalyzed Asymmetric Allylic Alkylation and Asymmetric Conjugate Addition in Natural Product Synthesis This chapter gives an introduction on copper-catalyzed asymmetric allylic alkylation and asymmetric conjugate addition in natural product synthesis. Alternative catalytic asymmetric syntheses of the natural products prepared by Cu-catalyzed asymmetric allylic alkylation and asymmetric conjugate addition will also be presented. 1 Chapter 1 1.1 Introduction Catalytic asymmetric C-C bond forming reactions using organometallic reagents are among the most important organic transformations.1 The asymmetric conjugate addition (ACA, Scheme 1, a) and asymmetric allylic alkylation (AAA, Scheme 1, b) are particular versatile in enantioselective C-C bond forming reactions.2 Especially applying ACA, the intermediate enolate formed could be further functionalized (Scheme 1, c) by reaction with other electrophiles (one-pot transformations) introducing to two vicinal stereocenters. These transformations are frequently applied in the synthesis of complex biologically active molecules.1 The major part of this chapter is concerned with the application in the total synthesis of natural products using copper-complex catalyzed AAA and ACA as the key step. Scheme 1. General scheme of AAA, ACA and enolate functionalization. 1.2 Copper-catalyzed ACA Copper-catalyzed ACA of organometallics (Grignard reagents, organozinc reagents, organoaluminum compounds and organosilicon reagents) to Michael acceptors (cyclic enones, acyclic enones, nitro-olefins, unsaturated lactones, unsaturated lactams, dehydropiperidinones, α,β-unsaturated esters, thioesters, amides and imides) has been a highly active research field in recent decades.3 Since the first discovery of ferrocenyl ligands such as TaniaPhos and JosiPhos as efficient ligands in the copper-catalyzed ACA of Grignard reagents, several other chiral ligands were discovered for the copper-catalyzed ACA including phosphines, phosphoramidites, phosphonites, peptides, NHC ligands, phosphine-phosphites and aminophosphine ligands. 2 Chapter 1 1.2.1 ACA with organozincs The copper-catalyzed ACA of organozinc reagents has been a longstanding objective in the field of ACA. A major breakthrough was achieved by the group of Feringa in 1996 based on the development of a BINOL-derived monodentate phosphoramide L1.4 Employing this ligand in the copper-catalyzed ACA of cyclic enones using dialkylzinc reagents for C-C bond formation was achieved in high yield, chemoselectivity, efficiency and enantioselectivity. An important feature is that phosphoramide ligands are readily accessible and due to their modular structure can be readily tuned for a specific 5 application. This methodology was applied in the synthesis of PGE1 methyl ester 6 (Scheme 2) using copper-catalyzed ACA of dialkylzinc 3 to cyclopentenone 1 followed by trapping with aldehyde 2 as the key step.6 The diastereoselectivity of the aldehyde trapping was only moderate (threo/erythro=83/17), however, reduction using Zn(BH4)2 followed by separation of the diastereomers gave advanced intermediate 5 as a single diastereomer with 94% ee. After another 5 steps PGE1 methyl ester 6 was obtained in high yield. In this way PGE1 methyl ester 6 was obtained in 7% overall yield with 94% optical purity in 7 steps from 1. Scheme 2. Total synthesis of PGE1methyl ester 6. Recently the group of Aggarwal reported a stereocontrolled organocatalytic synthesis of 7 PGF2α 13 in only 7 steps (Scheme 3). Intermolecular aldol reaction catalyzed by 2 mol% of proline 8 gave product 9 which underwent hemiacetal formation to 10 and an intramolecular aldol condensation to form α,β-unsaturated aldehyde 11. After acetal formation product 12 was obtained in 14% overall yield with 98% ee. PGF2α 13 was prepared in 5 steps from aldehyde 12. In this way PGE2α 13 was obtained in 4% overall yield with 98% optical purity in 7 steps from 7. 3 Chapter 1 OH OH OH COOH 8 O O N 2mol% O Intramolecular O H aldol condensation O then O O [Bn2NH2][OCOCF3] O O O 7 9 10 11 HO O O MeOH HO 13 O HO COOH 12, 14% based on 7 98% ee Scheme 3. Total synthesis of PGF2α 13. In 2001 Hoveyda et al. reported a tandem reaction using the copper-catalyzed ACA of organozinc to cyclic enones with peptide-based phosphine ligand L2 which is easily accessible from commercially available components (Scheme 4).8 This methodology was applied to the synthesis of the natural product, Clavularin B (17). The Zn-enolate formed by copper-catalyzed ACA using dimethyl zinc was trapped with 4-iodo-1-butene resulted in cyclic ketone 15 in high yield, ee and chemoselectivity. Silyl enol ether formation followed by palladium-mediated oxidation (Saegusa–Ito oxidation) of 15 gave α,β-unsaturated ketone 16.
Recommended publications
  • Synthesis of the Methyl Ester Of
    Master’s Thesis 2019 60 ECTS Faculty of Chemistry, Biotechnology and Food Science Synthesis of the Methyl Ester of MaR2n-3 DPA Jeanne Sønderskov Rasmussen Master’s degree in Chemistry and Biotechnology II Acknowledgements The master’s degree was performed as collaboration between the Faculty of Chemistry, Biotechnology and Food Science at the Norwegian University of Life Sciences and the Department of Pharmacy, University of Oslo. The practical work as part of this thesis was conducted in the LIPCHEM group at the Section of Pharmaceutical Chemistry. First, I would like to thank my two supervisors, Professor Trond Vidar Hansen and Professor Yngve Stenstrøm for excellent guidance, encouragement and especially, for sharing long-time experience. Also, thanks to Dr. Jørn Tungen and Associate professor Anders Vik for solid guidance and teaching, especially during the time in the laboratory. I would also like to thank the rest of the LIPCHEM group. It has been a great experience to be a part of a research group and witness the impressive work that is carried out. Also, I am very grateful for sharing this challenging period with the four master students in pharmaceutical chemistry, Amalie Føreid Reinertsen, Marie Hermansen Mørk, Aina Kristin Pham and Margrethe Kristiansen. It has been nice to get to know you and follow your progress as well. Finally, an enormous thank to my lovely boyfriend, family and friends. Thanks for fantastic support and cheering through my six years of education. Blindern, May 2019 Jeanne Sønderskov Rasmussen III Abstract This master thesis presents the first synthesis of the methyl ester of the specialized pro-resolving mediator named MaR2n-3 DPA.
    [Show full text]
  • Stereoselective Total Synthesis of Etnangien and Etnangien Methyl Ester
    pubs.acs.org/joc Stereoselective Total Synthesis of Etnangien and Etnangien Methyl Ester Pengfei Li,† Jun Li,‡,§ Fatih Arikan,‡, ) Wiebke Ahlbrecht,† Michael Dieckmann,† and Dirk Menche*,†,‡ †Institut fur€ Organische Chemie, Ruprecht-Karls-Universitat€ Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany, and ‡Helmholtz-Zentrum fur€ Infektionsforschung, Medizinische Chemie, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. §Present address: Institut fur€ Pharmazeutische Wissenschaften, ETH Zurich..€ Present) address: ABX GmbH, Radeberg. [email protected] Received February 5, 2010 A highly stereoselective joint total synthesis of the potent polyketide macrolide antibiotics etnangien and etnangien methyl ester was accomplished by a convergent strategy and proceeds in 23 steps (longest linear sequence). Notable synthetic features include a sequence of highly stereoselective substrate-controlled aldol reactions to set the characteristic assembly of methyl- and hydroxyl- bearing stereogenic centers of the propionate portions, an efficient diastereoselective Heck macro- cyclization of a deliberately conformationally biased precursor, and a late-stage introduction of the labile side chain by means of a high-yielding Stille coupling of protective-group-free precursors. Along the way, an improved, reliable protocol for a Z-selective Stork-Zhao-Wittig olefination of aldehydes was developed, and an effective protocol for a 1,3-syn reduction of sterically particularly hindered β-hydroxy ketones was devised. Within the synthetic campaign, a more detailed under- standing of the intrinsic isomerization pathways of these labile natural products was elaborated. The expedient and flexible strategy of the etnangiens should be amenable to designed analogues of these RNA-polymerase inhibitors, thus enabling further exploration of the promising biological potential of these macrolide antibiotics.
    [Show full text]
  • Convergent Total Synthesis and Preliminary Biological Investigations
    Norrislide: Convergent Total Synthesis and Preliminary Biological Investigations Author: Krista Elizabeth Granger Persistent link: http://hdl.handle.net/2345/731 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2009 Copyright is held by the author, with all rights reserved, unless otherwise noted. Boston College The Graduate School of Arts and Sciences Department of Chemistry NORRISOLIDE: CONVERGENT TOTAL SYNTHESIS AND PRELIMINARY BIOLOGICAL INVESTIGATIONS a dissertation by KRISTA ELIZABETH GRANGER submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2009 © copyright by KRISTA ELIZABETH GRANGER 2009 Norrisolide: Convergent Total Synthesis and Preliminary Biological Investigations Krista Elizabeth Granger Thesis Advisor: Professor Marc L. Snapper Abstract • Chapter 1: A review of Shapiro reactions as a coupling strategy in natural product total synthesis. The syntheses of lycoramine, galanthamine, yuehchukene analogues, ovalicin, studies toward the ingenol core, haemanthidine, pretazettine, tazettine, crinamine, Taxol, colombiasin A, elisapterosin B, the AB ring fragment of spongistatin 1 and 8-epipuupewhedione are discussed. Ar O S O nBuLi Li E+ E NH R' R' N R R R' R • Chapter 2: The convergent total synthesis of the marine natural product norrisolide is described. Both subunits, the hydrindane core and the norrisane side chain, are prepared in an asymmetric fashion through kinetic resolution and enantioselective cyclopropanation, respectively. A Shapiro reaction couples the two fragments and a Peterson olefination installs the 1,1-disubstituted olefin. O O MeO OTBS AcO MeO O O O O N Me Me Me MeO O O Me Li O OP H H Me Me Me Me norrisolide H Me Me • Chapter 3: Preliminary experiments to isolate the biological target of norrisolide through reductive alkylation and tritium labeling are investigated.
    [Show full text]
  • 4.2. FG Strategies. Part II.Pdf
    Master Course 2018-19 in Organic Chemistry methods and design in organic synthesis Pere Romea Rubik’s cube 4.2. Single & Double Bonds Non functional group R R disconnection Carbon-a Carbon-d R R ¿"? Alkyl%d Alkyl%a Li Potential precursors X Alkyl lithium Alkyl halide, X: Cl, Br, I MgBr RSO3 Alkyl magnesium halide Alkyl sulfonates M + Y M: Li, MgX M: halide, sulfonate The reaction is plagued by many side reactions due to high pKa of Alkyl-d (pKa 45–50) OH OMe O N O MeO H N O (–) Hennoxazole A ?antiviral Smith, T. E. JOC 2008, 73, 142 Polyfibrospongia OH OMe O N O MeO H N O ¿ FGA ? OPG OMe TBS O N O MeO H N O OPG OMe TBS O N O Li Br MeO H N O Oxazole alkylation studies O Ph N two potential reacting sites Oxazole alkylation studies Li Li O base O O –78 °C Ph N Ph N Ph N MeI MeI ratio 1:2 O Me Me O BuLi LDA LiNEt2 (14:86) (37:63) (99:1) Ph N Ph N 1 2 This reversal of regioselectivity is thought to arise from the ability of Et2NH to mediate the low-temperature equilibration of a kinetic mixture of otherwise noninterconverting lithiated intermediates However, such a situation was dramatically modified in a model close to the TGT structure TAKE-HOME MESSAGE: the model should be as similar as possible to the real system Oxazole alkylation studies single product Chelation could be the reason O Li O Li O MeO OMe MeO OMe MeO OMe N base N N H N N N –78 °C H H O O O three potential base: BuLi, LDA, LiNEt2 reacting sites These results suggest that deprotonation at the heterocycle is thermodynamically as well as kinetically favored SOLUTION: BLOCKING THAT
    [Show full text]
  • THAT ARE NOT LOUILLOTTIUS009850268B2 (12 ) United States Patent ( 10) Patent No
    THAT ARE NOT LOUILLOTTIUS009850268B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,850 , 268 B2 Hoveyda et al. ( 45 ) Date of Patent: Dec . 26 , 2017 ( 54 ) METATHESIS CATALYSTS AND METHODS 17/ 269 (2013 . 01 ) ; C07C 17 /275 ( 2013. 01 ) ; THEREOF C07C 17 / 278 ( 2013 . 01 ) ; C07C 17361 ( 2013 .01 ) ; C07C 37 /62 ( 2013 .01 ) ; C07C 41/ 30 (71 ) Applicants :Massachusetts Institute of ( 2013 . 01 ) ; C07C 45 /63 ( 2013 . 01 ) ; C07C Technology , Cambridge , MA (US ) ; 67 /307 ( 2013 .01 ) ; C07C 67 /333 (2013 .01 ) ; Trustees of Boston College, Chestnut C07D 209 / 10 ( 2013 . 01 ) ; C07D 209 /48 Hill , MA (US ) ( 2013 .01 ) ; C070 333 /54 ( 2013 . 01) ; COFF 5 / 025 ( 2013 .01 ) ; CO7F 7 / 1844 ( 2013 .01 ) ; (72 ) Inventors : Amir H . Hoveyda , Lincoln , MA (US ) ; CO7F 7 / 1852 ( 2013 .01 ) ; C07 ) 9 /00 ( 2013 .01 ) ; Hanmo Zhang , Chestnut Hill, MA C07 ) 51/ 00 ( 2013 .01 ) ; B01J 2231/ 543 (US ) ; Ming Joo Koh , Chestnut Hill , ( 2013 . 01 ) ; B01 ) 2531 / 64 ( 2013 .01 ) ; B01J MA (US ) ; Richard Royce Schrock , 2531/ 66 ( 2013. 01 ); C07C 2601/ 14 ( 2017 .05 ) ; Winchester , MA (US ) C07C 2603/ 26 ( 2017 .05 ) (58 ) Field of Classification Search (73 ) Assignees : Trustees of Boston College , Chestnut CPC .. C07C 17 / 275 ; C07C 45/ 63 ; C07C 37 /62 ; Hill , MA (US ) ; Massachusetts B01J 2231/ 543 ; B01J 2531 /64 ; B01J Institute of Technology , Cambridge, 2531/ 66 ; B01J 31/ 2265 MA (US ) USPC .. .. 548 /402 ; 514 / 408 , 184 ( * ) Notice: Subject to any disclaimer , the term of this See application file for complete search history . patent is extended or adjusted under 35 U . S . C .
    [Show full text]
  • © Cambridge University Press Cambridge
    Cambridge University Press 0521770971 - Modern Methods of Organic Synthesis W. Carruthers and Iain Coldham Index More information Index acidity 1 from alkynes 125–32 acyl anion equivalents 56 from diols 123 acyloin reaction 425 from hydrazones 120 Adams’ catalyst 407 reaction of AD-mix ␣ 352 with carbenes 303–9 AD-mix ␤ 352 with dienes in Diels–Alder reaction 162 agelastatin A 376 with radicals 280–98 AIBN 268 reduction of 322, 408–13, 459 alane 437, 444 alkenyllithium species 57, 59 alcohols alkylation 1–19 deoxygenation 270 asymmetric 37 from alkenes 323, 349 with enamines 1, 17 from carbonyl compounds 416, 421, 423, 434–56 with enolates 1–16 oxidation 378–93 with metalloenamines 16 aldehydes alkyl halides alkylation of 17 oxidation to carbonyl compounds 384 as dienophiles in Diels–Alder reaction 169 reductive cleavage to hydrocarbons 269, 406, 442 decarbonylation of 419 alkyllithium species 46 from alcohols 380 alkynes from alkenes 325, 360, 364 conversion to alkenes 125–32, 414 oxidation of 392 deprotonation of 58 reduction of 435, 439, 443 hydrometallation 128 reductive dimerization of 148, 425 preparation of 137 Alder–ene reaction 231 reduction of 125 aldol reaction 27–36 allopumiliotoxin 58 diastereoselective 32 allosamidin disaccharides 272 enantioselective 41 allylic organometallics 71–4 aldosterone 276 allylic oxidation 374 alkenes allylic 1,3-strain 26, 73, 351 allylic oxidation of 374 ␲-allylpalladium complexes 98 conversion to alcohols 323 amabiline 220 conversion to ketones (Wacker reaction) 365 ambruticin S 308 epoxidation
    [Show full text]
  • A Acetophenones, 10 Horner–Emmons Olefination, 7 Acrylonitrile
    Index A Alkenylmetals, 38 Acetophenones, 10 Alkenylsilanes, 18 Horner–Emmons olefination, 7 Alkenylstannanes, 18 Acrylonitrile, Z-selective cross metathesis, 46 α-Alkoxycyclopentenone, 25 Acylgermanes, 18 (E)-β-Alkoxy divinyl ketones, 25 Acyl phosphonates, olefination, Co(TPP), 160 α-Alkoxyketones, 12 Acylsilanes, 18 Alkyl aryl ketones, 16 Acylstannanes, 18 Alkylidenephosphoranes, olefination, 208 Africanol, 187 Alkynes, conjugated dienes, 98 Aldehydes, 197 Z-alkenes, 40, 43 Fe(II)(TTP), olefination, 151 hydrofluorination, 60 Mo-based catalytic olefination, 149 hydrofunctionalizations, 134 MTO-catalyzed olefination, 149 hydrometalation, 43 olefination, 6 2-Alkynoate, conjugated dienes, 109 diazocarbonyl reagents, 161 Alkynoates, 108 oxygen-substituted phosphorus Alkynyl ketones, 16 ylides, 156 Allenamides, 126 Ph3As, 157 Allenoates, 108 Rh-catalyzed methylenation, 157 one-pot Wittig reaction, 213 Ru-catalyzed olefination, 157 Allylation, 54 Aldimines, olefination, 28 Allyl ethers, chiral, 258 Alkaloids, 171 N-Allylhydrazones, 107 Alkene cross metathesis, 178 Allylic alcohols, trisubstituted, 207 Alkene metathesis, catalytic Allylic carbonates, one-pot Wittig enantioselective, 187 reaction, 213 catalytic Z-selective, 189 Allylic gem-difluorides, 67 selective, 163 Allylic substitution, 54 selective relay, 174 Allylidenetriethylphosphoranes, 205 Alkenes, 197 Allylsulfides, multisubstituted, synthesis, 239 desulfurization, 16 tetrasubstituted, 1 Amino acid, (Z)-fluoroalkenyl moiety, 83 Z-Alkenes, stereoselective synthesis, 33 α-Aminoketones, 14 Alkenylboronic
    [Show full text]
  • Mathieson, Jennifer E. (2012) a Flexible One-Step Synthesis of Dienamides: Approaches Towards a Total Synthesis of the Crocacins
    Mathieson, Jennifer E. (2012) A flexible one-step synthesis of dienamides: approaches towards a total synthesis of the Crocacins. MSc(R) thesis http://theses.gla.ac.uk/3577/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] A Flexible One-Step Synthesis of Dienamides: Approaches Towards a Total Synthesis of the Crocacins Jennifer E. Mathieson (M. Sci) A thesis submitted in fulfilment of the requirements of the degree of Master of Science School of Chemistry College of Science & Engineering University of Glasgow June 2012 2 Abstract Dienamides are prevalent in many biologically active natural products and pharmaceutical drug leads. A number of different approaches have been reported for the synthesis of dienamides. These methods have varying degrees of success in terms of yield and selectivity. In particular, the control of double bond geometry presents a significant challenge. Presented, is an efficient one step synthesis of dienamide units starting from previously established N-formyl imide building blocks. This approach presents an attractive alternative to other methods available currently in terms of the number of steps, yield and overall simplicity.
    [Show full text]
  • Mr. Debabrata Bhattasali
    SYNTHETIC STUDIES TOWARD NEW α- GLUCOSIDASE INHIBITORS PENAROLIDE SULFATE A1, SCHULZEINES B AND C BY MR. DEBABRATA BHATTASALI DR. MUKUND K. GURJAR (RESEARCH GUIDE) DIVISION OF ORGANIC CHEMISTRY NATIONAL CHEMICAL LABORATORY PUNE-411008, INDIA OCTOBER 2008 Synthetic Studies Toward New α-Glucosidase Inhibitors Penarolide Sulfate A1, Schulzeines B And C A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY) TO KALYANI UNIVERSITY BY Mr. DEBABRATA BHATTASALI Dr. Mukund K. Gurjar (Research Guide) DIVISION OF ORGANIC CHEMISTRY NATIONAL CHEMICAL LABORATORY PUNE-411008, INDIA OCTOBER 2008 DEDICATED TO MY BELOVED PARENTS DECLARATION The research work embodied in this thesis has been carried out at National Chemical Laboratory, Pune under the supervision of Dr. M. K. Gurjar, Division of Organic Chemistry, National Chemical Laboratory, Pune- 411008. This work is original and has not been submitted part or full, for any degree or diploma of this or any other University. Pune-411008 (Debabrata Bhattasali) October 2008 Candidate CERTIFICATE The research work presented in thesis entitled “Synthetic Studies Toward New α- Glucosidase Inhibitors Penarolide Sulfate A1, Schulzeines B And C” has been carried out under my supervision and is a bonafide work of Mr. Debabrata Bhattasali. This work is original and has not been submitted for any other degree or diploma of this or any other University. Pune-411008 (Dr. M. K. Gurjar) October 2008 Research Guide ACKNOWLEDGEMENTS It gives me great pleasure to express my deep sense of esteem and gratitude to my research guide, Dr. Mukund. K. Gurjar, Division of Organic Chemistry, NCL, for his inspiring guidance, never diminishing encouragement, support and his complete dedication during the progress of my work.
    [Show full text]
  • Total Synthesis of Members of the Amphidinolide Family of Natural Products Filippo Romiti
    Romiti, Filippo (2015) Total synthesis of members of the amphidinolide family of natural products. PhD thesis. https://theses.gla.ac.uk/6445/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Total Synthesis of Members of the Amphidinolide Family of Natural Products Filippo Romiti Dottore Magistrale in Farmacia (cum laude) Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Chemistry College of Science and Engineering University of Glasgow May 2015 Abstract The amphidinolides are macrolide natural products isolated from marine dinoflagellates of the genus Amphidinium and most of them display potent cytotoxic activities in vitro. Amphidinolides C-C3, F and T1-5 represent attractive synthetic targets due to a combination of potent bioactivity and complex molecular architecture. This thesis describes the total syntheses of amphidinolides T1, T3 and T4, and the preparation of the C1-C17 fragment of amphidinolides C and F. Concise and high-yielding total syntheses of amphidinolides T1, T3, and T4 have been completed using an alkynyl macrolactone as a common late-stage intermediate.
    [Show full text]
  • A First Total Synthesis of (L)-Erythro-Ceramide C6 from Natural
    A First Total Synthesis of ( L)-erythro -Ceramide C6 from Natural ( L)-Serine Aurora Sganappa Dissertação para obtenção do grau de Mestre em Química Júri Presidente: Prof. Armando José Latourette de Oliveira Pombeiro Orientadores: Profª. Maria Matilde Soares Duarte Marques Prof. Enrico Marcantoni Vogal: Prof. Pedro Paulo de Lacerda e Oliveira Santos Outubro de 2012 SSSCHOOL OF SCIENCE AND TECHNOLOGY CHEMISTRY DIVISION Master Degree in Chemistry and Advanced Chemical Methodologies (Class LMLM----54)54)54)54) A First Total Synthesis of (L)-erythro -Ceramide C6 from Natural ( L)-Serine Experimental Thesis in Organic Chemistry CHIM/06 Candidate Supervisor Sganappa Aurora Prof. Enrico Marcantoni Co-Supervisors Prof. Matilde Marques Dott.ssa Roberta Properzi Academic Year 2011-2012 - 2 - Acknowledgments In these few lines I would like to thank all the people who contributed to this project. The first one is my Supervisor the Professor Enrico Marcantoni who gave me the opportunity to do my thesis in his research group, showing his confidence and availability. I would also to thank my Co-Supervisors Prof. Matilde Marques and Dr. Roberta Properzi for their help and unlimited patience. Another thank you is for the other Doctors and Researchers of the work group: Stefano Lancianesi, Matteo Di Nicola, Alessandro Palmieri and Serena Gabrielli. In the end I would like to thank my family and friends for their immense support. Thank to everyone. - 3 - RESUMO A Química de Síntese é a ciência que permite construir moléculas complexas a partir de outras mais simples. Uma das vertentes provavelmente mais interessantes desta área científica é a síntese total de moléculas de interesse biológico.
    [Show full text]
  • Florida State University Libraries
    Florida State University Libraries 2015 Process Improvement of Rac-Progesterone and Other Synthetic Studies Rimantas Slegeris Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES PROCESS IMPROVEMENT OF RAC-PROGESTERONE AND OTHER SYNTHETIC STUDIES By RIMANTAS SLEGERIS A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2015 Rimantas Slegeris defended this dissertation on April 29, 2015. The members of the supervisory committee were: Gregory B. Dudley Professor Directing Dissertation John Telotte University Representative Tyler McQuade Committee member Sourav Saha Committee member Michael Shatruk Committee member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii ACKNOWLEDGEMENTS Any PhD is a long journey, which would not have been possible without the input from many different people. I would like to thank my high school teacher L. Marinskiene for introducing me to the field, and letting me explore chemistry during long afternoons at school in the chemistry prep room. I would also like to thank my professors at my undergraduate institution: notably, Dr. R. Raudonis and Dr. E. Butkus, who were very supportive during my early explorations of chemistry. Also, professor Dr. D. Tauraite from Vilnius University Institute of Biochemistry, who taught me the basics of organic lab work. The input of these people led to the fact that I started grad school here at FSU.
    [Show full text]