Quick viewing(Text Mode)

MS Work 2011 Daniel Meyer

MS Work 2011 Daniel Meyer

Master´s Thesis, 60 credits Ecosystems, Governance and Globalization Master´s programme 2008/10, 120 credits

Transitions and Resilience in the Frozen Commons

Linking Aquaculture, Fishery, Governance and Ecosystem change in the Scotia Sea, Southern Ocean

Daniel E. Meyer

TRANSITIONS AND RESILIENCE IN THE FROZEN COMMONS:

LINKING AQUACULTURE, KRILL FISHERY, GOVERNANCE AND ECOSYSTEM CHANGE IN THE SCOTIA SEA, SOUTHERN OCEAN

Daniel E. Meyer

Master’s Thesis in Ecosystems, Resilience and Governance (ERG) 120 credits

Supervision: Henrik Österblom

Stockholm Resilience Centre 2011

ABSTRACT The Antarctic krill (Euphausia superba) is a forage fish species that is increasingin importancefor Southern Ocean fisheries and world aquaculture production. However, this speciesalsohasafundamentalroleintheScotiaSeafoodwebandisthemainconservation target for the region’s natural resource managementorganizationtheCommissionforthe ConservationofAntarcticMarine LivingResources (CCAMLR).Theaimofthisthesisis thereforetoexaminetheinterrelationshipbetweenCCAMLR,krillfisheryandtheScotiaSea ecosystemintheSouthernOcean,aswellasbroadersocioeconomicalandecologicalsettings since1970sandmeasuresystemresilience.Thepremisehereisthatthecurrentkrillregimein theScotiaSeamustbeunderstoodasacomplexadaptivesystem(CAS)ofsocial,ecological andeconomicalattributesthatoperatesoverdifferenttemporalandspatialscales.Thus,by applyingtheframeworkofasocialecologicalsystem(SES),togetherwiththeadaptivecycle heuristicmodel,bothquantitativeandqualitativedataisrevisedandintegrated.Twoalternate managementstatesareidentifiedwithinthekrillregime;anearlykrillfisherystate(1972– 1991),andanecosystembasedgovernancestate(19912010).Resilienceishoweverfading intheScotiaSeaduetoacombinationofcrossscale attributes,inarangefromlowkrill density (n/m²), increased competition for marine resources between predators and krill fishery, to elevated demand and global market prices of nonfood commodities by the aquaculture sector in Asia, thus, moving the Scotia Sea towards an unknown fishregime. Althoughsuchfutureregimeisstillretainedbytheregion’sslowchangingphysicalvariables suchasseaiceandseasonality,aswellastheadaptivemanagementcapacityofCCAMLR, the sudden appearance of an undesirable regime in the Scotia Sea would probably have comprehensivesocioecologicalconsequencesifreached.

ACKNOWLEDEMENTS Firstofall,Iwouldtothankmysupervisor,HenrikÖsterblom,fromBalticNestInstituteand Stockholm Resilience Centre who patiently supported me during the examination year. I wanttothankMiriamHuitricandLisaDeutsch,alsofromtheStockholmResilienceCentre for their support. Many thanks to Angus Atkinson from the British Antarctic Survey, and SteveNicolfromAustralianAntarcticDivision,andChiaraPiroddifromtheFisheriesCentre at University ofBritish Columbia, Canada. And finally, I wish to express gratitude to my Academia friends Quentin Dilasser, Rolands Sadauskis, and Ulla Gabrielsson for your comments.

2

TABLE OF CONTENTS

Abbreviation Figure and tables

INTRODUCTION ...... 8

THEORY ...... 10 Resilience ...... 10 Adaptivecycle ...... 11 Socialecologicalsystems ...... 12 Governance ...... 14 Ecosystemdynamics ...... 16 Researchframework ...... 19

CASESTUDYDESCRIPTION ...... 20 TheSouthernOcean ...... 20 TheScotiaSea ...... 20 Antarctickrill ...... 22 Krillpredators ...... 23 Foragefishery ...... 24 ForagefisheryintheSouthernOcean ...... 25 ManagementoftheSouthernOcean ...... 26 CCAMLR ...... 27

METHOD ...... 31 Epistemologicalbackground ...... 31 Methodologicalapproach ...... 32 Indicators ...... 33 Applyingtheadaptivecycle ...... 34 Datasources ...... 35 Criticalreflectionofmethodanddataused ...... 36

RESULTS ...... 38 Users(U) ...... 38 Resourcesystem(RS) ...... 41 Resourceunit(RU) ...... 42 Governancesystem(GS) ...... 43 Relatedecosystems(ECO) ...... 44 Socioeconomicalsettings(S) ...... 46

DISCUSSION ...... 49

CONCLUSION ...... 56

REFERENCES ...... 58 Appendices

3

ABBREVIATION

ACC AntarcticCircumpolarCurrent ACZ AntarcticConvergenceZone APEI AntarcticPeninsulaElephantIsland APDPE AntarcticPeninsulaDrakePassageEast APDPW AntarcticPeninsulaDrakePassageWest APGR AverageAnnualPercentageGrowthRate AT AntarcticTreaty ATCM AntarcticTreatyConsultativeMeeting CAS ComplexAdaptiveSystems CCAMLR Convention/CommissionfortheConservationofAntarcticMarineLiving Resources CEMP CCAMLREcosystemMonitoringProgram CM ConservationsMeasures ECO Ecological/EnvironmentalSetting EA EcosystemApproach ES ExecutiveSecretariat FAO FoodandAgricultureOrganizationoftheUnitedNations FIGIS FisheriesGlobalInformationSystem GS GovernanceSystem I Interactions IFFO InternationalFishmealandFishOilOrganisations IUCN InternationalUnionforConservationofNature IUU Illegal,UnreportedandUnregulated LC LeastConcern MOR MidoceanicRidges NASA NationalAeronauticsandSpaceAdministration O Outcomes PA PrecautionaryApproach RS ResourceSystem RU ResourceUnit S SocioeconomicalSetting SES SocialecologicalSystem SC ScientificCommittee SCAF StandingCommitteeonAdministrationFinance SCOI StandingCommitteeonObservationandInspection SOW SouthOrkneyWest SSMU SmallscaleManagementUnit THC ThermohalineCirculation U Users UNCLAS UnitedNationsConventionontheLawoftheSea WGEMM WorkingGrouponEcosystemMonitoringandManagement WGFSA WorkingGrouponFishStockAssessment

4

FIGURES AND TABLES

Figure 1 . Theadaptivecycleanditsfourphases Figure 2. Aframeworkforanalyzingsocialecologicalsystems

Figure 3. TheSouthernOceanfoodweb

Figure 4. Thetheoreticalresearchframework Figure 5. TheScotiaSeaandtheSouthernOcean Figure 6. Antarctickrilldensity(n/m²)aroundtheSouthernOcean Figure 7. Antarctickrilldensity(n/m²)near(a)theAntarcticPeninsulaandSouth Orkneyand(b)SouthGeorgia Figure 8. Totalglobalcatchesbyforagefisherydestinedfornonfoodandreductionuses, andtotalcatchofthesevenmosttargetspeciescommonlydestinedfornonfood uses(19702009) Figure 9. ComparisonoffisheriesintheSouthernOceansince1950suntilrecenttimes Figure 10. TheCCAMLRConventionArea

Figure 11. ExampleofhowtheadaptivecycleisappliedontheSESoftheScotiaSea

Figure 13. Shareofannualreportedcatch(tons)ofAntarctickrillpercountry(19702010)

Figure 14. TotalnominalcatchofAntarctickrillpersubareaandyearinFAO’sfishing area48

Figure 15. TwodifferentcatchingtechnologiesusedbykrillfisheryintheScotiaSea

Figure 16. Changesinlanternfishdensity(19902000s)

Figure 17. Changeinmeandensity(ind.m²)ofAntarctickrillwithintheScotia Sea

Figure 18. DevelopmentofconservationmeasuresintheScotiaSeaonkrillfishery Figure 19. SeaicecoverextensionchangesintheSouthernOceanandAntarctic

Figure 20. TemporalseaicecoverchangesintheSouthernOceanandAntarctic

Figure 21. Comparisonbetweenworldcapturefisheryandaquacultureproductionwith emphasisonAsiaandChina

Figure 22. Globalfishmealandfishoilmarket

5

Figure 23. Fishmealproductionbycountry(19762008) Figure 24. Fishmealusebycountry(19762008) Figure 25. Fishoilproductionbycountry(19762008) Figure 26. Fishoilusebycountry(19762008) Figure 27. Schematicsummarizeofresults Figure 28. ThewayoftheSESintheadaptivecyclebetween1970–1990andthestrength of connection between analyzed internal and external variables Figure 29. ThewayoftheSESthroughtheadaptivecyclebetween1990–2010andthe strengthofconnectionbetweenanalyzedinternalandexternalvariables

Table 1. Variablesaffectingasystemandtheadaptivecycle Table 2. BiomassestimationonAntarctickrillfromdifferentstudiessince1970 Table 3. MainkrilldependentpredatorsintheScotiaSea Table 4. GovernanceregimesintheSouthernOcean Table 5. Metaphorsofknowledgerecognizedwithinnormalscienceandpostnormal science

Table 6. Categorizationofprimaryandsecondarydatasourcesusedinthiswork

Table 7. DevelopmentoftheScotiaSea’sruleconfiguration

6

If you would understand anything, observe its beginning and its development Aristotle

7

INTRODUCTION Foragefishsuchasanchovies,herrings,menhadenand krill are important prey for marine mammals, seabirds and several other predators. These small fishes have a crucial role throughouttheworld’soceans,astheytransferenergy in marine food webs from lower to higher trophic levels (Alder et al 2008). Without forage fish many of the existing marine ecosystemswouldcollapse.However,harvestingeffortofforagefishin2008accountedfor 31.5milliontons(Mtons),37%ofglobalmarinelandings (ibid.). A majority of this was reduced into nonfood (i.e. fishmeal and fish oil) and used by the worlds fastestgrowing foodproducing sector; aquaculture (Deutsch et al 2007, Naylor et al 2009, FAO 2010). Thus, the major question nowadays, as forage fisheries and marine ecosystems are becomingfullyexploited,isfromwhereaquaculturewillprovidetheirfutureaquafeeds.In recent years there has therefore been a renewed interest in the Antarctic krill ( Euphausia superba ), a shrimplike species and forage fish targeted sinceearly1970’sintheSouthern Ocean.Duringthe2009/10fishingseasontotalcatchesreached>210000tons,upfrom90 000 tons in 1997/98 (CCAMLR 2011, FIGIS/FAO 2011). Due to its highly estimated biomass, protein and amino acids richness, the extraction and commercial interest in this speciesisexpectedtocontinuetoincreaseintheSouthernOcean(Nayloretal2009).

TheConventionontheConservationofAntarcticMarineLivingResources(CCAMLR)isthe internationalagreementresponsibletoconservemarinelifeoftheSouthernOcean.Setinto force in 1982, CCAMLR was to become a pioneer in incorporating the ecosystem and precautionary approaches (EA/PA) into management objectives; wherein scientists and fishing nation delegates, through collection of data, were to set catch limits and monitor fishery,ensuringthatitwouldnotimpactadverselyonspeciesrelatedto,ordependentonthe target specie (Gascon & Werner 2006). In a recent examination of 13 regional fisheries management organizations, MooneySeus & Rosenberg (2007) concluded that CCAMLR todayisthemostadvancednaturalresourcemanagementorganizationintermsofdeveloping andimplementingEA/PAmeasures.Thisismainlyachievedbyusingprecautionaryreference points(targetsandlimits),whichchangesaccordingtoweightingofuncertaintiesindataon whatisknownabouttheecosystem.Despiteoftheseencouragingremarks,krillfisheryhas sinceearly1970sfocusednearlyallitsharvestingeffortsinoneandrelativelysmallareaof theSouthernOcean;namelytheScotiaSea.

8

TheScotiaSeahasduringalongtimesustainedhighdensityconcentrationsofAntarctickrill (Atkinsonetal2009),thereforeconsideredtohaveafundamentalroleintheScotiaSeafood web,mainlybysupportingpopulationsoflargermarine(Dziek&Jazdzewski1978, Reid&Croxall2000,Gascón&Werner2006,Murphyetal2007).Nevertheless,sealsand whales,manyrecoveredfromcenturiesofhuntingandnearextinctionhaverapidlyincreased in abundance here. The International Union for Conservation of Nature and Natural Resources(IUCN) (2011) has recently even classified some, such as the humpback whale(Megaptera novaeangliae ) and the Antarctic fur seal ( Arctocephalus gazella ) in the conservation category of least concern (LC) 1. The escalated coexistence between marine predatorswillhypotheticallyresultintoughrivalryforprey,andestablishcompetitionwith the krill fishery by the passing of time. In addition, the Scotia Sea ecosystem is also embeddedinlargersocioeconomicandenvironmentalsettings.Theappearanceofnewkrill fishing nations, international market fluctuations in the supply and demand of nonfood commodities, increasing aquaculture production, changes in sea ice extension or climate change are some examples of external forces that are connected to the Scotia Sea. This scenario creates vast complexities, challenging the operational capacity of CCAMLR. A transdisciplinaryexaminationonthehistoricalsocioecologicalchangesintheScotiaSeais thereforeneeded,consideringbothitscapacityofregenerationandresilienceforthefuture.

Theaimofthisworkisthereforetwofold;firstlytoprovideimprovedunderstandingonthe interrelationship between CCAMLR, krill fishery, the Scotia Sea ecosystem and its larger socioeconomicalandecologicalsettingsovertime,andsecondlytomeasuretheresilienceof theScotiaSeaasaninteractingselforganizingsystemintheSouthernOcean.Asfarasitis knownnoresearchattemptshavebeenmadetoevaluatesuchapropositionfortheScotiaSea. This will be done by answering the following two research questions: Which were the outcomesfromusing,ornotusing,asetoffishingrulesfortheScotiaSeaecosystemandkrill fishery in a multiple dependent socioeconomic and ecological environment since early 1970’s?AndhowdidtheoutcomesofthisrelationshipaffecttheresilienceoftheScotiaSea? Toanswerthesequestionsacrossscaleframeworkwillbeappliedandusedinthecontextof resilience theory. This will no only support the organization in bringing together what is known,butalsohelpittomeetthenewchallengesduetoecosystemandglobalchange.

1 Not qualified as threatened, near threatened, or conservation dependent 9

THEORY Duringmostofthe20thcenturynaturalresourcemanagement asserted scientific decision making as objective and neutral, emphasizing constant stability, prediction, certainty and control (Holling & Maffe 1996). This surpassingly created a belief that it was possible to managetheenvironmentwithoutaccountingfornaturalvariations,disturbances,crossscale interactionsorthedifferenthumanstakesinvolved(Allison2003).However,duringthelast decadesnotionssuchascomplexity,uncertainty,multiplestable states and feedbacks have emerged, creating discussions about the ‘problem of fit’ between natural resource managementsystemstothedynamicbehaviorofecologicalsystem(Rittel&Webber1973, Ludwig2001,Folkeetal1998,Folke2006,Galazetal2006).Oneofthecornerstonesofthis newthinkingliesinthelensesofresilience,embeddedincomplexsystemstheory,whichtries tounderstandchangesandinteractionsbetweenecosystems,andintegratedsystemsofpeople andthenaturalenvironment(Walker&Salt2006,ResilienceAlliance2010).

Resilience

Rather than being solution orientated, resilience theory provides a metaphorical way of characterizingasystemandinterpretsitsdynamicbehavioroverbothtimeandspace(Allison 2003). Resilience is here defined as the capacity of a system to absorb disturbance and reorganizewhileundergoingchangesoasitstillretainthesamefunction,structure,identity, andfeedbacks(Walkeretal2004).Asystemisasetofvariablesworkingtogetherthrough interactions, processes and the mechanisms that govern those (Walker & Salt 2006). A resilient system evades unwelcome surprises, through its greater capacity of making the systemworkina(desirableorundesirable)condition,orregime,suggestingbothstabilityand theexistenceofmultiplestablestates(ibid.).Thestateofasystemisdefinedbythevaluesof the variables that constitute that system (Resilience Alliance 2010). Underlying, slow changingvariablessuchasclimate,oceancurrents,andhumanculturearelargelyinfluential astheycandrivethesystemgradually(Walker&Salt2006).Nevertheless,themechanisms by which resilience is reinforced or rapidly lost relates to changes in feedback processes. Feedbacks are unbounded processes taking place when the output in a variable, through a loop,influencestheinputofthesamevariable.Thesedelineatethenatureofinteractionsand outcomesamongfastervariables,suchasseasonalvariationsinweather,populationdensities, food availability, number of resource users and even disturbances such as floods, fires or economicalcrises(Bennettetal2005).Anamplifyingprocess(i.e.destabilizing)withinthe

10

system is termed positive feedback loop, while a feedback that dampens the process (i.e., stabilizing) is termed negative feedback loop (ibid.). Influences from a range of different temporalandspatialscalesarehoweverconstantlyaffectingthesefeedbacks,leadingtocross scaleinteractions.Feedbacksthereforechangeinstrength,directionandsizeovertime,thus creatingsystemcomplexity (Walker &Salt2006,Cashetal2006).However,itisthrough thesescales,andtheirinterrelationsandspatialheterogeneitythatthemultistablebehaviorof a system renews and reorganizes (Folke 2006), allowing for the detection of thresholds; a transitionpointtoanewstate,inwhichfeedbackschangestructureandcomposition,rather temporary in form of a phase shifts, or significantly through regime shifts (Nystrom et al 2008).

Adaptive cycle

To measure resilience, the adaptive cycle is commonly used by scholars (Walker & Salt 2006).Theadaptivecycleisaheuristicmodel(seefigure1)generatedfromobservationsof ecosystemdynamics(Folke2006).Itisdividedinto four different phases; exploitation (r), conservation (K), release (Ω) and reorganization (α) (Ibid.). The four phases exhibit two major periods: From r to K, is the slow, incremental period of growth and accumulation (yellowgreeninthefigurebelow).Thebackloop,fromΩtoα(redpurpleinthefigure below), is the rapid period of reorganization, which leads to renewal and reorganization (Resilience Alliance 2010). The change from one periodtoanotherisusuallytriggeredby somekindofdisturbance(Folke2006).

Figure 1.Theadaptivecycleanditsfourphases.Source:Resilience Alliance(2010)

11

Each phase in the adaptive cycle has its own characteristic. Intherphasecomponentsare weeklyconnectedandthereisalotofspaceforactors(e.g.organism,animals,capital,and resourceusersetc)togrowandseizeuponopportunity.IntheKphaseenergyaccumulates andconnectionsincrease,whilethegrowthratedecreases.Thecompetitiveedgeshiftsfrom opportunisticto specializedactors,whoareefficientintheiruseofresources.Inthisphasethe systembecomesmorerigid,andstronglyregulated.TheΩphaseischaracterizedbyadrastic change or a shock (fire, diseases,political or economic crises etc), which creates a chaotic conditionduetoarapiddisconnectionofenergyaccumulated in the r and Kphases. This phaseischaracterizedbyuncertainty.Intheαphaseoptionsbecomeavailableandthesystem startsaprocessofreorganizationwhereinnovationsandexperimentsarecommon(Walker& Salt 2006). At all, the resilience of the system expands and contracts depending on the potential for change and connectiveness among variables (Allison 2003). For a better understandingofhowtomeasureresilienceseetable1below.

Reorganization (α) Conservation (K)

Potential High High Connectiveness Low High Resilience High Low Exploitation (r) Release (Ω)

Potential Low Low Connectiveness Low High Resilience High Low Table 1. Variables affecting a system and the adaptive cycle.Source:Allison(2003)

Social-ecological systems

A socialecological system (SES) is a system of people and nature. It helps researchers to recognize sets of empirical variables within the context of resilience, underlining the impracticality of separating the social and natural world. It considers systems as heterogeneousselforganizingidentities,alsocalledcomplexadaptivesystems(CAS),which constantly create feedbacks, interactions and outcomes, and sometimes even new reconfigurations(Berkes&Folke1998).ASEScanbeusedwhentacklingsocalled”wicked problems”; with no definitive formulation, or no stopping rule, aiding in the process of understanding the nature of problems instead of trying to resolve them (Rittel & Webber 1973).Theyalsogenerateinnovativeresultforresearchandcreateaproactivediscourseof how natural resource management should respond to and manage feedbacks between ecosystemsandsocietyforsustainability(Ostrom2007).

12

InthisworkaSESdevelopedbyOstrom(2007)isapplied.Itisusedtodefinethesystem boundariesandmaketheselforganizationprepositionbetweenCCAMLR,krillfisheryand the Scotia Sea ecosystem operational. The author suggests scholars to analyze four nested coresubsystemsthatcoexistwithinafocalsystem:Theresourcesystem(RS),theresource units(RU)generatedbythatsystem,itsusers(U)operatingwithinasetofrulescraftedby local,distal,ornestedgovernancesystems(GS).Thenextstepisthentoanalyzehowthese jointly create, and indirectly are affected by, interactions (I) and outcomes (O); here also comprehendedasthefeedbacksinthesystem.Theapproachincludestwobroadersystems; social,economicandpoliticalsettings(S)aswellasrelatedecosystems(ECO)allowingfor crossscaleinteractionstobecomepartofthestudy.ForanoverviewoftheSESsuggestedby Ostrom(2007)seefigure2below.

Figure 2. A framework for analyzing socialecological systems. Source:Ostrom(2007)

ThisSESwillbeusefulforthisworkasitprovidesacommonsetofrelevantvariablesand guidesthediagnosisofselforganizationbetweenCCAMLR,krillfisheryandtheScotiaSea ecosystem,aswellashowtheseinteractoverdifferentscales . Itwillalsofacilitatethestudy oftheselectedsystemovertime,throughanexaminationonwhichvariablesdiffertoenable formersystemsurvivechangesanddisturbanceswhileothernot,supportingthediscussion abouthowthelinkagesareaffectingtheresilienceoftheSES.

13

Governance

The ability of managing resilience is frequently related to governance, suggested as the structuresandprocessesbywhichsocietiessharepowerandshapeindividualandcollective actions(Young1992).Thegovernanceapproachhelpsustounderstandchangingprocesses andcollectivedecisionswhenthegovernmentdoesnotplaytheleading,oranyrole(Hague& Harrop2002),asinthecaseoftheSouthernOcean.Aconceptofstudywithinthisschoolis thatofinternationalregimes,whichhasbeendefinedasasetofexplicitorimplicitprinciples, norms, rules and decision making procedures, around which various actors’ expectations converge in a given issuearea to guide behavior of participants at the international level (Krasner 1982). International regimes are created by governments in order to resolve problems of interstate interaction, thus, making cooperation possible (Joyner 1998). CCAMLR is here seen as an international regime, but that is regionally working through institutions.

Institutionsvs.rovingbandits

The Southern Ocean is a common and includes commonpool resources (CPR); valuable stocksmakingithardtoexcludepotentialbeneficiariesfromusingthem(Ostrom1990).Fish harvesting by one user usually reduces the amount of the resource left for other users, a dilemmathataccordingtoHardin(1968)onlyleadtothetragedyofthecommons,orresource collapse. Thus, without some kind of institutions, with a set of rules governing the use, including the character of the common resource, CPR´s are destroyed (Ostrom 1990). Institutionsareheredefinedas aformalorinformal structural feature, with some stability overtime,whichaffectsindividualbehavior,andconsequentlyshapehumaninteractionwith itsenvironment(Peters1999).Thekrillfisheriesareactorswhosebehaviorisembeddedin institutionalframeworks(e.g.theymaychosetofollow,ornotfollow,CCAMLRruleson resourceextractionintheSouthernOcean).Ifnoinstitutionalstructureisavailable(i.e.open access), there can be no rules, and each resource user hold absolutefreedom; wherein no communication,cooperationortrustexistsbetweenactors(Ostrom1990).

Open access inspires the sequential exploitation of resources over spatial scales. It is a mismatch that is usually exemplified in the exploitation of roving bandits and local monitoring organizations. Roving bandits are fishing fleets that move around the globe, targeting valuable marine species deplete local stocks, and then continue to exploit stocks

14

located in other regions (Olson 2000, Ostrom 2007). According to Berkeset al (2006), in today’s globalized and technological world, a new market develops rapidly, stimulating rovingbanditrytomovetowardsinstitutionalunconstrainedorlessexploitedseawaterareas. Thisinturnoverwhelmstheabilityoflocalinstitutionstorespondsuccessfully,resultingin an increasingly serious ecological and management problem (ibid). Thus, social self organization is here implicitly related to adaptability, defined here as the capacity of institutions and actors to reorganize in response to changing socioeconomical and environmentalconditions(Walker&Salt2006).Ifnaturalresourcemanagementeliminates thisfromitspoliciesandpracticestheyalsoleaveouttheircapacitytomonitor,evaluate,and adaptovertime(Ostrom2005).

Governancerulesvs.thesupplyanddemandoftheinternationalmarket

Adaptabilityisinthisworkdeterminedthroughhowfishingrulesareappliedonkrillfishery byCCAMLR,andhowthefishingindustrycontinuouslyreconsiderandadjustthemselvesin accordance to what is known about the socialeconomical environment and the resource system. Rules can have diverse meanings, and are many times found in both formal and informalfeaturesofsociety(Ostrom2005).InthisworkIlookatCCAMLR’sformalrules, whicharegroundedonecosystembasis’sandexecutedonkrillfisheryintheScotiaSea.In otherwords,thepolicystatementthatcarriesoutanadditional,assignedsanctionifforbidden actionsaretakenandobservedbyamonitor(Ostrom2005,2008).Thekrillfisheryisnotonly embeddedintheCCAMLR’sruleframeworkbutalsoin an international market structure. This structure works through the supply and demand of products, goods and capital. One observableattributeisthequantityandpriceofproductsavailable.Hence,inthisworkIuse fourbasicassumptionsfromeconomicstoanalyzetheinternationalflowofkrillcommodities. Firstly,iftheinternationaldemandofkrillincreasesandsupplyremainsunchanged,itleads toahigherproductpriceandlessquantitysold.However,ifdemanddecreasesandsupply remainsunchanged,itleadstolowerproductpriceandmorequantitysold.Ontheotherhand, ifsupplyofkrillincreasesanddemandremainsunchanged,itleadstolowerproductpriceand higherquantitysold.Andfinally,ifsupplydecreasesanddemandremainsunchanged,thenit leadstohigherpriceandlowerquantitysold(Besanko&Braeutigam2005).Thisapproach allows us to analyze the behavior of the sectors involved in catching and manufacturing Antarctickrillaswellasthebehavioroftheconsumeroftheseproducts.

15

Ecosystem dynamics

An ecosystem is here defined by their combined physical and biological processes; asanenvironmentconsisting of all theorganisms, animals and microorganisms (biotic factors)living in a particular area and functioning together, as well as all the nonliving, physical(abioticfactors)componentsoftheenvironmentwithwhichtheorganismsinteract (SOSP2009).Marineecosystemscanbedividedintotwointeractingzones;thepelagicand benthic,wherethefirstistheuppersunlitarea,andthesecondisthebottomarea(Vander Zanden&Vadebonceur2002).Itisoftenassumedthatspeciesandorganismsfoundinan ecosystemdispersetothebestplacesthatsuittheirrequirements,meaningthattheyarein equilibrium with their environment. However, the realized niche of a species, or how an organismorpopulationrespondstothedistributionofresourcesandcompetitors,isinthis workseenasinastateofflux(Sinclairetal2010).Inotherwords,thedistributionofspecies and organisms in an ecosystem depends on changes and interactions of differentabioticandbiotic factors varying over temporal and spatial scales (Trathan & Croxall2004).FoodwebresponsesintheScotiaSeaarethusconsideredhereasanimportant factorwhenlookingatthisdynamism.

Foodwebs

Afoodwebisarepresentationofthefeedingrelationshipbetweenanimalsandorganism,or the “who eats whom” by different species. It establishes the chaotic condition on which ecosystemsfunction(Pimm1982,Mintenbeck2008).Whencertainpartsofthefoodwebsare emphasized, they are usually referred to as the food chain, with different trophic levels; primaryproducers(e.g.phytoplankton)asthefirstlevel,herbivores(e.g.zooplankton)asthe second,carnivores(e.g.smallfishes)asthethird,carnivoresthateatcarnivores(e.g.bigger fishesandpredators)asthenext,andsoon(Mintenbeck2008).Predationfromlargeranimals isaccordinglyseenasatopdownforce,holdingthatorganismsatthetopofthefoodchain arefoodlimited.Hence,withanincrease,ordecrease,inpredatorsthatfeedsonanimalsand organism at lower level, the relative abundances of the remaining trophic levels change, whichcanleadtotrophiccascades.Trophiccascadesoccurwhenpredatorschangebehavior, orareremoved,influencingtheabundanceoforganisms’morethantwotrophiclevelsdown (Carpenteretal1992).Ontheotherhand,influencesfromlowertrophiclevelsaredescribed asabottomupforce,meaningthatenergyandnutrientpathwayscomefrombelow.Inother words,withoutprimary producerstherecannotbeany communities higher up (Smee et al

16

2010). However, the influence of both topdown control and bottomup forcing should be includedwhenexplaininghistoricaldynamicsoftheecosystems.Forexample,Osterblomand colleagues(2007)showthatintheBalticSeatwomajorecologicaltransitionshaveoccurred between1900and1980;whereashiftfromsealtocoddominationwascausedbyavirtual eliminationofmarinemammalsfollowedbyashiftfromanoligotrophictoaeutrophicstate. ForaclassicalandtheoreticalrepresentationoftheSouthernOceanfoodwebanditsfeeding relationship,includingthepelagicandbenthiczones,assuggestedbyLaws(1985)seefigure 3below:

Figure 3. TheSouthernOceanfoodweb.Source:AdaptedfromLaws(1985)

17

Changingpredatorpreyrelationships

Changingpredatorpreyrelationshipisheredeterminedbylookingatfoodavailabilityinthe ScotiaSeafoodweb,andonmarinepredator,Antarctickrillandmyctophidfishdensities,as well as migration areas. Much of the research conducted on Southern Ocean ecosystems means that the Antarctic krill is a key component in its foodweb (Dziek and Jazdzewski 1978,Reid&Croxall2001,Gascón&Werner2006,Murphyetal2007).Lowerdensitiesof Antarctic krill in the Scotia Sea must therefore impact on communities higher up in the trophiclevel.Although,itcouldalsomeanthatthekrillbasedfoodwebcouldshiftamong trophic“paths”whenkrillareabundantorwhenkrillarescarce,makingpredatorslookfor otherprey(Murphyetal2007).Thisassertionliesinparalleltothe“junkfoodhypothesis”, suggestedasapotentialexplanationfor adramatic population decline of stellers sea lions (Eumetopias jubatus )intheGulfofAlaska,meaningthatitsnotonlythequantityoffood,but also about the quality of food that affects foodweb structure (Rosen and Trites 2000, Osterblometal2008).OnepossiblepreyalternativeforpredatorsintheScotiaSeaistobe foundinoneofthemostimportantgroupoffishesintheScotiaSea,themesopelagicfish (myctophids),identifiedin12generaand33species(Kock1992).Casestudiesonmarine mammals'dietsintheScotiaSeaindicatethatamajorfoodcomplimentforAntarcticfurseals whenkrillisscarceisjustthemesopelagicfish(myctophids)(Collinsetal2008).TheScotia Sea foodweb is however not only embedded in vertical trophic interactions, but also dependentoninteractionsacrosshorizontalscales.Inordertoincludeexternalinfluencesinto the analyze of changing predatorprey relationship, another important factor is taken into consideration; migration, or, a seasonal relocation of animals that involves movement of muchlongerdurationthanthosearisinginitsnormaldailyactivities(Dingle&Drake2007). Mostfishes,animals andpredatorsintheScotiaSea shift living location during the year. Migrationcanbehorizontalorvertical,andistriggeredbytheclimate,theseasonoftheyear, lightandfoodavailabilityorduematingreasons(ibid.).

18

Research framework

Afterpresentingthetheoreticalfoundationsofthiswork,anoverallresearchframeworkcan nowbeconstructedandissummarizednextinfigure4.

Figure 4.Thetheoreticalresearchframework.ItfollowsacasualorderandshowshowIwill achievetheaimandrespondmyresearchquestions

19

CASE STUDY DESCRIPTION

The Southern Ocean

TheSouthernOceanisregardedasthefourthlargestofthefiveprincipaloceanicdivisions andcomprisesabout10%oftheworld’soceans(Boyd2002).WhiletheAntarcticcontinent setageologicalboundaryinthesouth,theAntarcticConvergenceZone(ACZ)aseawater area where colder waters meet warmer southwardflowing waters creates a northern oceanographicandbiologicalboundary(Fallon&Stratford2003).Inthedepth,asystemof deepbasinsseparatethreelargemidoceanicridges(MOR’s):theMacquarieRidgesouthof NewZealandandTasmania;theKerguelen–GaussbergRidge,betweenIndiaandAntarctica; andtheScotiaRidge,extendingeastfromthesouthernPatagonia(Kock2000).Theabsence of land barriers in the latitude band allows the eastward flowing Antarctic Circumpolar Current (ACC) to drift uninterrupted around the Antarctic. The ACC is driven by strong westerlywinds,andwasformedaround23–30millionyearsagoduringtheearly epoch 2 (Hassol et al 2009), connecting the Southern Ocean to major oceans world over, renewingthemwithdeepcoldwaters,aswellashavingasignificantroleinthefunctionof the global thermohaline circulation (THC) 3 (Borowski 2003). The biota 4 of the Southern Oceandiffersfromtherestoftheworld’socean.Thisisduetothestronginfluenceofthe ACCthatmaintainssurfacetemperaturesstabile,butalsoduetothelonganddarkwinters andtherolloftheseaiceextension(Murphyetal2007).Seaice,ortheicewhichformsin saltwater, growsextensivelyduringwinterinthe Antarctica and the Southern Ocean, but meltsawayduringthesummer(NSIDC2011).Thisyearly environmental change makes it hardfortheSouthernOceantobuilduplongandcomplexfoodchains,suchasusuallyfound in tropical seawater areas (Murphy et al 2007). However, there are some areas where the environmentalparametersdiverge.

The Scotia Sea

ConfinedbetweentheSouthAmericancontinentandtheAntarcticPeninsula,theScotiaSea extendsoverapproximately750kmnorth–south,andapproximately2000kmtotheeastfrom westencompassinganareaofapproximately1.5x10 ⁶km²(Murphyetal2007).Forabetter overviewovertheScotiaSeaseefigure5below.

2 A geological epoch extending from about over 23 to 5 million years ago 3 The transport of heat and salinity around the world oceans through a water current belt 4 All the plant and animal life of a particular region 20

Figure 5.TheScotiaSeaandtheSouthernOcean.Ontheleft,theAntarcticcontinentand the Antarctic Circumpolar Current (ACC) (in light gray). On the right and in focus; the Scotia Sea. Source: Figures and maps taken and customized from WDCS (2011) andWikipedia(2011)

ScotiaSeaphysical,oceanographicandecosystemdynamics

TheScotiaSeaecosystemhasduringalongtimebeenmoldedbytheinteractionsoftectonic evolution,physicaloceanographyandarangeofecologicalprocesses.Itsflowandecological regimeworksmutuallywiththeregionalunderwaterbathymetryandseasonality(variationsin solar irradiance, upper ocean temperature, light levels and sea ice extension). This is the structuralprefaceofthecurrentenvironmentalstateoftheScotiaSea(Murphyetal2007).As the ACC flows east through the Drake Passage it encounters the Scotia ridge, a strongly topographically constrained underwater shelf which has slowly evolved during the last 40 million years (Barker et al 2001). Great inputs of seawaters are also received from the WeddellSea,anditscounterflowinggyre 5,inthesouth(Murphyetal2007).Thisencounter betweentheACC,theScotiaridgeandtheWeddellgyre,createszonesofwaterturbulencein measuresnotfoundanywhereelseintheSouthernOcean.Hence,incontrasttootherregions, theScotiaSeareceivesextensivebloomsoflargediatomsandduringthewarmer andlighterperiodsoftheyear.Theupwellingofnutrients,duetoconstantmixing,together withhighlevelsofironintheseawater,comingfromarangeofsources,suchasshelfwater inputsfromtheAntarcticPeninsularegionandshelfsedimentsoftheScotiaArc,makesthe ScotiaSeachlorophyllrich,thus,promotingphytoplanktongrowth(ibid.).Thisconditionis favourableforcrustaceansinthepelagiczone,suchastheAntarctickrill,whichcandevelop quicklyinresponsetoabundantlevelsofphytoplankton(ibid.).

5 The Weddell gyre is a relatively smaller ocean current than the ACC 21

Antarctic krill

The Antarctic krill ( Euphausia superba) is a small shrimplike crustacean. There are 85 knownkrillspecies,although,theAntarctickrillistodaythebestknownzooplanktonspecie intheSouthernOcean(Parker2011).Itsattributesarehoweververysimilartosmallfishes,as it can live for up to seven years, and grow to around60mminlength;taking3 yearsto become reproductively mature (SOSP 2009). Spawning females, adults and juvenile populationcommonlyaggregateintolargeswarms.Thefemalesandadultsarefoundmostly inopenoceanicwaterduringthesummer,whilethejuvenilesstayclosertotheshelfareas yearround(ibid.).Antarctickrillfeedsmainlyonphytoplankton,althoughtheycanalsofeed ontheirowneggsandlarvaeandbreakdowntheirownbodymassintoaminoacidsinperiods oflowfoodavailability(Parker2011).Duringthewinterthekrilllarvae,juvenilesandadults takeshelterundertheseaiceandfeedonicealgae(SOSP2009).Accordingtoresearch,the Antarctic krill has one of the largest biomasses on the planet (Siegel 2005). However, quantifiedestimationsfromscholarshavediffered sincemajorinvestigationsstartedinthe 1970s.Seetable2below.

Krill biomass (Mt) in the Year of study Southern Ocean 1970 750 1973 800 - 5000 1979 1200 1983 60 - 100 1983 100 -400 1992 40 2000 44.3 2006 208 2007 37 2008 117 - 379 Table 2. Biomass estimation on Antarctic krill from differentstudiessince1970.Source:Atkinsonetal(2008), aswellascitedinParker(2011)

Distribution

ThedistributionoftheAntarctickrilliscircumpolarintheSouthernOcean, although, and according to Atkinson and colleagues (2009), the Scotia Sea is the region that supports a largerpartoftheoverallpopulation.ThehighestkrilldensitiesintheScotiaSeahavemainly beenconfinedtothewesternshelfoftheAntarcticPeninsula,thesouthernseawaterareasof South Orkney Island and around the eastern and northern shelf of South Georgia Island (ibid.).ForacloseroverviewoverthedensitydistributionofAntarctickrillintheSouthern OceanandintheScotiaSeaseefigure6and7below.

22

Figure 6. Antarctic krill density (n/m²) around the Southern Ocean. Source:Atkinsonetal(2009)

Figure 7.Antarctickrilldensitynear(a)theAntarcticPeninsulaandSouthOrkneyand(b) SouthGeorgia.Theplotsareofarithmeticmean(standardised)density(ind.m²)ona0.5° latitudeby1°longitudegrid.Source:Atkinsonetal(2009)

Krill predators

TheAntarctickrillismainlyeatenbymarinemammalsandseabirdsintheScotiaSea,mostly duringthebreedingseason 6.Inthenorth,macaronipenguins( Eudyptes chrysolophus ),gentoo penguins( Pygoscelis papua ),thegreyheaded( Thalassarche chrysostoma )andblackbrowed albatrosses( Thalassarche melanophrys ),aswellasantarcticfurseals(Arctocephalus gazelle ) are the major krill depending predators. Further south, chinstrap penguins ( Pygoscelis antarcticus )andadeliepenguins( Pygoscelis adeliae )arethemajorkrilldependingpredators, although,smallercoloniesofgentoopenguinsandantarcticfursealsalsoexisttogetherwith thecrabeaterseal(Lobodon carcinophagus )(Croxalletal.1987;Trathanetal.1996,Boyd 2002, Boyd et al 2002, ACAP 2011, Birdlife 2011). Most of the mammals and seabirds aggregate on a group of continental and volcanic islands: South Sandwich, South Orkney, SouthGeorgiaandSouthShetland,aswellastheAntarcticPeninsula,although,eventhepack iceisusedbysomespecies(Murphyetal2007).

6 The summer season; when animals reproduce and produce their offspring 23

Otherpredators and animals thatprey on Antarctickrill,suchasthedove(antarctic)prion (Pachyptila desolata ), southern (antarctic) fulmar ( Fulmarus glacialoides ) and several fish, squid and whale species such as the mink whale ( Balaenoptera bonaerensis ), humpback whales ( Megaptera novaeangliae ), southern right whale ( Eubalaena australis ), blue whale (Balaenoptera musculus ), the fin whale ( Balaenoptera physalus ) and the sei whale (Balaenoptera borealis ),butthesespecieshaveamoredispersedistributionovertheScotia Sea (Murphy et al 2007, ACAP 2011, IWC 2011). For an overview over the main krill dependentpredatorsintheScotiaSeaseetable3below.

Krill demand Krill dependent Total individuals (10x⁶tonnes yr-¹) predators in the (n) in the southern Habitat Winter in the Scotia Sea Scotia Sea hemisphere food web Antarctic fur seal > 4.5 million Islands & coasts 1.1 – 3.8 Migratory Crabeater seal > 7 million Islands, coasts & pack ice 4.5 Migratory Macaroni penguin > 18 million Islands & coasts 3.8 – 8.1 Migratory Adelie penguin > 4 million Islands & coasts 0.46 Migratory Chinstrap penguin > 8 million Islands & coasts 3.8 Migratory Gentoo penguin > 520 000 Islands & coasts 3.7 – 7.9 Migratory Antarctic fulmar > 4 million Islands & coasts 0.54 Migratory Dove prion > 50 million Islands & coasts 1.4 Migratory Whales > 850 000 Marine & coastal waters 1.6 – 2.7 Migratory Black-browed albatross > 1 million Islands & coasts N/D Migratory Grey-headed albatross > 250 000 Islands & coasts N/D Migratory Squid N/D Marine & coastal waters N/D Vertical migration Pelagic fishes N/D Marine & coastal waters N/D Vertical migration

Table 3 .MainkrilldependentpredatorsintheScotiaSea.Populationsize,mainhabitat,annualkrilldemandand winterroll.Valuesvalidforpresenttime.Source:Murphyetal(2007)andBirdlife(2011)

Forage fishery

Formillenniumsthehumanhasusedsmallpelagicfishesintheirdiets.However,itwasnot until the 19th and 20th century that these fishes were to become used for nonfood and reduction(Alderetal2007).Bythen,mainlyforitsfishoil;usedinleathertanningandinthe productionofsoap,glycerolandfertilizers(FAO1986).After1950thedestinationchanged andcatcheswereinsteadusedtoproduceanimalfeedsforthedietsofpoultryandpigs(ibid.). Today fish farms are the highest consumers of both fish meal and fish oil. According to estimates, 63 % of the fish meal and 81 % of fish oil production nowadays goes to aquaculture farms in main producing countries through import (Deutsch et al 2007, IFFO 2011).

24

Duringthelastdecadesarangeofpelagicfishspecieshasthereforebeentargetedbyfishery, withthePeruviananchoveta(Engraulis ringens ),caughtalongthecoastofChileandPeru,as theforemostspeciefortheindustrywithalmost7Mtonsoflandingsin2009.Foracloser overviewoverthedevelopmentoftheglobalforagefisheryseefigure8below.Fordetailed numbersseeappendix1.

Total catches by forage fishery of selected fish species commonly destined for non-food uses (1970-2009)

40 Total forage fish catch per year 30 Peruvian anchoveta Chilean jack mackerel 20 Atlantic herring Mtons 10 Capelin Blue whiting 0 Japanese pilchard 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 Figure 8. Total global catches by forage fishery and total catch of the seven most target species commonly destined fornonfooduses(19702009).Thechoice of these seven species was based on data from over 41 commonlycaughtforagefishspecies,includingAntarctickrill.Source:FAO/FIGIS(2011)

Forage fishery in the Southern Ocean

HumanshaveexploitedthemarineresourcesoftheSouthernOceanforover250years,butit isonlyduringtherecentdecadesthatfisheryhasstartedtotargetforagefish.Previousto,in the 18th century, Antarctic fur seals where hunted intensively around the continental and islandsoftheScotiaSea(Kock2000).Thespeciewasalmostextinctattheendofthe19th century(ibid.).Duringtheupcomingdecadescommercialeffortsfelledontheelephantseals, andparticularlyonseveralwhalespecies(ibid.).Aftermid1950s,fishingeffortmoveddown introphiclevels,towardsfinfishsuchasthePatagoniantoothfish( Dissostichus eleginoides ) andMackerelicefish( Champsocephalus gunnari ).Inrecenttimes,therehasalsobeensmaller exploratory fishing for stone crabs and squid (CCAMLR 2011). Nevertheless, today the AntarctickrillisthelargestandmostimportanttargetedspecieintheSouthernOcean(Kock 2000,Croxall&Nicol2004,CCAMLR2011,Parker2011).Foranoverviewofthehistorical developmentoftheSouthernOceanfisheryandkrillfishery,intermsoftotalcatch,seefigure 9below.Foradetaileddataonannualcatches,comparingcatchonwhales,differentmarine fishspeciesandtheAntarctickrillintheSouthernOcean,seeappendix2.

25

Annual nominal catches (tons) of Antarctic krill, marine fishes and whales in the Southern Ocean (1950 -2010) 500000

400000

300000 Antarctic krill

Tons 200000 Marine Fishes 100000 Whales

0

1950 1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 Figure 9.ComparisonoffisheriesintheSouthernOceansince1950suntilrecenttimes.Whalesincludeblue whales,finwhale,humpbackwhale,killerwhale,longfinnedpilotwhale,minkewhale,northernbottlenose whale, sei whale, sperm whale and toothed whales nei. Marine species include humped rockcod, mackerel icefish,marbledrockcod,patagoniantoothfishandSouthGeorgiaicefish.Source:FAO/FIGIS(2011)

Management of the Southern Ocean

TheSouthernOceanhasoverhalfacenturybeen,andstillis,underthesupervisionofarange ofdifferentinternationalregimes.Theexactnumbersofregimescannotbestatedhereaseach one’s modus operandi differsoverlargespatial scales,suchasthe1982 global regime of UnitedNationsConventionontheLawoftheSea(UNCLOS). Instead, seveninternational regimes are here identified to have endowed specialattentionintheiragendastowardsthe Southern Ocean. For a better overview of the existing regimes operating in the Southern Oceanseetable4below.InthisworkthefocusisonthemanagementregimeofCCAMLR, whichhasitsheadquarterslocatedinHobart,Tasmania,Australia.

Regime In force since Aim

International Convention for the Regulation of Whaling (ICRW) & 1946 Conservation of whale stocks International Whaling Commission (IWC)

Support on issues of science and Scientific Committee on Antarctic Research (SCAR) 1958 conservation

Establish institutional foundations, Antarctic Treaty (AT) 1959 regulations and relationships

Limit the vulnerability of Antarctic Convention for the Conservation of Antarctic Seals (CCAS) 1978 seals The Convention on the Conservation of Antarctic Marine Living Resources Conservation of Antarctic marine living (CCAMLR) & Commission for the Conservation of Antarctic Marine Living 1982 resources Resources (CCAMLR) Protocol on Environmental Protection to the Antarctic Treaty (PEPAT) & Protection of the Antarctic 1998 Committee for Environmental Protection (CEP) environment

Committee for the Conservation of Albatrosses and Petrels (ACAP) 2004 Conserve albatrosses and petrels

Table 4.GovernanceregimesintheSouthernOcean

26

CCAMLR

CCAMLRstartedtotakeformduringthe1970swhenresearchersandleadingfishingnations aggregated for discussions over management options for the krill fishery. Concerns were particularly raised on the agenda during the 9th Antarctic Treaty Consultative Meeting (ATCM) in London 1977. Negotiations resulted in the signing of the Convention on the ConservationofAntarcticMarine LivingResources(CCAMLR)inCanberrainMay1980, establishingtheConventionArea(seefigure11),whichcameintoforceon7thofApril1982 (Kock2000).AlthoughtheCCAMLRisanindependentagreement,itisasaruleamandate of the Antarctic Treaty 7. The difference, however, was that the negotiated boarders of the Convention Area were not established on sovereignty principals, but follows the natural shoresoftheAntarctic continentandtheACZ. This resulted in a larger management area (32.9 million km² under CCAMLR jurisdiction) than the one recognized in the Antarctic Treaty (AT) (Croxall & Nicol 2004). Set into force in 1982, CCAMLR was a pioneer in incorporating the EA and PA approaches into management objectives. Article II of the Convention text (CCAMLR 1980), sign in 1980, is central to the understanding of CCAMLR’sdevelopmenttowardsEAandPA.Itstatesthefollowingoperationalobjectives andprincipals:

1. The objective of this Convention is the conservation of Antarctic marine living resources.

2. For the purposes of this Convention, the term ‘conservation’ includes rational use.

3. Any harvesting and associated activities in the area to which this Convention applies shall be conducted in accordance with the provisions of this Convention and with the following principles of conservation: (a) prevention of decrease in the size of any harvested population to levels below those which ensure its stable recruitment. For this purpose its size should not be allowed to fall below a level close to that which ensures the greatest net annual increment; (b) maintenance of the ecological relationships between harvested, dependent and related populations of Antarctic marine living resources and the restoration of depleted populations to the levels defined in subparagraph (a) above; and (c) prevention of changes or minimization of the risk of changes in the marine ecosystem which are not potentially reversible over two or three decades, indirect impact of harvesting, the effect of the introduction of alien species, the effects of associated activities on the marine ecosystem and of the effects of environmental changes, with the aim of making possible the sustained conservation of Antarctic marine living resources.

Source:CCAMLR(1980)

7 The Antarctic Treaty was signed in Washington in 1959 to establish Antarctica as a region of peace and cooperation, and to deal with issues relating to claims of sovereignty. Available at < http://www.ats.aq/e/ats.htm> 27

UnderCCAMLR,conservationismainlydefinedas“ ration use ”,butalso,asformulatedin ArticleII(3)(b),tomaintain“ the ecological relationships between harvested, dependent and related populations of Antarctic marine living resources, and the restoration of depleted populations ”, as well as formulated in Article II (3) (c), the “ prevention of changes or minimization of the risk of changes in the marine ecosystem ”. This design means that CCAMLR should collect the data it can, and then weighs the extent and effect of the uncertainties and gaps in such data before making a management decision. Not only for certainspecies,butalsotoensurethatfisherydoesnotadverselyaffectotherspeciesthatare related to, or dependent on, the target species, which include Antarctic krill, Patagonia toothfish, Antarctic toothfish, subAntarctic lantern fish, mackerel, icefish, sevenstar flying squid,Antarcticrockcodandcrabs(MooneySeus&Rosenberg2007).

CCAMLR´sConventionArea

The CCAMLR Convention Area is divided into three statistical areas; Atlantic Ocean (StatisticalArea48),IndianOcean(StatisticalArea58)andPacificOcean(StatisticalArea 88),internationallyagreedandrecognizedbytheFoodandAgricultureOrganization(FAO). Withineachoneofthestatisticalareasthereisa number of subareas. According to Kock (2000),thereasonfordividingtheConventionAreaintosubareaswastoenablethereporting offisheriesdataforindividualstocksandtomakepossibletheimpositionofmanagement measuresonastockbystockbasis.Forthe2010/2011fishingseason,thetotalcatchlimitof krillintheConventionAreawas8.6Mtons.Forsubareas48.1,48.2,48.3and48.4,thetotal catchlimitincreasedfrom3.47Mtonsto5.61Mtons,withatriggerlevelof620000tons8 (CCAMLR 2011). In 2002 the CCAMLR proposed 15 smallscale management units (SSMU) 9tobeappliedinsubareas48.1,48.2and48.3.However,catchlimitsinthesehave notyetbeendefinedbyCCAMLRandstillsetonsubarealevel(Hilletal2009).Thiswork focus on the subareas found within Statistical Areas 48. For a better overview over the conventionareasseethefigure10below.

8 A precautionary limit is to be agreed on by the Commission, on the basis of advice of the SC if total catch in subareas during any fishing season, exceeded a trigger level of 620 000 tons 9 The 15 proposed SSMU´s are APE: Antarctic Peninsula East; APW: Antarctic Peninsula West; APW: Antarctic Peninsula West; APBSE: Bransfield Strait East; APDPW: Antarctic Peninsula Drake Passage West; APDPE: Antarctic Peninsula Drake Passage East; APEI: Antarctic Peninsula Elephant Island; SOSE: South Orkney South East; SOW: South Orkney West; SONE: South Orkney North East; SGW: South Georgia West; SGE: South Georgia East; APPA: Pelagic Area of FAO Subarea 48.1; SOPA: Pelagic Area of FAO Subarea 48.2; SGPA: Pelagic Area of FAO Subarea 48.3 28

Figure 10.TheCCAMLRConventionArea.Themapalsoincludestheboundariesofthe statisticalreportingareasintheSouthernOcean.Source:CCAMLR(2011)

CCAMLR’sbodies

ThemainbodyofCCAMLRistheCommission.Ithascurrently25membersrepresentinga range of different countries 10 . Participation in the Commission is open to any interested fishing nation or regional economic integration organization. The main function of the Commissionistodraftandadoptbindingconservationmeasures(CM)throughconsensus.It cannotregulatefishingactivitiesofnonpartystates(Joyner1998).CCAMLRmembersare affiliated to the Scientific Committee (SC), which provides management advice to the Commission. The management advice from the SC is based on assessments and research conductedbydifferentworking groups;theWorking GrouponEcosystemMonitoringand Management (WGEMM), formed in 1994 by the merged Working Group on Krill (WG Krill), the Working Group on Fish Stock Assessment (WGFSA), formed in 1984 (Kock 2007),andtheCCAMLREcosystemMonitoringProgram(CEMP),formedin1985,whichis aprogramconstitutingofconstitutingofasmallnumberofsubgroupswiththeaimtomonitor theperformanceofanumberofdependentpredatorspecies 11 inrelationtoharvestedspecies (Nicol&Foster2003).

10 Members of the CCAMLR Commission since 1997; Argentina, Australia, Belgium, Brazil, Chile, China, European Union, France, Germany, India, Italy, Japan, Republic of Korea, Namibia, New Zealand, Norway, Poland, Russia, South Africa, Spain, Sweden, Ukraine, UK, USA and Uruguay. Source CCAMLR (2011)

11 Penguins; Adélie penguin, chinstrap penguin, gentoo penguin, macaroni penguin. Seabirds; black-browed albatross, Antarctic petrel, Cape petrel. Seals; Antarctic fur seal, crabeater seal. Source CCAMLR (2011) 29

Fishingrules

FisheryrulesaresetbyCCAMLRthroughconservationsmeasures(CM).Eachyearsomeare introduced, carried on, revised or lapse. The Commission adopts CM’s during the CCAMLR’sannualmeeting,onadviceandbackgroundworkfromtheSC.Evenchangesare basedonrecommendationsandadvicefromthisbody,asstatedundertheArticleIXofthe Convention (CCAMLR 1980). CM’s are agreed upon by members, and becomes binding within 180 days. Fishing rules can also be created through resolutions, but these are not binding. Monitoring activities and sanctions towards krill fishery are regulated by article XXIVoftheConvention,andexecutivelybytheStandingCommitteeonObservationand Inspection (SCOI) (ibid.). Fines for not following fishing rules are imposed on the fishing vesselsandrelatedcompaniesbytheinvolvedactorsowncountriesandfisherydepartments (Joyner1998).

Annualmeetings

Annualmeetingshavebeenheldsince1980,andoccuronetimeperyearduringatwoweek period. The ExecutiveSecretariat (ES), appoint by the Commission, supports the annual meetingsandcarriesoutthedaytodayfunctions.Duringtheeventsthedifferentbodiesand membersofCCAMLRmeetinopenplenarysession 12 .Aftersomedaysitgoesintorecess, where the Standing Committee on Administration Finance (SCAF) and the SCOI together with the SC discuss, debate and finalize the reports to be presented to the Commission. During the second week the Commission reconvenes in plenary session to consider and discussthereportsaswellasproposingmeasuresandactions(Joyner1998).

12 International non-governmental organizations and other interest stakeholders usually take part of the open sessions 30

METHOD The conventional wisdom says that a method should be selected so it can guide an investigation,helpingittouse,developortestexistingtheories,consequentlyachievingthe aimandresponditsresearchquestions(Esaiassonsetal2003).Nevertheless,thisworkisof transdisciplinarycharacter.Toembracethisempiricaldataneededtobesynthesizedbyusing differentquantitativeandqualitativeapproaches.

Epistemological background

Research on how natural environments should be managed is commonly divided in two paradigms; normal science and postnormal science. A paradigm is sets of practices and conceptsappliedbyscienceduringaspecifictimeperiod,anddecidestheoverallframework ofascientificinvestigation(Kuhn1962).Normalscienceisinotherwordswhatscientistdoes withinanacceptedframeworkofmethodsandknowledgestructure(ibid.).Naturalresource managementhasduringalongtimebeenundertheinfluenceoftheparadigmofpositivism;a problemsolvingschoolofthoughtthatassumesanobserverthatisseparatedfromitssubject (Alisson2003).Thiskindofscienceclassifiesfeatures,countsthem,andconstructsstatistical modelsinanattempttoexplainwhatisobserved,arguingthatarationalscientificmethod couldcreateobjectiveresults(Hay2002).Positivismhashoweverbeenundercritiquefornot taking into account different perceptions of involved actors, which consequently should inspirethemto actinpreoccupationwiththeconsequences (ibid.). A postnormal science paradigm has therefore appeared, oriented towards context dependency, learning, interpretationanddifferentunderstandingsofthereality.Accordingtothisapproach,factsare uncertain,valuesareindispute,stakesarehighandadecisionisurgent(Funtowicz&Ravetz 1990). This way of gathering knowledge, also called constructivism, give emphasis to the social constructions as well as to the subjective individual (Hay 2002). However, neither constructivismhasbeensparedfromcritiqueandissaidtocoursetowardsrelativism,making ithardworkingandcostlywhentryingtoachieveconsensus(ibdi.).

At all, the epistemological background of the two conflicting paradigms have been summarizedintothreeknowledgemetaphorsbyMilleretal(2008),whicharepresentedin thetable5below.

31

Table 5.Metaphorsofknowledgerecognizedwithinnormalscienceandpostnormalscience.Source:Adapted fromMilleretal(2008)

Whilethepositivisticschoolmostlyseesknowledgeasmechanistic,constructivistsoftenshift their view between the contingent and the narrative knowledge systems. However, transdisciplinary research should try to unify methods, theories and disciplines, and consequently knowledge structures, creating a holistic approach which enhances science basedcontributionstocomplexproblems(Wiesmannetal2008).Thisworktriesthereforeto distanceitselffromanepistemologicalsovereigntybyunifyingthethreedifferentknowledge metaphors presented by Miller (2008). The argument is that there are multiple ways of knowing about the crossscaling challenges confronting CCAMLR in the Scotia Sea and SouthernOcean.

Methodological approach

Themethodologicalapproachhereisnotonlyaresultofepistemologicalconsideration,but alsoofobtainableresearchconditions.TravellingtotheSouthernOceanortoCCAMLR’s headquarters in Australia would have been the most reliable option. However, fieldwork (marineecologicaldatasamplingorsemistructuredinterviewswithmembersofCCAMLR or fishermen) was not conducted; thought to be costly and time consuming. Instead, to achievetheaimandrespondtoresearchquestionsaliteraturereview,throughdeskresearch, wasfirstconducted.Theoreticalandconceptualemphasiswasgiventoresiliencetheory,but even governance, ecology and economy approaches was integrated. The empirical part consisted of gathering qualitatively and quantitatively data over selected variables, which supportthequalitativediscussiononinteractions(I)andoutcomes(O)intheSES.

Tworesearchquestionswherestatedintheintroduction.Thesequestionswereansweredby gatheringempiricaldatafromfourtimeperiods(P1:19701980,P2:19801990,P3:1990 2000andP4:20002010)selectedastemporalboundariesofthiswork.Togofurtherbackin timewouldjusthaveobliteratedthescopeoftheexistingmanagementregime(CCAMLR) createdin1982,ormakedatasearchingtodifficult.Inordertoanswerquestion2regarding

32

theresilientcapacityoftheSESovertime,itwasnecessarytofirstfindanswerstoquestion1. Hence, Ostrom’s (2007) framework of crossscale interactions gave initial support, helping me identify a possible SES with four nested attributes; the Scotia Sea ecosystem (RS), Antarctic krill (RU), krill fishery (U) and CCAMLR(GS). The framework also helped me linktheSEStoexternalsocial(S)andecological(ECO)variables.Theframeworkdoesnot allowforintegrationof physicalcorevariables, such as ocean currents, some of these are thereforeonlypresentedinthecasestudychapter.Theresultgatheringinthisworktherefore consisted in finding empirical data over time for RS, RU, U, GS, S and ECO, while the discussionpartfeltonaqualitativelyanalysisoverthe(I)and(O)intheSES.

InordertounderstandhowRS,RU,U,GS,SandECOjointlyhavecreated(I)and (O)a testablehypothesiswaspresentedintheintroductionchapter,mainlyderivedfromresilience theory;whenaresourceoverlapbetweenkrillfisheryandmarinepredatorsarise,feedbacks aredevelopedbetweenexistinggovernanceforcesandtheScotiaSeaecosystem.However, externalvariablescanalsohaveaninfluence,informofrelatedecosystemsandglobalsocio economicalforces.Atall,thesefeedbackscaneitherstabilize,orpushtheSEStowardsanew phaseintheadaptivecycle,triggeringnewcondition,orasocioecologicalregimeshiftinthe ScotiaSea.

Indicators

Realworldindicatorswhereselectedtoempiricallytestabovehypothesisandfind(I)and(O) inthesystem.ForRStheindicatorswereselectedbylookingatthepopulationtrendofmain krilldependentpredatorsandthefishgroupofmesopelagics,orlanternfishes.Itwouldhave beenunrealistictotrytogetpopulationtrenddataforallpredatorsandfishspeciesinvolved intheScotiaSea.Ithereforelimitedpredatorstothemostkrilldependentseals,seabirdsand whalesaccordingtodatapresentedinMurphyetal(2007)andthemostabundantlanternfish species according to Collins et al (2008). The lantern fish species were introduced as indicatorsofan“alternativepath”intheRSduetheirhighlyestimatedbiomassintheSouth WestAtlantic,includingtheScotiaSea.However,Iexcludedcircumpolarsmallerbirdsand squids from RS as the data on these where scarce. For the RU, the indicator was density (n/m²)overtimeofAntarctickrillintheScotiaSea.Thespatialdistributionofthisspecieis marked by complexity, and therefore only presented in the casestudy chapter, while its temporaldensityvalueispresentedintheresults.ForUtheindicatorswerethehistoryofuse, technology,aswellasthekrillfishinglocationandfishingseasonintheScotiaSea.ForGS

33

the indicator was CCAMLR’s adaptive capacity in form of fishing rules. These where quantitativelyanalyzedforeachyear,butalsoqualitativelyanalyzedbyusingthefollowing topicsandquestionsadaptedfromSandström&Rova(2010):(1)Frameworkofrules:Are thererulesthatregulateaccesstoandappropriationoftheresource?(2)Fisheryresponse:Are therulesused,accepted,andfollowedbytheresourceusers?(3)Ecologicalresponse:Arethe rules considering the resource system to be complex, nonlinear and characterized by uncertainty?(4)Formulationofrules:Arerulescontinuouslychangedinreactiontoexisting ecological knowledge? Each rule configurations that appeared a result of a combination of rulestatements,haveadissimilarlevelofinfluenceoverthekrillfisheryandtheScotiaSea ecosystem. Affirmative answers to all topics indicate that the management process of CCAMLR is adaptive. The external indicator for ECO was migration areas of selected predators,Antarctickrillandfishspecies,helpingmedefinerelatedecosystems.Theexternal indicatorofSwasaquacultureproductionandtheinternationalmarketoffishmealandfish oilwithfocusonconsumersandproducers.Politicalsettingsarepresentedinthecasestudy chapterandnotintegratedinthediscussionduetothelargenumberofregimesthatactuatein theinternationalmarineenvironmentalarena.Asnolongtimedataexistforeachcountry’s fish meal and fish oil consumption, this was estimated by the following basic formula ((importquantity+productionquantity)–exportsquantity).Theaverageannualpercentage growth rate (APGR) of the aquaculture production and fish meal and fish oil market was calculatedbyusingthefollowingformula:

Wherevstandsforthevalueofproduction,whichisdividedontheaverageproduction,and thereafteronamountofyearsofproductionandmultipliedfor100togetannualpercentage growthin%.

Applying the adaptive cycle

Research question two is answered by measuring resilience of the SES. This is done by applyingtheresultsfromquestion1ontable1,found in the theoretical chapter. For each periodof(P1–P4),theconnectivenessbetweentheattributesbetweentheSES,SandECO wasanalyzed.Connectivenessisinthisworkseen as a flow in material or ideas between variables.Thus,ifnoconnectivenessexistedduring a specific timeperiod, 0 was given. If

34

connectivenessexisted(i.e.somekindofflowofideasandmaterial)betweenvariables,a+ wasgiven,andifconnectivenesswashigh(i.e.intensiveflowofideasandmaterial)between variables,++wasgiven.Byapplyingthisqualitativelymodelling,thepotentialforchange couldbedeliberatedanddiscussedineachperiodoftime,andconsequentlyitwaspossibleto measureresilienceintheSESovertimeandthepositionoftheSESintheadaptivecycle.For abetteroverviewofhowthiswasdoneseefigure11below.

Figure 11.ExampleofhowtheadaptivecycleisappliedontheSESoftheScotiaSea.0,+ or ++ are placed between the connections in order to measure potential of change and resilienceintheSES,andconsequentlyitspositionintheadaptivecycle

Data sources

Bothprimaryandsecondarydatawasusedinthiswork. Only use primary data (surveys, interviews, statistical inventories etc)was not anoption,as Iwasnotabletotraveltothe SouthernOcean.FisherydatawasobtainedthroughFAO/FIGIS(2011)database.Dataover total krill catch and fishery rules and their configuration over time were obtained in the CCAMLR’s yearly commission and scientific reports (19802010). These reports contain detaileddataovercatchesbetweennationsandhoweachrulehasbeencreated,debatedand acceptedbymemberstates.Internationalmarketpriceforfishmealovertimewasobtained through the database Indexmundi, which gives detailed market and country statistics for multiple food commodities. FAO, on personal communication, mailed me data over the historicaldevelopmentonglobalfishoilprices.Forpopulationtrendofmarinemammalsand seabirdsintheScotiaSeaIconsultedadifferentstudies;Laws(1977,1985),Payne(1979), Boyd(1993),Boveng(1993),EricsonandHanson(1990),Trathanetal(1998),Croxalletal (1999), Adam (2005), Christensen (2006), Poncetet al(2006) Burns et al (2008) and Trivelpieceetal(2011).IalsoconsultedthespeciedatabasesfromIUCNRedList(2011)and Birdlife (2011). For Antarctic krill density I used existing estimations from research on arithmeticmeankrilldensities(n/m²).Thisdatawasbasedonbothsubsetsofstandardized andunstandardizeddatafromAtkinsonetal(2008),whocompiledall availablenetbased

35

densitydataonpostlarvaefrom8137mainlysummerstations19262004.Theauthorthen forwardedmetherawdatafromthisstudysoIcouldconstructadiagramforhedensityover time in the Scotia Sea. Myctophids density was estimated by using fieldwork data from mesopelagicfishcommunityresearchintheScotiaSea.Estimationwasmadebyquantifying number of individuals taken in trawl, and divided with volume of seawater filtered (m³). Afterallonlythreeauthor’sdata(Piatkowskiletal1994,Collinsetal2004andFloresetal 2008) to construct visualization about density changes which is presented in the result chapter.DuetothescarcityofdatafortheScotiaSearegion,onlypopulationdensitiesforP3 andP4wereestimated.ThegeneraltrendintheseaiceextentoverAntarcticawastakenfrom investigationsdonebyNASA(2011),withbasementoninvestigationsundertakenbyZwally etal.(2002)andCavalieriandParkinson(2008),Parkinsonetal(2002),Stammerjohnetal (2008) and Turner (2009) a. All authors used satellite passivemicrowave radiometers to estimate changes 13 . Information regarding predator’s migration areas, and their general changes, was summarized by consulting related literature for each region. At all, the data sourcescanbeclassifiedasinthetable6below:

Data sources Primary data Secondary data Nested attributes Fishery Fishery U,S FAO/FIGIS Fishmealandfishoil Fishmealandfishoil S CCAMLR Krillfisheryrules Fishery GS,U Populationtrends RS,S Other databases Myctophidsdensity Populationtrends RS,RU

Seaiceextent ECO Author's Fishery U Relatedecosytems ECO

Table 6.Categorizationofprimaryandsecondarydatasourcesusedinthiswork.

Critical reflection of method and data used

Themethodappliedhereistransdisciplinaryinits nature and tries to develop the existing understandingaboutmanagement,fisheryandecosystemchangeintheSouthernOceanover differenttemporalandspatialscales.ForthisItriedtousedifferentknowledgesystemsand disciplines.Newapproacheswillalwaysfallundercritique,especially whentheresultsare

13 A complete description of method used by NASA to calculate sea ice extent can be found at http://neptune.gsfc.nasa.gov/csb/index.php?section=59, for method used by Turner (2009) see analysis of microwave satellite data at http://ruby.fgcu.edu/courses/twimberley/EnviroPhilo/Turner.pdf

36

based on a range of different sources. It was therefore an essentiality to be clear when definingandusingthetheoreticalframeworkandconcepts.

Empiricaldatalimitationwasanapprehension.Forexample,thescarcityofapplicabledata regardingmyctophidsneedstobetakenintoconsiderationwhendiscussingpossiblechanges inthestructuringandfunctioningoftheScotiaSeaecosystem.Moreover,someofthedata used comes from an outline of research that surrounds CCAMLR. In other words, many resultsfromfieldstudiesontheresourcesystemoronmarinepredatorsarebasedonefforts madebyCCAMLRresearches.Furthermore,thesecondarydatausedinthisworkforsomeof thevariablescanalsohaveloweredthereliability,butmostresearchisinconsensusonthe numberspresentedintheresultchapter.

At last, another constrain is that the data presented in this work does not include illegal, unreportedandunregulated(IUU)fishing.IUUfishinghasbeenacommonphenomenonin the Southern Ocean and carried out by CCAMLR nonmember vessels. IUU fishing is thoughttoaccountforasignificantannualcatch,however,notequaltothelegitimateharvest bypermittedvesselsoperatingunderflagsofCCAMLRmembers(Nevill2009,Osterblom& Sumaila2011).Accuratecatchestimatesforthiskindoffishingwashowevernotavailable.

37

RESULTS Theresultswillnowbepresented,firstlythroughtheempiricalfindingsforeachattributeU, RS,RUandGSintheSES,followedbythevaluesoftheexternalvariablesECOandS,thus, responding to the first research question. The complete assemblage will then be used to discussthesecondresearchquestionsintheupcomingchapter.

Users (U)

Nations

ThekrillfisheryintheScotiaSeawereduringthe1970sand1980s(P1P2)dominatedby vessels from Soviet Union and Japan. During 1990s and 2000s new fishing countries emerged,suchasRussia,UkraineandPolandtakinga relativepartofSovietUnionsshare duringP3.Asaconsequence,Japanbecamethedominatingkrillfishingnation,followedby South Korea, although, European vessels have increased their share recently, mainly as a resultofNorway’sentrance.Forabetteroverviewoftheshareofannualreportedcatchof Antarctic krill per country (19702010), see figure 13 below. For detailed numbers, see appendix3.

Figure 13:Shareofannualreportedcatch(tons)ofAntarctickrillpercountry(1970 2010).Source:FAO/FIGIS(2011)

38

Historyofuse

Thekrillfisheryhassinceitsstartinearly1970s(P1P4)extractedatotalof>6.5Mtonsof krillindifferentlocalizedareastheScotiaSea.Aphaseshiftoccurredrapidlybetweenthe years19811983,mainly explainedbythediscoveryofhighfluoridelevelsinkrillexoskeletons or by processing and marketing difficulties. Catches recovered, however, until the end of the SovietUnionin1991(Parker2011). Fishingoperationshasbeenconductedparticularlyclose to the coasts of the Antarctic Peninsula (subarea 48.1), the South Orkney Islands (subarea 48.2)andSouthGeorgiaIslands(subarea48.3).Otherareashavestoodforinsignificantcatch amounts.Figures14belowgivesanoverviewovertotalnominalcatchpersubarea.

Total catch of Antarctic Krill per subarea in FAO's fishing area 48 (1970 -2008) 500000 Peninsular (Subarea 48.1) 400000 South Orkney (Subarea 48.2) 300000 South Georgia (Subarea 48.3) Tons 200000 South Sandwich (Subarea 48.4) 100000 Weddel Sea (Subarea 48.5) 0 Bouvet (Subarea 48.6) Not specified in which subarea 1970 1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006

Figure 14. Total nominal catch of Antarctic krill per subarea and year in FAO’s fishing area 48. Source: CCAMLR(2011).Appendix4givesdetailednumbers.

Untiltheendofthe1970s(P1)fishingvesselsdidnotreportlocationofkrillcatch.However, betweentheyearsof19801990(P2)around45%oftotalcatchwastakeninsubarea48.2, and38%wastakeninsubarea48.3.Intheearly1990´s(P3)totalcatchdroppeddrastically, from3.3MtonsforP2,to1.4Mtonsfortheyears19902000(P3).Theredistributionbetween different subareas was mostly equal during this decade with subarea 48.1, 48.2 and 48.3 standingfor400000–550000tonseach(~ 30%).DuringthefirstyearsofP4krillfishery focusedonsubarea48.3with45%ofcatchesfor20002004(seeappendix4).Inrecentyears krill fishery has switched towards subarea 48.2 where 51 % of catches have been taken. AccordingtoKawaguchiandcolleagues(2006),oftotalkrillcatchtakeninsidesubarea48.1 until2004,88%hasbeentakenwithintheSSMU’sof AntarcticPeninsulaDrakePassage West (APDPW), Antarctic Peninsula Drake Passage East (APDPE) and the Antarctic Peninsula Elephant Island (APEI). In subarea 48.2, 70%hasbeentakenintheSSMUof SouthOrkneyWest(SOW).Insubarea48.3,77%weretakenintheSSMUofSouthGeorgia East(SGE).ForabetteroutlineoverthedistributionofcatchineachSSMUseeappendix12.

39

Fishingseason

ThekrillfishingseasonintheScotiaSeahassmoothlyshortened.Until1992(P1andP2), krillfishinginsubarea48.1operatedbetweenDecemberMay.From1993andonwards(P3 andP4),fishingseasonshiftedtoonlyencompassMarchMay.Until1991(P1andP2),the mainfishingperiodinsubarea48.2wasDecemberMay.Thereafter(P3andP4),mostcatch hasbeentakenonlyinMarch–May.Fromthe1980’s(P2–P4)topresentdays,themain fishingperiodinsubarea48.3hasbeenJune–August,butsomecatcheshasalsobeenreported fromtheMarch–Mayperiod(Kawaguchiandcolleagues2006).

Technology

Echosoundersareusedtolocatekrillaggregations infishinggrounds,andthemaingearused byvesselsisstillthemidwaterottertrawl,aconeshapedtrawlingsystemusingfinemesh netswhichistowedinmidwater(Gascon&Verner2006,FAO2011).AccordingtoNicolet al (2011), the conventional trawling gears for krillhasbeenrefinedbythe years, andthe averagecatchrateshasthereforerose,fromapproximately100tonnes/dayto400tonnes/day. Evenintegratedpumpsarebeingused(seefigure15),suckingthekrilldirectlyfromthecod endofthetrawltoprocessingfacilitiesonboard,allowingthetrawltostayunderwaterand makingitpossibletoprocessthecatchefficientlybeforethekrillbeginstobreakdownand lose nutritional value (Parker 2011). Furthermore, more of the krill vessels are nowadays usingadvancedprocessingsystemsonboardtoensurefastandeffectivecatchselectionand highquality(ASOC2011).

Figure 15.TwodifferentcatchingtechnologiesusedbykrillfisheryintheScotiaSea.Atleft,thetraditional midwaterottertrawl,andatright,thesamesystembutwiththenewpumpsystemintegrated.Source:FAO (2011)andParker(2011)

40

Resource system (RS)

Predatorabundance

Since1970significantecologicalchangeshasoccurredintheScotiaSea’spelagicecosystem and foodweb. The abundance of the Antarctic fur seal population has risen remarkably, mainlyatSouthGeorgeIsland(insubarea48.3),whichtodayaccountsfor9095%oftotal populationofover>4.5millionindividuals.Theannualrateofincreaseinthisareawasas high as 16.8 % (Payne 1977) in the 1960s and early 1970s, dropping to 9.8 % between 1976/1977(P1).In1975(P1),thefursealpopulationinSouthGeorgiawasestimatedto369 thousand individuals, and in 1990 (P3) > 1.5 million (Boyd 1993). The rapid increase continuedduring1990sandearly2000s(P3P4),buthassloweddownduringthelastyears ofP4,asnewbeachesarenotbeingcolonizedatthesamerateasbefore 14 .Thepopulation trendofthecrabeatersealalsopointstowardsan increasesince1970s(P1).However,the trendfortheScotiaSeaissubjecteduncertainties,givenitspackiceallocation,andthus,the nonrandomlydistributionofthespecie(Boveng1993,Burnsetal2007).Themostconsensus relatedestimatesfoundofitspopulationtrendis circumpolar, and range from 2 million in 1958 to a present population of around 715 million individuals (Laws 1977, Ericson & Hanson 1990, Adam 2005). Another group of marine mammals that are growing, or are stable,inabundanceintheSouthernOceanarethewhales,manyofwhichmigratetowards theScotiaSeaduringsummer.Theestimatedrateof increase of Southern Hemisphere sei whales,rightwhales,finwhalesandbluewhalespopulationvariesbetween0,5%7%since 1970s(Christiansen2006,IWC2011).

MostoftheseabirdsintheScotiaSeahavesince1970showeverbeenindeclined.Macaroni penguin’scoloniesaroundBirdIsland,SouthGeorgiadecreasedby20%perannumfrom 1978to1981(P1P2)(Trathanetal1998),andbetween1986and1998(P2P3)theoverall populationinSouthGeorgiadecreasedby65%(ibid.).ThepopulationisinSouthGeorgia isestimatedtobeonlyhalfofthe5.5millionbreedingpairsestimatedin1979.Northofthe AntarcticPeninsula,theAdélieandChinstrappenguinpopulationsalsohavedeclined,more than50%duringthelast30years(P2–P4),mainlyatSouthShetlandIsland(insubarea 48.1) (Trivelpiece et al 2011). Even the Gentoo penguin populations is declining, with populationsatBirdIsland,SouthGeorgia(33%ofthetotalpopulation)decreasingby67%

14 Steinlandonpersonalcommunication2010 41

overthelast25years(P2P4)(Croxalletal1999).OntheAntarcticPeninsula(25%ofthe totalpopulation)thepopulationishoweverincreasingatmostsites,doublinginthelast20 years(P3–P4)(Birdlife2011).PopulationsofBlackbrowed albatrosses and Greyheaded albatrossatSouthGeorgia(where6%and19%oftotalpopulationbreedduringsummer) havealsodecreased,withthefirstspeciespopulationdecliningwith17.5%,(1.1%per annum),between1988–2006(P2P4),andGreyheaded albatrossdecliningwith18.7% overall,or1.1%perannumforthesameperiod(Poncetetal.2006).

Myctophiddensity

Theaveragedensity(n/m2)ofthefishgroupoflanternfisheshasdeclinedinsomepartsof thetheScotiaSeasince1990s,especiallyalongSouthGeorgianorthernwesternpoint,where thedensitywasbetween0.0060580.008654duringP3.DuringP4thedensityhadlowered to 0.004728 0.0737988 (see comparisons in figure 16 below). For a detailed view see appendix5.

Figure 16.Changesinlanternfishdensity(1990s2000s).Basedoncalculationmadebyquantifyingnumberof individualstakenintrawl,anddividedwithvolumeofseawaterfiltered(m³).

Resource unit (RU)

TheAntarctickrilldensities(n/m2)trendinScotiaSeahavesincemid1970’sdeclined(P1 P4)from146,95in1976to2,16in2003.Anupgoingtrendwasvisibleduringthe1990s(P3) andearly2000s(P4),butdroppedbackin1998and2001respectively.Thegeneralnegative trendispresentedinthefigure17below.Detailednumbersarefoundintheappendix6.

42

1000

100 Antarctic krill density in the Scotia Sea

Ind/m2 10 Linear (Antarctic krill density in the Scotia Sea)

1 1970 1975 1980 1985 1990 1995 2000 2005

Figure 17.Changeinmeandensity(ind.m–2)ofAntarctickrill(1976–2003)withintheScotiaSea.Basedon standardized densities. A trend line (black) has also been added. Source: Data gather with basement on the authorsarticleAtkinsonetal(2009)

Governance system (GS)

Fishingrulesandruleconfiguration

Since 1982 (P2P4), 430 conservation measures (CM’s)havebeenadoptedbyCCAMLR. Although,atpresenttimeonly77CM’sareinforceinthewholeSouthernOcean(CCAMLR 2011).Ofthese,23CM´sareatpresentfocusingonkrillfisheryintheScotiaSea. For a quantitativelyoverviewoverthedevelopmentoffishingrulesintheScotiaSeaseefigure18 below.

Development of conservation measureas applied on the krill fishery per year in the Scotia Sea (1970 - 2009) 25 Adopted 20 15 Carried N° 10 Revised 5 0 Lapsed In force 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006

Figure 18. DevelopmentofconservationmeasuresintheScotiaSeaonkrillfishery.Thegraph showCM´sadopted(bluedark),carried(red),revised(green),lapsed(purple)andinforce(blue light)peryearintheScotiaSeasince1970.Source:BasedonCCAMLR´sannualreports(1980 2010)

CCAMLRruleconfigurationhassinceitsformationchangedwithP3andP4standingforthe mostsignificantalterations.DuringP1noCM’son krill fishery was created or applied as CCMALRonlycameintoforcein1982andveryfewCM’swerecreatedandsetintoforceto regulatekrillfisheryintheScotiaSeaduringP2.Onlyaweakruleframeworkcouldtherefore

43

beidentifiedforP2.DuringP3awellestablishedframeworkofrulewasdeveloped,which tookintoconsiderationbothcomplexityanduncertaintyintheecosystem.However,fishery responsewaslow.P4wasmarkedbythereviewingofCM’s,withthetotalcatchlimitRUin subareas 48.1, 48.2, 48.3 and 48.4 changing many times,loweringin2007to3.47Mtons (CM5101).Butagain,for2010/2011season,roseto5.61Mtonsthrougharevision.Fishery response was during P4 higher, possible due the revision of the schemes to promote compliancebymemberaswellasnonContractingPartyvessels.Forabetteroverviewofthe developmentoffishingrulesappliedbyCCAMLRseetable7below,foradetailedoverview overallfishingrulesappliedandtheirmodificationsseeappendix7.

Rule Fishery Formulation of Framework of rules Ecological change configuration response rules P1 (1970s) Not existing Not existing Not existing Not existing P2 (1980s) CM1, CM7 Not existing Not existing Not existing CM7, CM18, CM32, CM40, CM46, CM50, CM18, CM32, CM50, P3 (1990s) CM61, CM62, CM64, CM68, CM82, CM85, Not existing CM62, CM68, CM82, Not existing CM95, CM118, CM119 CM85, CM95, CM173 10.02 (CM119), 23.02 (CM61), 23.03 (CM40), 26.01, 33.01 (CM95), 23.06, 26.01, 51.01 23.06, 31.01 (CM7), 31.02, 33.01 (CM95), 51.01(CM32), 91.01 (CM32), 91.01 (CM18), 51.01 (CM32), 51.04, 51.07, 91.01 (CM18), Existing P4 (2000s) (CM18), 91.02 (CM82), 91.02 (CM82), n/d 91.02 (CM82), 51.07, 91.01 (CM18), 91.02 n/d (CM62), 91.03 (CM62), 91.03 (CM82), n/d (CM62), 91.03, Table 7. Development of the Scotia Sea’s rule configuration.Source:BasedonCCAMLR´s(2011)annual reports(19802010)

Related ecosystems (ECO)

Seaice

AccordingtoNSIDC(2011),anddespitevariationperregions,thegeneralextensiontrendof thewholeAntarcticseaicehassmoothlyincreasedsinceendof1970s(seefigure19),atrend whichaccordingtoTurneretal(2009)includesthelargerpartoftheWeddellSea,southof ScotiaSea.Drasticdropsinseaiceextensionwereidentifiedforthefollowingyears;1979 80,198182,198283,198687,199899,200102and200506.Theseaiceextensionperiod is however according to Stammerjohn et al (2008) changing, mainly in the Antarctic Peninsularegion,southwestofScotiaSea,movingtowardsearlierretreatsandlateradvances (seefigure20).TemporallychangesfortheseaiceintheWeddellSeaaremixed,withthe northwesternportionoftheseahavingexperiencedashorteningoftheseaiceseasonbuta substantialareainthesouthcentralportionoftheseahavingexperiencedalengtheningofthe iceseasonuntil1999(Parkinsonetal2002).OtherecosystemsrelatedtotheScotiaSeaare presentedinappendix12.

44

Figure 19.SeaicecoverextensionchangesintheSouthernOceanandAntarctic.Ontheleft,trend in the Antarctic sea ice extents (19782009). Data based on monthly deviations and 12month running means. Source: NASA (2011) , withbasementoninvestigationsundertakenbyZwallyetal.(2002)andCavalieriandParkinson (2008). On the right average extension of sea ice between 1979 and 2007 with focus on main marineareasaroundtheAntarctic,basedonTurneretal(2009)

Figure 20. Temporal sea ice cover changes. (A) Monthly seaice extent (km²) and (B) monthly anomalies normalized by the standard deviation. In (A) the mean summer sea ice extent minimum (16,084 km2) occurs in March, while the mean winter maximum (172,455 km2) occurs in August. Source:Stammerjohnetal(2008)

45

Socio-economical settings (S)

Aquaculture

The global aquaculture production has since 1970s not stop growing. Its average annual percentage growth production rate between 1970 and 2008 (P1P4) was + 4,7 % reaching approximately 53 Mtons in 200815 , which means a share of 59 % towards the global fish captureproduction(FAO/FIGIS2011).Asiancountriesaretheworldleaders,andsincemid 1980sChinaistheforemostproducer,todaystandingforover60%ofthetotalproduction. Forabetteroverviewoverthedevelopmentofglobalaquacultureproductionsince1970,in relationtotheglobalfishcaptureproduction,seefigure21beloworappendix8.

World capture fisheries and aquaculture production (mtons), with empasis on regions and China (1970-2008) 100 Global fish capture production 80 Global aquaculture production 60 40 Mtons Aquaculture production in China 20 0 Aquaculture production in Asian 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 countries excluding China

Figure 21. ComparisonbetweenworldcapturefisheryandaquacultureproductionwithemphasisonAsiaand China.Dataonaquacultureproductiondoesnotincludeaquaticplants.Source.FAO/FIGIS(2011)

Fishmealandfishoil

Theglobalproductionofbothfishmealandfishoilhasremainedrelativelystablesince1970s (P1P4).Theaverageannualpercentagegrowthbetween1976and2008forfishmealwas+ 0,84%perannum,reaching6.1Mtonsin2008.Fishoilproductionhoweverhasonlyrisen with+0,27%perannum,reachingaround1Mtonsforthesameyear.Despitefallingbackin recent years, the average global consumption rates of both commodities has since 1995 increasedwith+5,2%and+3,9%,withglobalconsumptionsituatedat3.6Mtonsforfish mealand778thousandtonesforfishoilin2007(TaconandMetian2008).Moreover,since 2000 the international market price for fish meal andfishoilhasrisensignificantly.Fora betteroverviewoverthedevelopmentovertheinternationalfishmealandfishoilmarketand thepricedevelopmentforbothcommoditiesseefigure22below,orappendix9.

15 Its current growth is even higher; of 8.5% per year. Source (Tacon and Metian 2008, FAO 2010)

46

Global fish meal/oil production International market price for fish meal and use (1976 -2008) and fish oil (1981-2010)

8 2000 1800 6 1600 1400 4 Fish 1200 meal 1000 Mtons 2 800 0 US$/ tonne 600 Fish 1976 1984 1992 2000 2008 400 oil 200 Fish meal production Fish oil production 0

Fish meal use Fish oil use 1981 1985 1989 1993 1997 2001 2005 2009

Figure 22. Global fish meal and fish oil market. Comparison between production, use and prices of the two commodities.Source:FAO/FIGIS(2011),Indexmundi(2011)anddataonfishoilpriceindexobtainbyHelga JosupeitworkingonFAOthoroughemail)

Themainproducingcountriesoffishmealduringthe1970sand1980s(P1P2)wereJapan, Peru,ChileandSovietUnion.BothPeruandChilehastakenoverbythepassoftime(P3 P4).In1998productiondroppedsignificantly,mainlyforPeru.Otherfishmealproduction dropsforPeruoccurredin1972,1983,2003and2006;allcorrelatesmostlywithPeruvian anchovetastockreductionsdueElNinoeventsandheavyfishingefforts(Clark1976,Aranda 2009).Since1997,Chinahasstartedtoproduceitsownfishmealwithanaverageannual percentagegrowthrateof+8,5%.Chinaisinotherwordstoday’sleadingproducingcountry, withalmost1.5Mtonsin2008.Forabetteroverviewovertheproductionratesoffishmeal fromleadingcountriesseefigure23beloworappendix10.

Fish meal production by country (1976-2008)

3000000 China 2500000 Peru 2000000 Chile 1500000 Thailand

Tons 1000000 Denmark Japan 500000 Soviet Union 0 Norway 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

Figure 23.Fishmealproductionbycountry(19762008).Source:FAO/FIGIS(2011)

47

Themainconsumingcountriesoffishmealwereduringthe1970sand1980s(P1P2)Japan, SovietUnionandUnitedKingdom.However,thesecountriesstartedtofellbackattheendof 1980s, and during the 1990s and 2000s (P3P4) China has taken over. Its average annual percentage growthsince1988hasbeen +4,9 %,today standing for an usage of over 2.8 Mtons.China’sconsumptionratehasmadethreemaindrops(1998,2003and2006)during the last two decades, correlating with fish meal production stops in Peru. For a better overviewoverthedevelopmentofmainconsumingcountriesoffishmealseefigure24below orappendix11.

Fish meal use by country (1976-2008) 3000000 China 2500000 Japan 2000000 Norway Vietnam 1500000

Tons United Kingdom 1000000 Denmark 500000 Soviet Union 0 Thailand

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 Figure 24.Fishmealusebycountry(19762008).Source:FAO/FIGIS2011

Themainproducingcountriesoffishoilduringthe1970sand1980s(P1P2)wereNorway, Peru,ChileandSovietUnion.Duringthe1990s(P3)Denmarkraisedtothethirdlargestfish oilproducerafterPeruandChile.Norway’sproductionhashoweverdeclinedwithanaverage of3,5%since1976.NotableagainisthattheproductionoffishoilofChileandPerufall duringElNiñoyears(1982,1998and2002).Forabetteroverviewoverthedevelopmentof themainproducingcountriesoffishoilseefigure25below,orappendix12

Fish oil production by country (1976-2008)

800000 Peru 600000 Chile China 400000

Tons Denmark 200000 Soviet Union 0 Norway 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 Figure 25.Fishoilproductionbycountry(19762008).Source:FAO/FIGIS(2011)

48

Themainconsumingcountriesoffishoilwereduringthe1970sand1980s(P1P2)almostall European countries, with United Kingdom, Germany and Norway as leaders, smoothly followed by Chile. Since 1985, average annual using rates for both United Kingdom and Germanyhasfelleddowndrasticallyby6,6%and4%,whileNorwayandChilehasrisen remarkably. Both these countries are today the main consumers of fish oil. During recent yearsDenmarkhasraised,andChinahasbecomethethirdlargestuser.Forabetteroverview over the development of main consuming countries of fish oil see figure 26 below, or appendix11.

Fish oil use by country (1976-2008) 300000 Norway 250000 Denmark 200000 Chile 150000

Tons China 100000 50000 United Kingdom 0 Germany 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

Figure 26.Fishoilusebycountry(19762008).Source:FAO/FIGIS(2011)

Afterallwecannowsummarizetheresult,whereinitnowcanbeshowedthattherelationship betweenanalyzedvariableshaschangedwithintheSESsince1970s,whereinmanyattributes has increased in significance, while the Antarctic krillislosingsignificanceinthesystem. Thecanbecontemplatedinthefollowingschematicfigure27:

Figure 27. Schematicsummarizeofresults.SignificancelevelofanalyzedvariablesintheSESoftheScotia Sea.

49

DISCUSSION Theresultfromthefirstquestioninthisworkshowsthattheoutcomesfromnotusingasetof fishingrulesweremovingtheSEStowardscollapse,whiletheintroductionoffishingrulesin theScotiaSeaecosystemandkrillfisheryduringP3steadilyhaveincreasedtheSESadaptive capacity. However, other attributes and external factors have also risen in significance, increasing the connectiveness and complexity of the SES. Despite a more interconnected planet than ever before, recent research on the Southern Ocean has barely accounted for differentsocioecologicalvariablesovertemporalandspatialscales.Howtheserelationships have developed and moved the krillregime towards change will now be discussed next, consequently,respondingtothesecondresearchquestionregardingtheresiliencecapacityof theSES.

Thekrillfisherystate(19721991)

DuringP1mostofthevariableswerelooselyconnectedornotconnectedatallintheSES. Thepotentialforchangewaslowandresiliencehigh,positioningtheSESintoanrphasein theadaptivecycle.Despitetheexistenceofothergovernancesystems(GS)intheSouthern Ocean,suchastheIWCandCCAS,therewerestillnoinstitutionsoraframeworkofrules present to regulate the newly formed krill fishery (U) in the Scotia Sea ecosystem (RS). Moreover,withashortfallofmarinemammalspreyingonAntarctickrill(RU)therewasstill a lot of space for actors to seize on opportunity. In other words, few interactions existed between the loosely connected attribute U, RS and the RU in the SES. This open access situationcreatedadesirablekrillfisherystate,emergingfromanundesirablemammalfishery state.TheconnectionbetweentheSESwithrelated ecosystems (ECO) and external socio economicalsettings(S)shouldhowevernotbeexcludedduringP1.

Despitethemeandurationofwinterseaice(ECO)coveraroundtheAntarctichasbecome shorter around the Antarctic, sea ice extension (km²) in its overall has been expanding; a phenomenon also observable in the Weddell and Scotia Sea (see figure 19 and 20) (Stammerjohn et al 2008, Turner et al 2009, NASA 2011). Sea ice should be seen as a supportingforceforRU,enhancingtheresilienceofthenewlyformedSESduringP1,mainly inmaintaininghighdensitylevels,askrillcanshelterandpreyundertheseaiceonicealgae (Murphy et al 2007), stabilizing the krillregime and the krill fishery state 16 . However,

16 For a better overview compare figure 19 and 20 with figure 6 and 7 50

although this newly formed state was comprised by high krill catches, few U’s where operatingintheRSduringP1.ThemainkrillharvesterswereSovietUnionandJapan;bythat time highly dependent on forage fish for fish meal production and consumption. Their operations in the SES were mainly triggered by their own industrial food sectors; towards human consumption, livestock and animal production (IFFA 2011). Global aquaculture production was still not a significant force, despite its average annual percentage growth productionrateof+4,7%.AnothertriggeringforcewasthePeruviananchovetafisheryinthe HumboldtCurrentsystem(ECO)alongChileandPeru,whichcollapsedin1972,asaresultof overfishingandElNiñoevents(Clark1976,Aranda2009).Thiscollapsemusthaveshortened the global supply of nonfood commodities. Thus, stimulated by the following external factors;thecollapseofthePeruviananchovetafishery,thelowabundanceofmammalsand growinggovernancestructuresonmammalfishing,madethetwolargestforagefishandfish mealdependentnations,JapanandSovietUnion,tomovetheireffortsandvesselstowards theinstitutionalconstrainedandkrillrichSouthernOcean,leadingtothephenomenonknown as roving bandits, as stated by Olson (2000). The connection between both external components,S,ECOandtheSESoftheScotiaSeawasthereforetoadegreeinfluentialwhen establishingthekrillfishingstate.

AccordingtoCPRresearchsuchasHardin(1968)andOstrom(1990,2007),thescenarioin theScotiaSeaduringP1wasassembledforanoverharvestingofAntarctickrillandacollapse ofthewholeRS.Inotherwords,therewerenoimplicitlyinstalledinstitutionalstructuresora framework of rules to constrain resource use of Antarctic krill. However, during P2 connections started to appear between attributes in order to not destabilize the SES. The potentialforchangewasthereforeenhanced.Withthesetintoforceofthegovernancesystem (GS) of CCAMLR in 1982, subinstitutions and fishing rules appeared to ensure that the exploitationofmarineresourceswasnottoharmtheRUandRS,supportingtheclaimthatit laysinactorsinteresttoresolveacommonproblembycreatingtheinternationalregimeof CCAMLR(Krasner1982,Joyner1998).Connectionbetween the GS and U were however still nonexisting, withonly one fishing rule CM1 created for the extraction of marine resources in the seawaters around South Georgia (subarea 48.3), prohibiting any fishing activityotherthanforscientificresearchpurposes.Moreover,SovietUnionandJapanwere stillcatchinghighamountofAntarctickrill,possibleexplainedbythestrongerconnection thatexistedbetweenSandtheSESbythattime.ThePeruviananchovetafishery,whichhas producedarelativelysmallamountofforagefishtotheglobalmarketsinceitscollapseinP1

51

wasstillencouragingmainconsumersandproducersoffishmeal,SovietUnionandJapan,to continuetheirextractionofAntarctickrillintheSES.Mainfishoilconsumerswerestillnot actingintheSES.Overall,theinteractionscreatedinP2betweentheinternalattributesinthe SESandtheexternalvariablesdecreasedtheresilienceoftheSES.Although,itwasstillina desirablekrillfisherystatewithhighresilience,whichmeansthattheSESwasbythistime concludingtherphasefromP1andenteringaKphaseintheadaptivecycle.Thepositionof theSESintheadaptivecycleforP1andP2ispresentedinthefigure28below.

Figure 28.ThewayoftheSESintheadaptivecyclebetween1970 – 1990 and the strength of connection betweenanalyzedinternalandexternalvariables.

Theecosystembasedgovernancestate(19912010)

Inthethird analyzedperiodP3interactionsintensified within the SES, as connections betweenGSandtheRU,RS,Ubecamestrengthened.TheconnectionbetweenUandRU,RS ishoweverweakenedduetoexternaldisturbances.Theestablishmentofamorereceptiverule configurationin1991,throughthefirstruleCM32oncatchlimitsforAntarctickrill,and followingtheSCyearlyreport,totalcatchlimitforAntarctickrillbecame1.5milliontonsfor anyfishingseasoninstatisticalarea48(CCAMLR2011).Aprecautionarylimitwastobe agreedonbytheCommission,onthebasisofSCadviceiftotalcatchinsubareas48.1,48.2 and 48.3, during any fishing season, exceeded a trigger level of 620 000 tons (ibid.), regulating the access to RU and considering the RS to be complex and characterized by uncertainty. This now makes the SES more adaptable, taking into consideration ecological changes.TheSESisinotherwordsrestructuringfromakrillfisherystatetowardsaregional ecosystem based governance state, jumping over the KandΩphase,andmovingtheSES instead directly towards αphase where it is reorganizeandlaterwouldmoveintoaanr phase.Thisphaseshift,fromadesirablekrillfisherystateintoadesirableecosystembased governancestate,showssignalsofselforganizationandastrengthenedcapacityofCCAMLR 52

to monitor, evaluate, and adapt over time (Ostrom 2005). The external socioeconomical settingsofinteractionwiththeSESshouldnotbeexcludedfromthisoutcome.Duringthe firsttwoyearsofthe1990s(P3)SovietUnioncatcheswasalreadyreaching>575000tons (CCAMLR2011).Butasitspoliticalandeconomicalsystemcollapsesin1991,SovietUnion withdraws from krill fishery in the Scotia Sea. This explain the weakening connection betweenUandRU,RS,makingtotalkrillcatchesinthewholeSEStodropdrasticallyfrom over300000–400000tonsperannumduringP1andP2,to80000–130000tonsper annum during P3 (ibid). Japan now becomes the strongest U, but due to its reduced productionandconsumptionoffishmealthisnationweakenstheconnectionbetweentheSES andtheformerSconnectionfromP1andP2.Atthesametime,Chinaisincreasingitsuseof fishmealforaquacultureproduction(FAO/FIGIS2011),butisnotactingasaUintheSES, atleastnotformally.Neitherthedrasticdropofglobalfishmealnorfishoilproductionin 1998(seefigure8),duetothisyearsElNiñoevent,seemstohaveaffectedtheSESasitdid duringP1andP2.ThisdrasticchangeinU’scatchhoweveropenedupthedoorforarangeof newsmallernations,suchastheasUkraineandPoland which together with Japan would becomethemainU’sofkrillintheSESbytheendofP3.Mainfishoilproducingnations werestillnotoperatingsignificantlyintheScotiaSea.

The spatial and temporal redistribution of catch also changes between different subareas. Catchisnowmostlyequalwithsubarea48.1,48.2and48.3standingfor400000–550000 tonseachduringthewholeP3.ThefishingseasonisevenpostponedtothemonthMarch– August(Kawaguchiandcolleagues2006).IntheRSkrilldemandbymarinepredatorsgrows duetohighermarinemammalabundancearoundSouthGeorgia(subarea48.3).Evenso,the krilldensityduringP3smoothlyincreases,despitetheincreasesintheabundanceofmarine mammals,whichhoweveroutcompetemostoftheseabirdspecies,whicharestilldecreasing inabundance.

P4ischaracterizedbyanendoftherphasefromP3andanentranceoftheSES’secosystem governanceregimeintoaKphasewithlowerresilience,despiteCCAMLR’sadaptableand ecosystem based efforts to manage the resilience of the SES, by constantly revising the existing krill fishing rules and changing catch limits during P4 to new situations and environmentalconditions.Thisoutcomewasmainlytriggeredbythestrengtheningofarange ofconnectionandtheintensificationofinteractionsbetweentheattributefromP3.

53

Theabundance,andkrilldemandfrommarinemammals,hasincreasedintheRS,especially in subarea 48.3, together with the lowering in seabird abundance and the lowering in the densities of alternative prey lantern fish. The competitive release between species has in other word been loosening up, and competition for prey in the Scotia Sea is increasing (Trivelpieceetal2011).TheRUdensitycontinueditsdeclineduringP4,nowsituatingitself at2,16n/m²in2003(seefigure17).Despitefurther increases in sea ice extension cover (ECO), the temporal extensions of sea ice has been lowering (see figure 19 and 20) (Parkinssonetal2002,NASA2011).HowthisaffectstheloweringofAntarctickrilldensity cannotbedeterminedhereasmanymorephysicalvariablesmustbeanalyzed.However,the probabilityoftheRUtoreachacriticallevelintheScotiaSea,approximatingapopulation thresholdforthisforagefishishighinP4.IfthedecreasingdensitylevelsoftheRUcanbe compensatedbythecircumpolardistributionofthespeciesisstillanopenissue.Nevertheless, thisintensificationoftheRSwiththerestofattributesseemstomaketheRSanditspredators to move from krillcompetitiveness towards dietswitch in order to compensate lost prey (krill). The lowering of myctophid density shown in figure 16 is an indicator of this phenomenon,butneedstobeinvestigatedfurtherduethescarcityofdata.However,itcanbe saidthatbothtopdownandbottomupforcesarenowplayingaroleinstructuringtheScotia Seaecosystem,movingakrillcentredfoodwebtowardsafishcentredwoodweb.

Moreover, as the RS is intensifying its connection with RU, intensification also occurs betweenUandRS,S.Thelowconsistencyinkrillfishinglocations,aprocessextendingfrom P3,isnowonregularlybasesbykrillfishery.DuringthefirstyearsofP4krillfisherymainly focusedonsubarea48.3whit45%ofcatchesfor20002004. However, during the recent years krill fishery switched towards subarea 48.2 with 51 % of total catches (FAO/FIGIS 2011).Furthermore,withtheappearanceoftwoadditionalkrillfishingnations,Norwayand South Korea, and changing and improved technology, daily and total catches has been increasingintheSESattheendofP4.Thus,in2010,thefocusbecomessubarea48.1with over154000tonsofkrillcatch,makingCCAMLRforthefirsttimetocloseasubareaasits thetriggerlevelisreached(CCAMLR2011).ThisoperationalintensificationofU’scould alsobeexplainedbythereinforcementoftheconnectionsbetweentheSESandSduringP4. Asfishmealandoilprices(S)areincreasingsinceP3,foragefishdependingactors,using bothfishmealandfishoil,arenowseekingfornewfishingareasandeasycatch.Theposition oftheSESintheadaptivecycleforP3andP4ispresentedinthefigure29below.

54

Figure 29.ThewayoftheSESthroughtheadaptivecyclebetween1990–2010andthestrengthofconnection betweenanalyzedinternalandexternalvariables

Implicationsoffindings

Theforemostimplicationofthisworkistheexistenceofbothstabilityandmultistablestates intheScotiaSea,andthattheresilienceoftheSESisatpresentdecreasing.Thissuggeststhat theSESisnowclosingintowardsathreshold,withtheriskofmovingoverintoanewregime where the Scotia Sea willbehave in a different butstillunidentifiedway.Previousregime shifts were not identified or discussed. However, the transition towards both states (krill fishery state and ecosystem based governance state) in the SES was a result of different interactions,mainlyprovokedbyinternalandexternaldisturbancesofthenestedattributes,as suggestedby Folke (2006) for changesbetweenphases in the adaptive cycle. Accordingly, thisworkissuggestingthatresearchshouldnotregardtheScotiaSeaasaclosedkrillregime; independentlydiminishedbyafewvariables,eitherinlocalfishery,orinregionalphysicalor ecological forces, but as being part of complex and global system of people and nature dominatedbyflowsofcommodities,capital,aswellasoceanographicandclimaticpatterns.

Afterall,CCAMLRshouldprepareforupcomingchangesandcreategovernancemechanisms andfishingrulesintheScotiaSeathatfacilitateasmoothtransitionoftheSESfromaK phase,enhancingthedesirableservicesprovidedbytheScotiaSeaecosystemtobothmarine predatorsandfisheryandbufferingagainstexternaldisturbance.Thisworkthereforepresents the following recommendations: (1) Take into consideration changing predatorprey relationships in the Scotia Sea foodweb, and mitigate increased competition between predators and krill fishery for Antarctic krill. This could involve creating and developing fishing rules and triggerlevels on a small scale basis, emphasizing the management units (SSMU’s);(2)takeintoconsiderationtheroleofalternativepreyintheScotiaSeafoodweb as the krill density is now reaching critical levels in the Scotia Sea. The possibility of a

55

transitionfromakrilldominatedecosystemtowardsanunknownfishdominatedecosystemis inotherwordsprobable;(3)takeintoconsiderationtheappearanceofnewandmoreefficient krill fishing nations in the Scotia Sea, attracted by the global aquacultures’ increased productionanddemandofaquafeeds,lowercatchofotherforagefishspeciesworldover,and highernonfoodcommoditiesprices;(4)takeintoconsiderationtheseaicecovercapacityto continue expanding in size and provide shelter to Antarctic Krill species, thus, enhancing resiliencedespitedecreasingtemporalexpansion,andtheimplicationofthisforthecurrent SES krillregime; (5) continue the development and revision of the compliance rules to increasetrustformemberandnonmemberstatesandreduceIUUfishingintheregion,and finally; (6) develop a holistic database for transdisciplinary work which will help analyze futureinteractionofcrossscalingpolitical,socioeconomical,physicalandecologicalforces, thus, getting ready for an aquaculture world with increased anthropogenic pressure on the SothernOcean.

56

CONCLUSION TheaimofthisworkwastoexaminetheinterrelationshipbetweenCCAMLR,krillfishing and changes in Scotia Sea ecosystem and external socioeconomical and environmental forces,toimproveourunderstandingonhowtheircrossscalerelationshipshaveaffectedthe resilienceofthisSESovertime.Theresultsmainlyprovetheexistenceofstabilityandthe existenceofmultistablestatesintheScotiaSea;anearlykrillfisherystatecharacterizedby open access, which shifted towards an ecosystem based governance state in 1991 characterizedbyamoreadaptiveruleconfigurationandhigherfisheryresponses.However, despiterelativelylowcatchesofkrillnowadays,incomparisonwiththeallowablecatch,and withCCAMLR’sstrengthenedcapacitytoimplementanadaptiveandoperationalecosystem management approach, the resilience of the SES is now fading due to a combination of internal and external factors; lower Antarctic krill density, increasing abundance of marine mammals,mountingcompetitionformarineresourcesbetweenpredatorsandkrillfishery,the implementationofnewandmoreefficientfishingtechnologies, andmountinginternational production, demand and prices of nonfood commodities from an expanding aquaculture sector in Asia. These nested attributes are together moving the Scotia Sea towards an unknownfishregime.Thetransitionfromakrillregimetoanunknownfishregimecouldbe provokedbyadrasticchangeinoneofthephysicalvariablessuchasoceancurrents,seaice extensionandseasonality,orby continuesincreasingkrilldemandfrombothpredator and krill fishery for the target species. The exact role of all related ecosystems and physical, climaticallyandoceanographicforcesinmaintainingtheresilienceoftheSEScouldnotwith exactitudebemeasuredinthiswork.Suchquestionsmustthereforebeconsideredopenfor furtherresearch.InordertomaintainthedesirablekrillregimeintheSESthisworksuggests CCAMLRtotakefurtherconsiderationoftheinterrelatedroleofkrilldependentpredators and feedbacks from a changing foodweb structure. This could involve creating and developing fishing rules and triggerlevels on a small scale basis, emphasizing the managementunits(SSMU’s).Futurescenarioswillalsohavetotakeintoconsiderationthe mutualinteractionofpolitical,socioeconomical,physicalandecologicalforcessuchasthe roleofclimatechange.Hence,aholisticandtransdisciplinaryanalysisofwhatdeterminesthe resilienceofafuturekrill,fishorotherfoodwebstructureisfundamentalwhenmaintaininga desirablestateandconsideringhowtheSESoftheScotiaSeawillchangeovertime.

57

REFERENCES

ACAP(2011)AgreementontheConservationofAlbatrossesandPetrels[online]URL:

Adam,P.J.(2005)Lobodoncarcinophaga.InMammalianspeciesNo.772,pp.1–14,3figs [online]URL:http://www.science.smith.edu/msi/pdf/772_Lobodon_carcinophaga.pdf

Ainley,D.G.andBlight,K.L.(2008)Ecologicalrepercussionsofhistoricalfishextraction fromtheSouthernOcean.InFishandFisheries,20089,1–26. Alder,J.,Campbell,B.,Karpouzi,V.,Kaschner,KandPauly,D.(2008)Foragefish:from ecosystemstomarkets.AnnualReviewofEnvironmentandResources.2008.33:15366 [online]URL:http://www2.fisheries.com/files/ForageFishFromEcosystemsToMarkets.pdf Alheit,J.,andNiquen,M.,(2004).RegimeshiftsintheHumboldtCurrentecosystem.Progr. Oceanogr.60,201–22.[online]URL: ftp://ftp.imarpe.gob.pe/cambioclimatico/ALHEIT%20Y%20%D1IQUEN.pdf

Allison,H.(2003)Linkedsocialecologicalsystems:Acasestudyoftheresilienceofthe WesternAustralianagriculturalregion.PhDthesis.SchoolofEnvironmentalScience MurdochUniversity,December2003.[online]URL: http://researchrepository.murdoch.edu.au/60/1/01Front.pdf Aranda,M.(2009)EvolutionandstateoftheartoffishingcapacitymanagementinPeru:The caseoftheanchovetafishery.PANAMJAS.[online]URL: http://www.panamjas.org/pdf_artigos/PANAMJAS_4(2)_146153.pdf ASOC(2010)AntarcticandSouthernOceanCoalition.[online]URL:http://www.asoc.org/

Atkinson,A.,Siegel,V.,Pakhomovc,E.A.,JessoppaM.J.,andLoebd,V.(2009)Are appraisalofthetotalbiomassandannualproductionofAntarctickrill.DeepSeaResearch PartI:OceanographicResearchPapersVolume56,Issue5,May2009,Pages727740. Barker,P.F.(2001)ScotiaSearegionaltectonicevolution:implicationsformantleflowand palaeocirculation.EarthScienceReviews5520011–39.[online]URL: http://www.rci.rutgers.edu/~jdwright/MarGeol/Barker.pdf

Barnes,E.K.(2007)ShiftsintheBenguelaecosystemandrecommendationsforprotecting Namibia’sfisheryeconomy.Electronicthesis.Dukeuniversity2007.[online]URL: http://dukespace.lib.duke.edu/dspace/handle/10161/302 Bennett,E.M.,Cumming,G.S.,andPeterson,G.D.(2005)Asystemsmodelapproachto determiningresiliencesurrogatesforcasestudies.Ecosystems8:945957.

58

Berkes,F.,andFolke,C.(1998).Linkingsociologicalandecologicalsystems:management practicesandsocialmechanismsforbuildingresilience.CambridgeUniversityPress,New York,NewYork,USA.

Berkes,F,Hughes,T.P.,Steneck,R.S.,Wilson,J.A.,Bellwood,D.R.,Crona,B.,Folke,C., Gunderson,L.H.,Leslie,H.M.,Norberg,J.,Nyström,M.,Olsson,P,Osterblom,H.,Scheffer, M.,andWorm,B.(2006)Globalization,RovingBanditsandMarineResources.InScience 311:1557–1558.[online]URL:http://myweb.dal.ca/bworm/Berkes_etal_2006.pdf

Besanko,D.andBraeutigam,R(2005)Microeconomics,2ndedition

Birdlife(2011)[online]URL:www.birdlife.org

Borowski,D.(2003)TheAntarcticCircumpolarCurrent:Dynamicsofacircumpolarchannel withblockedgeostrophiccontours.Ber.Polarforsch.Meeresforsch.453(2003)[online]URL: http://epic.awi.de/Publications/BerPolarforsch2003453.pdf

Boveng,P.L.1993.Variabilityinacrabeatersealpopulationandthemarineecosystemnear theAntarcticpeninsula.PhD.ThesisatMontanaStateUniv.pp110. Boyd,I.L.(1993):PupproductionanddistributionofbreedingAntarcticfurseals ArctocephalusgazellaatSouthGeorgia.Antarct.Sci.,5,17–24 Boyd,I.L.,Staniland,I.J.andMartin,A.R.(2002)Distributionofforagingbyfemale Antarcticfurseals.MarineEcologyProgressSeries,242,pages285294. Boyd,I.L(2002)In:Perrin,W.F.,Würsig,B.&Thewissen,H.(eds.)Encyclopediaof MarineMammals.SecondEdition.AcademicPress,SanDiego,CA.

Burns,J.M.,Hindell,M.A.,Bradshaw,C.J.A.,andCosta,D.P.(2008)Finescalehabitat selectionofcrabeatersealsasdeterminedbydivingbehavior.DeepSeaResearchII55(2008) 500–514[online]URL:http://coreybradshaw.files.wordpress.com/2011/03/burnsetal2008 dsrii.pdf Carpenter,S.R.andKitchell,J.F(1992)Trophiccascadeandbiomanipulation:Interfaceof researchandmanagementAreplytothecommentbyDeMeloetal.Limnol.Oceanogr,37( 1).1992.208213.[online]URL:http://www.aslo.org/lo/toc/vol_37/issue_1/0208.pdf

Cash,D.W.,Adger,W.,Berkes,F.,Garden,P.,Lebel,L.,Olsson,P.,Pritchard,L.,and Young,O.(2006)Scaleandcrossscaledynamics:governanceandinformationinamultilevel world.EcologyandSociety11(2):8.[online] Cavalieri,D.J.,andC.L.Parkinson(2008):Antarcticseaicevariabilityandtrends,1979 2006,Journal of Geophysical Research Oceans

59

CCAMLR(1980)TextoftheConventionontheConservationofAntarcticMarineLiving Resources[online]URL:http://www.ccamlr.org/pu/e/e_pubs/bd/pt1.pdf

CCAMLR(2011)Alldocumentsandreportsavailable[online]URL:www.ccamlr.org Christensen,L.B.(2006)MarineMammalPopulations:ReconstructingHistorical AbundancesattheGlobalScale.FisheriesCentre.ResearchReports14(9).FisheryCentre. UBC.

Ciancio,J.E.,Pascual,M.,Botto,F.,Frere,E.yO.Iribarne.2008.Trophicrelationshipsof exoticanadromoussalmonidsintheSouthernPatagonianShelfasinferredfromstable isotopes.LimnologyandOceanography53(2):788798.[online]URL: http://www.aslo.org/lo/featured/archives.html

Clark,W.G.(1976)ThelessonsofthePeruviananchoveta.CaliforniaCooperativeOceanic FisheriesInvestigation,Reports,VolumeXIX,1stJuly1975to30thJuly1976:57–63. [online]URL: http://calcofi.ucsd.edu/newhome/publications/CalCOFI_Reports/v19/pdfs/Vol_19_Clark.pdf

Cohen,J.,T.Jonsson,andS.R.Carpenter.2003.Ecologicalcommunitydescriptionusingthe foodweb,speciesabundance,andbodysize.ProceedingsoftheNationalAcademyof SciencesUSA.100:1781–1786.[online]URL: http://www.pnas.org/content/100/4/1781.full.pdf+html

Collins,M.A.,Xavier,J.C.,Johnston,N.M.,North,A.W.,Enderlein,P.,Tarling,G.A., Waluda,C.M.,Hawker,E.J,Cunningham,N.J(2008)Patternsinthedistributionof myctophidfishinthenorthernScotiaSeaecosystem.PolarBiol31:837–851

Croxall,J.P.,DavisR.W.,etal.O’Connel,M.J.,(1987)Divingpatternsinrelationtodietof GentooandmacaronipenguinsatSouthGeorgia.TheCondor90.157167.TheCooper OrnithologicalSociety[online]URL: http://www.tamug.edu/marb/davisdocs/The%20Condor%201988%20Croxall,%20etal.pdf

CroxallJ.P,Reid,K,Prince,P.A(1999)Diet,provisioningandproductivityresponsesof marinepredatorstodifferencesinavailabilityofAntarctickrill.MarineEcologyProgress Series177:115–131Croxall,J.P.andNicol,S.(2004)ManagementofSouthernOcean fisheries:globalforcesandfuturesustainability.AntarcticScience(2004),16:569584

Deutsch,L.,Gräslund,S.,Folke,C.,Huitric,M.,Kautsky,N.,Troell,M.andLebel,L.(2007) Feedingaquaculturegrowththroughglobalization;exploitationofmarineecosystemsfor fishmeal.GlobalEnvironmentalChange17:238249

Dingle,H.andDrake,V.A.(2007)Whatismigration?BioScience57:113–121 [online]URL: http://media.eurekalert.org/release_graphics/pdf/07%20February%20Article%20Drake.pdf

60

Dzik,J.andJazdzewski,K.(1978).TheeuphausiidspeciesoftheAntarcticregion.Pol.Arch. Hydrobiol.25:589605.[online]URL: http://www.paleo.pan.pl/people/Dzik/Publications/Euphausia.pdf

Erickson,A.W.&Hanson,M.B,(1990)Continentalestimatesandpopulationtrendsof Antarcticseals.InKERRY,K.R.&HEMPEL,G.,eds.Antarcticecosystems:ecological changeandconservation.Berlin:Springer,253–264.

Esaiasson,P.,Gilljam,M.,Oscarsson,H.andWängnerud,L.(2003)Metodpraktikan: Konstenattstuderasamhälle,individochmarknad,(2:auppl.)NordstedtsJuridikAB, Stockholm.

Fallon,L.D.andStratford,E.(2003)IssuesofsustainabilityintheSouthernOceanfisheries: ThecaseofthePatagoniantoothfish.ReportfortheLighthouseFoundation,Schoolof GeographyandEnvironmentalStudies,UniversityofTasmania,HobartAustralia FAO(1986)Theproductionoffishmealandoil.Technicalpaper142FAO.[online]URL: http://www.fao.org/docrep/003/x6899e/X6899E00.HTM

FAO(2011)FoodandAgricultureOrganizationoftheUnitedNations[online]URL: http://www.fao.org/fishery/geartype/309/en

FAO/FIGIS(2011)FisheriesGlobalInformationSystem.FisheriesandStatisticalDatabaseof theFisheriesandAquacultureDepartmentoftheFoodandAgricultureOrganizationofthe UnitedNations(FAO).[online]Dataavailableathttp://www.fao.org/fishery/statistics/en

Flores,H.,vandePutt,A.P.,Siegel,V.,Pakhomov,E.A.,vanFraneker,J.A.,Meester, E.H.W.G.,Volckaert,F.A.M.(2008).Distribution,abundanceandecologicalrelevanceof pelagicfishintheLazarevSea,SouthernOcean.MarineEcologyProgressSeries367:271 282 Folke,C,L.Pritchard,F.Berkes,J.Colding,andU.Svedin.(1998)Theproblemoffit betweenecosystemsandinstitutions.IHDPWorkingPaperNo.2.InternationalHuman DimensionsProgramonGlobalEnvironmentalChange,Bonn,Germany.[online]URL: http://www.ihdp.unibonn.de/html/publications/workingpaper/wp02m.htm.

Folke,C.(2006)Resilience:Theemergenceofaperspectiveforsocialecologicalsystems analyses.GlobalEnvironmentalChange16:253267

Funtowicz,S.O.andRavetz,J.R.(1990).Uncertaintyandqualityinscienceforpolicy. KluwerAcademicPublishers,theNetherlands.

Freire,K.M.F.andPauly,D.(2010)FishingdownBrazilianmarinefoodwebs,withemphasis ontheeastBrazillargemarineecosystem.FisheriesResearchVolume105,Issue1,June 2010,Pages5762

61

Galaz,V.,Hahn,T,.Olsson,P.,Folke,C.,andSvedin.U.(2007).Theproblemoffitbetween ecosystemsandgovernancesystems:insightsandemergingchallenges.InO.Young,L.A. King,andH.Schroeder,editors.Theinstitutionaldimensionsofglobalenvironmentalchange: principalfindingsandfuturedirections.MITPress,Boston,Massachusetts,USA

Gascon,V.andWerner,R.(2006)AntarcticKrill:acasestudyontheecosystemimplications offishing.LighthouseFoundation.AntarcticandSouthernOceanCoalition.October2005. [online]URL:http://www.lighthousefoundation.org/fileadmin/LHF/PDF/Antarctickrill LF_EN.pdf

Hassol,N.J.C.,Rea,D.K.,vanderPluijm,B.A.,Parés,J.M.(2009)MidPliocenetoRecent abyssalcurrentflowalongtheAntarcticPeninsula:ResultsfromODPLeg178,Site1101. Palaeogeography,Palaeoclimatology,Palaeoecology284(2009)120–128.[online]URL: http://www.globalchange.umich.edu/Ben/Publications/09_ppp_hassold2.pdf

Hardin,G(1968)Thetragedyofthecommons.Science,162(1968):12431248.

Hague,R.andHarrop,M(2002)PoliticalScience:AComparativeIntroduction.Palgrave MacMillan;3rdedition

Hay,C.(2002)Politicalanalysis.Acriticalintroduction.Palgrave,Basingstoke,2002,314pp

Hill,S.L.,Trathan,P.N.,andAgnew,D.J.(2009)Therisktofisheryperformanceassociated withspatiallyresolvedmanagementofAntarctickrill(Euphausiasuperba)harvesting.The InternationalCouncilfortheExplorationoftheSea.PublishedbyOxfordJournals.

Holling,C.S.,andMeffeG.K.(1996)Oncommandandcontrol,andthepathologyof naturalresourcemanagement.ConservationBiology10:328337.

ICED(2010)[online]URL:http://www.iced.ac.uk/documents/FoodwebsModellingReport final.pdf

IFFO(2011)Fishmealandfishoil.Thefacts,figures,trends,andIFFO’sresponsiblesupply standard.AnneChamberlain.1stFebruary2011.[online]URL: http://www.iffo.net/downloads/Datasheets%20Publications%20SP/FMFOF2011.pdf

IMR(2010)InstituteofMarineResearch.[online]URL:http://www.imr.no/en IWC(2011)InternationalWhalingCommission.[online]URL:http://iwcoffice.org/>

Joyner,C.(1998)Governingthefrozencommons:theAntarcticregimeandenvironmental protection.UniversityofSouthCarolinaPress,Columbia,SouthCarolina,USA

KawaguchiS.,NicolS.,TakiK.&NaganobuM.(2006)FishinggroundselectioninAntarctic krillfishery:trendsinitspatternsacrossyears,seasons,andnations.CCAMLRScience13, 117–141.

Kock,K.H.(1992)Antarcticfishandfisheries.CambridgeUniversityPress,Cambridge.359 pp

62

Kock,K.H.(2000)UnderstandingCCAMLR’sApproachtoManagement.[online]URL: http://www.ccamlr.org/pu/e/e_pubs/am/toc.htm

Kock,K.H.(2007)AntarcticMarineLivingResources–exploitationanditsmanagementin theSouthernOcean.AntarcticScience19,231–238.

Krasner,S.D.(1982)Structuralcausesandregimeconsequences:regimesasintervening variables.InternationalOrganization.v.36,p.185205,1982

Kuhn,T.S(1962)Thestructureofscientificrevolutions,1st.ed.,Chicago:Univ.ofChicago Pr.,1962,p.168

Laws,R.M.1977.SealsandwhalesoftheSouthernOcean.PhilosophicalTransactionsofthe RoyalSocietyofLondon,279:81–96

LawsR.,M(1985)TheecologyoftheSouthernOcean.AmSci.73:2640.[online]URL: http://courses.washington.edu/mb250/laws.pdf Ludwig,D(2001)Theeraofmanagementisover.Ecosystems,Vol.4,No.8(Dec.,2001), pp.758764.Springer.[online]URL: http://www.uam.es/personal_pdi/ciencias/montes/documentos/Doctorado/ludwig.pdf

Miller,T.R.,Baird,T.D.,Littlefield,C.M.,Kofinas,G.P.,Chapin,F.S.andRedman.C.L. (2008)Epistemologicalpluralism:reorganizinginterdisciplinaryresearch.Ecologyand Society13:46. Mintenbeck,K.(2008)TrophicinteractionswithinAntarcticshelfcommunities–foodweb structureandthesignificanceoffish.PhDpresentedfortheAlfredWegenerInstitutefor PolarandMarineResearch,Bremen2008[online]URL: http://epic.awi.de/Publications/Min2008a.pdf

MooneySeus,ML&Rosenberg,AA(2007)RegionalFisheriesManagementOrganizations (RFMOs):Progressinadoptingtheprecautionaryapproachandecosystembased management,FortHillAssociatesLLC,Rome.[online]URL: http://www.chathamhouse.org.uk/files/9988_rfmotech1.pdf

Murphy,E.J.,Watkins,J.L.,Trathan,P.N.,Reid,K.,Meredith,M.P.,Thorpe,S.E., Johnston,N.M.,Clarke,A.,Tarling,G.A.,Collins,M.A.,Forcada,J.,Shreeve,R.S., Atkinson,A.,Korb,R.,Whitehouse,M.J.,Ward,P.,Rodhouse,P.G.,Enderlein,P.,Hirst,A. G.,Martin,A.R.,Hill,S.L.,Staniland,I.J.,Pond,D.W.,Briggs,D.R.,Cunningham,N.J. &Fleming,A.H.(2007).SpatialandtemporaloperationoftheScotiaSeaecosystem:a reviewoflargescalelinksinakrillcentredfoodweb.PhilosophicalTransactionsofthe RoyalSocietyBBiologicalSciences,362,113148.[online]URL: http://rstb.royalsocietypublishing.org/content/362/1477/113.full

NASA(2011)Datafound[online]URL: http://neptune.gsfc.nasa.gov/csb/index.php?section=59

63

Naylor,R.L.,Hardy,R.W.,Bureau,D.P.,Chiu,A.,Elliott,M.,Farrell,A.P.,Forster,I., Gatlin,D.M.,Goldburg,R.J.,Hua,K.,Nichols.,P.D.(2009)Feedingaquacultureinaneaof finiteresources,proceedingsoftheNationalAcademyofSciences(PNAS),Vol.106no.36, page(s)15103–15110[online]URL: http://fsi.stanford.edu/publications/feeding_aquaculture_in_an_era_of_finite_resources/

NevillJ(2009)Overfishing,uncertainty,andoceangovernance:LordPerry’squestion revisited.PhDthesis.SchoolofGovernment.TheUniversityofTasmania.October2009. [online]URL:http://aquaticcommons.org/3328/1/marineOverfishing.pdf

Nicol,S.,Foster,J,andKawaguchi,S.(2011) ThefisheryforAntarctickrill–recent developments.FishandFisheries:19

Nicol,SandFoster,J.(2003)RecenttrendsinthefisheryforAntarctickrill.Aquat.Living Resour.16:4245.[online]URL:http://www.alr journal.org/index.php?option=com_article&access=standard&Itemid=129&url=/articles/alr/p df/2003/01/alr3065.pdf

Nicol,S.(2005)Krill,currents,andseaice:Euphausiasuperbaanditschangingenvironment. BioScience56,11–120.

Nicol,S.,Croxall,J.P.,Trathan,P.N.,Gales,N.,MurphyE.J.(2007)Paradigmmisplaced? Antarcticmarineecosystemsareaffectedbyclimatechangeaswellasbiologicalprocesses andharvesting.Antarct.Sci.19(3):291295

NSIDC(2011)TheNationalSnowandIceDataCenter.Datafound[online]URL: http://nsidc.org/

Nyström,M,N.A.J.Graham,J.LokrantzandA.V.Norström.(2008)Capturingthe cornerstonesofcoralreefresilience:linkingtheorytopractice.CoralReefs(2008)27:795– 809[online]URL:http://www.springerlink.com/content/y736137635618158/

Olson,M(2000)Powerandprosperity.BasicBooks,NewYork2000

Osterblom,H.,HanssonS.,LarssonU.,Hjerne,O.,Wulff,F.,Elmgren,R.,Folke,C.(2007) HumaninducedtrophiccascadesandecologicalregimeshiftsintheBaltic Sea.Ecosystems2007;10:877889

Osterblom,H.,Olsson,O.,Blenckner,T.,andFurnessR.W.(2008)Junkfoodinmarine ecosystems.Oikos117:967–977 Osterblom,HandSumaila,I,R(2011)Toothfishcrises,actordiversityandtheemergenceof compliancemechanismsintheSouthernOcean

Ostrom,E.(1990)Governingthecommons:Theevolutionofinstitutionsforcollectiveaction, NewYork:CambridgeUniversityPress

64

Ostrom,E.(2005)Understandinginstitutionaldiversity,Princeton,NJ:PrincetonUniversity Press

Ostrom,E.(2007)AdiagnosticapproachforgoingbeyondPanaceas.PNAS,104,15181– 15187.[online]URL: http://www.indiana.edu/~workshop/colloquia/materials/papers/ostrom_paper.pdf

Ostrom,E.(2008)Developingamethodforanalyzinginstitutionalchange.Workshopin PoliticalTheoryandPolicyAnalysis,IndianaUniversityCenterfortheStudyofInstitutional Diversity,ArizonaStateUniversity.[online]URL. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=997837

Parker,R(2011)Measuringandcharacterizingtheecologicalfootprintandlifecycle environmentalcostofAntarctickrill(Euphausiasuperb)products.DalhousieUniversity Halifax,NovaScotiaApril2011.[online]URL: http://dalspace.library.dal.ca/bitstream/handle/10222/13423/Parker,%20Robert,%20MES,%20 SRES,%20April%202011.pdf?sequence=1

Parkinsson,C(2002)TrendsinthelengthoftheSouthernOceanseaiceseason,197999. AnnalsofGlaciology,Volume34,Number1,1January2002,pp.435440(6) Pauly,D.,Trites,A.,Capuli,E.,andChristensen,V.(1998)Dietcompositionandtrophic levelsofmarinemammals.ICESJournalofMarineScience,55:467–481.

Payne,M.R.(1979)GrowthintheAntarcticfursealArctocephalusgazelleJournalof ZoologyVolume187,Issue1,pages1–20,January1979

Peters,B.G.(1999)Institutionaltheoryinpoliticalscience:Thenewinstitutionalism.London Cassels

Piatkowskiletal1994NektoncommunityoftheScotiaSeaassampledbytheRMT25 duringaustralsummer

Pimm,S.L.(1982)Foodwebs.ChapmanandHall,London.219pp.

Poncet,S.;Robertson,G.;Phillips,R.A.;Lawton,K.;Phalan,B.;Trathan,P.N.;Croxall,J. P.(2006)."StatusanddistributionofwanderingBlackbrowedandGreyheadedAlbatrosses breedingatSouthGeorgia".PolarBiology(29):772–781. Reid,K.(1995)ThedietofAntarcticfurseals(ArctocephalusgazellePeters1875)during winteratSouthGeorgia.AntarctSci7:241–249

Reid,K.andCroxall,J.P.(2000)Environmentalresponseofuppertrophiclevelpredators revealsasystemchangeinanAntarcticmarineecosystem.ProceedingsoftheRoyalSociety London,B268,377–384.[online]URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088617/pdf/PB010377.pdf

ResilienceAlliance(2010)[online]URL:http://www.resalliance.org/

65

Rittel,HandWebber,M.(1973)Dilemmasinageneraltheoryofplanning.PolicySciences 4,ElsevierScientificPublishing,Amsterdam,pp.155159. Ruegg,K.C.,E.C.Anderson,C.S.Baker,M.Vant,J.JacksonandS.R.Palumbi.2010.Are Antarcticminkewhalesunusuallyabundantbecauseof20thcenturywhaling?Molecular Ecology19:281291.

Rosen,D.A.S,andTrites,A.W.(2000)PollockandthedeclineofStellersealions:testingthe junkfoodhypothesis.InCan.J.Zool.78:1243–1250(2000)

Sandström,A.andRova,C.(2010).Adaptivecomanagementnetworks:acomparative analysisoftwofisheryconservationareasinSweden.EcologyandSociety15(3):14.[online] URL:http://www.ecologyandsociety.org/vol15/iss3/art14/

SchnackSchiel,andIsla,E.(2005)Theroleofzooplanktoninthepelagicbenthiccouplingof theSouthernOcean.InSci.Mar.,69:3955.2005.[online]URL: http://digital.csic.es/bitstream/10261/2407/1/Schnack.pdf

Siegel,V.(2005)DistributionandpopulationdynamicsofEuphausiasuperba:Summaryof recentfindings.PolarBiol.29:1–22

Siegel,V.,andLoebV.(1995).RecruitmentofAntarctickrillEuphausiasuperbaandpossible causesforitsvariability.MarineEcologyProgressSeries123:45–56.

Sinclair,S.J.,M.D.White,andG.R.Newell.(2010).Howusefularespeciesdistribution modelsformanagingbiodiversityunderfutureclimates?EcologyandSociety15(1):8. [online]URL:http://www.ecologyandsociety.org/vol15/iss1/art8/ Smee,D.L.(2010)Environmentalcontextinfluencestheoutcomesofpredatorprey interactionsanddegreeoftopdowncontrol.NatureEducationKnowledge1(10):17

SOSP(2009)SouthernOceanSentinelProgram."Monitoringclimatechangeimpactson marinebiodiversity:establishingaSouthernOceanSentinelprogram.ReportoftheApril 2009WorkshopattheCCAMLRHeadquartersinHobart,Australia.[online]URL: http://www.antarctica.gov.au/science/southernoceanecosystems/southernoceansentinel workshop

Stammerjohn,S.E.,Martinson,D.G.,Smith,R.C.,Iannuzzi,R.A.(2008)Seaiceinthe westernAntarcticPeninsularegion:Spatiotemporalvariabilityfromecologicalandclimate changeperspectives.InDeepSeaResearchII55(2008)2041–2058

TaconandMetian(2008)Globaloverviewontheuseoffishmealandfishoilinindustrially compoundedaquafeeds:Trendsandfutureprospects.Aquaculture285(2008)146–158

Trathan,P.N,Croxall,J.P,MurphyE.J(1996)DynamicsofAntarcticpenguinpopulationsin relationtointerannualvariabilityinseaicedistribution.PolarBiology,16,321–330.

66

Trathan,P.N.,Murphy,E.J.,Croxall,P.,andEverson,I.,(1998)Useofatseadistribution datatoderivepotentialforagingrangesofmacaronipenguinsduringthebreedingseason. [online]URL:http://www.intres.com/articles/meps/169/m169p263.pdf

Trathan,P.N.,&Croxall,J.P.,(2004)MarinepredatorsatSouthGeorgia:anoverviewof recentbiologgingstudies.InMem.NatlInst.PolarRes.,Spec.Issue,58,118–132,2004. [online]URL:http://polaris.nipr.ac.jp/~penguin/oogataHP/pdfarticles/12p118132.pdf

Trivelpiece,W.Z.,Hinke,J.T.,Miller,A.K.,Reiss,C.S,.Trivelpiece,S.G,Watters,G.M., (2011)Variabilityinkrillbiomasslinksharvestingandclimatewarmingtopenguin populationchangesinAntarctica.ProceedingsoftheNationalAcadamyofSciences.PNAS paper.April,2011

Turner,J.,Comiso,J.C.,Marshall,G.J.,LachlanCope,T.A.,Bracegirdle,T.,Maksym,T., Meredith.M.P.,Wang,ZandOrr,A(2009),Nonannularatmosphericcirculationchange inducedbystratosphericozonedepletionanditsroleintherecentincreaseofAntarcticseaice extent,Geophys.Res.Lett.,36.L08502,doi:10.1029/2009GL037524,2009[online]URL: http://ruby.fgcu.edu/courses/twimberley/EnviroPhilo/Turner.pdf

UICNRedList(2011)Datafound[online]URL:http://www.iucnredlist.org/ vanderLingen,C.D.,Shannon,L.J.,Cury,P.,Kreiner,A.,Moloney,C.L.,Roux,J.P.,Vaz Velho,F.,2006.Resourceandecosystemvariability,includingregimeshiftsintheBenguela CurrentSystem.In:Shannon,V.,Hempel,G.,MalanotteRizzoli,P.,Moloney,C.L.,Woods, J.(Eds.),Benguela:PredictingaLargeMarineEcosystem.LargeMarineEcosystems14. Elsevier,Amsterdam,pp.147–185.

VanderZanden,M.J.,andVadebonceur,Y.(2002)Fishasintegratorsofbenthicandpelagic foodwebsinlakes.Ecology83:21512161.[online]URL: http://limnoreferences.missouristate.edu/assets/limnoreferences/Vander_Zanden_Vadeboncoe ur_2002.pdf

Vasconcellos,M.andGasallaM.A..(2001).Fisheriescatchesandthecarryingcapacityof marineecosystemsinsouthernBrazil.Fish.Res.,50:279295

Walker,B.H.,Holling,C.S.,Carpenter,S.R.,Kinzig,A.P.(2004)Resilience,adaptabilityand transformabilityinsocial–ecologicalsystems.EcologyandSociety9(2),5[online]URL: http://www.ecologyandsociety.org/vol9/iss2/art5/ Walker,B.H.andSalt,S.(2006)ResilienceThinking:SustainingEcosystemsandPeopleina ChangingWorld.174p.IslandPress,Washington,D.C.,USA

WDCS(2011)Whaleanddolphinconservationsociety.[online]URL: http://www.wdcs.org/>

Wikipedia(2011)Mapfound[online]URL:http://en.wikipedia.org/wiki/Scotia_Sea

67

Wiesmann,U.,HirschHadorn,G.,HoffmannRiem,H.,BiberKlemm,S.,Grossenbacher, W.,Joye,D.,Pohl,C.,andZemp,E.(2008).EnhancingTransdisciplinaryResearch:A SynthesisinFifteenPropositions.InHandbookofTransdisciplinaryResearch,editedbyG. HirschHadorn,H.HoffmannRiem,S.BiberKlemm,W.GrossenbacherMansuy,D.Joye,C. Pohl,U.Wiesmann,andE.Zemp,chapter27,p.433441.Dordrecht:Springer.[online]URL: http://www.transdisciplinarity.ch/d/Transdisciplinarity/documents/HB_Propositions.pdf

Young,O.R.(1992).Theeffectivenessofinternationalinstitutions:hardcasesandcritical variables.Pages160194inJ.N.RosenauandE.O.Czempiel,editors.Governancewithout government:orderandchangeinworldpolitics.CambridgeUniversityPress,Cambridge, UK.

Zwally,H.J.,J.C.Comiso,C.L.Parkinson,D.J.Cavalieri,andP.Gloersen,(2002): VariabilityofAntarcticseaice19791998,Journal of Geophysical Research ,107(C5),3041, doi:10.1029/2000JC000733,21pp.

68

APPENDIX 1 – GLOBAL ANNUAL NOMINAL CATCHES (Tons) OF FORAGE FISH SPECIES DESTINED FOR NON-FOOD USES (1970-2009)

Fish commonly caught for 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 non-food and reduction Chilean jack mackerel 108700 159100 110300 164500 322723 299904 397358 848071 1026180 1306337 Peruvian anchovy 13059900 11243700 4815300 1704800 3972670 3318656 4297095 810775 1416049 1413390 Blue whiting 38811 80855 43203 42620 39452 62032 120302 246672 549429 1101612 Japanese anchovy 419500 417600 473900 430900 460973 420615 342866 385775 335639 296428 Atlantic herring 2320434 2151383 1909320 1979461 1564947 1526723 1177633 990206 939474 887533 Chub mackerel 2016143 1835475 1876550 1935762 2152898 2089184 1938137 2679088 3412547 2872083 Capelin 1514724 1584219 1946235 2054060 1907869 2248185 3358826 4008746 3158301 2933573 European pilchar 610438 716777 696090 949501 991013 1070685 1315679 1113414 809060 789342 Californian pilchard 35500 50700 53600 64700 84142 121908 142080 107345 155929 186044 European sprat 236685 303798 331362 514583 650621 990299 911625 641884 726517 674353 Gulf menhaden 548600 729900 502200 487100 587717 542794 561525 447461 820352 807107 South American pilchard 11400 21400 16600 186200 280867 227799 501948 1491709 1990772 3345997 Atlantic mackerel 668523 758112 783725 1021010 982447 1092759 1072519 684779 704081 757744 Norway pout 308400 400000 527100 503200 877910 694439 644067 498296 437363 428734 Southern African anchovy 358300 367000 372200 558200 595778 400949 299481 376913 564291 587693 Horse mackarel 173895 155384 203918 263968 229778 221294 288205 146414 95737 111351 Pacific herring 581800 515400 620700 660700 519998 538263 430895 412136 188011 192110 Pacific saury 162900 263800 281600 490700 218085 316562 187545 343237 459922 364038 Atlantic menhaden 284900 266200 378006 369200 319852 275278 363666 367251 356739 374278

Argentine hake 108100 116400 139300 183700 172600 125646 225745 359149 416777 462039

European hake 143140 93572 121822 136593 138118 138788 127345 106042 77423 92722

Southern hake 0 0 0 0 0 0 0 0 0 45065

Senegalese hake 11229 10450 32432 99171 99510 38171 101934 58589 32977 35922

Silver hake 222030 235668 233400 434937 225283 232092 177548 112667 85826 72704

South Pacific hake 105500 93100 107600 224700 164001 135659 153041 173362 382439 125060

North Pacific hake 171300 183100 119600 163600 207462 230354 238219 126242 101222 141622

Shallow-water Cape hake 0 0 0 0 0 0 0 0 0 0

Rainbow sardine 33700 36000 41300 44400 46621 54770 51206 66838 40930 31274

Japanese pilchard 16900 57500 58200 300600 351878 529602 1076846 1470811 1933926 2155865

Southern African pilchard 627400 415600 551100 494600 617770 667517 637689 179997 111853 66212

European pilchard 610438 716777 696090 949501 991013 1070685 1315679 1113414 809060 789342

Round sardinella 96851 104887 108538 120827 109618 189059 161877 188851 198821 220116

Goldstripe sardinella 26800 27300 25500 40400 50613 63216 55566 65054 75627 79168

Brazilian sardinella 135400 161000 170700 228000 177089 136104 105276 145576 144685 149542

Japanese sardinella 0 0 0 0 0 0 2869 6227 9607 4212

Bali sardinella 17900 18200 17800 12900 16314 41779 41400 62507 49617 45625

Indian oil sardine 235000 217700 136000 85500 151336 262100 284889 264497 326091 320542

Elongate ilisha 12500 15500 16000 4400 1318 2263 7177 2882 14311 16891

Pacific sandlance 227100 271900 194900 194000 299696 274850 224312 137218 102908 110834

Golden threadfin bream 4900 5700 10200 13600 18011 12305 4299 8037 6460 6044 Antarctic Krill 0 0 0 59 19339 41352 885 75359 78940 266534

69

Fish commonly caught for non-food and 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 reduction Chilean jack mackerel 1280639 1740315 2204641 1678875 2324010 2148841 1960897 2681782 3245699 3654628 Peruvian anchovy 822818 1550313 1826402 126410 93654 986796 4945315 2100508 3613107 5407527 Blue whiting 1108535 907165 556084 543749 613873 669290 817987 711554 671636 666493 Japanese anchovy 320261 344819 359709 339460 379193 349336 412272 308238 303604 316203 Atlantic herring 923179 951801 971171 1143386 1201373 1452831 1532217 1593895 1724399 1649629 Chub mackerel 2667477 1919834 1 865875 1675537 2220408 1742730 2011056 1569696 1825740 1686926 Capelin 2592471 2805095 1843533 2553381 2595117 2216484 1407809 1107606 1145354 903508 European pilchar 967405 1000023 865359 960742 913590 926110 980587 1184213 1366307 1539138 Californian pilchard 328096 344433 432588 381373 278331 372344 470534 477076 446127 509248 European sprat 652553 600122 558068 372296 296212 220525 265761 312669 322345 314060 Gulf menhaden 702073 552567 854336 923585 982888 883514 828503 907103 638733 583350 South American pilchard 3253365 2973133 3475535 4066403 5734667 6509301 4960771 4949842 5382681 4440783 Atlantic mackerel 651122 625796 610499 569534 658095 597844 608520 700768 710931 631595 Norway pout 552572 349583 522763 548550 519863 344693 284519 339344 276807 351914 Southern African anchovy 508750 492970 389571 424011 285962 323239 315110 969401 682457 373095 Horse mackarel 125515 157082 187612 160769 157241 194992 202134 247168 343175 367766 Pacific herring 202584 216691 224613 261504 248076 293178 324734 348517 304651 213152 Pacific saury 238150 202863 240700 251861 242344 273760 251055 227347 346997 330592 Atlantic menhaden 430399 402440 400341 420353 328507 359151 256230 323184 360463 356868

Argentine hake 354708 326521 360338 347688 254851 376496 381245 428779 434343 398682

European hake 107991 101041 96582 109792 128825 134810 122151 125465 124822 107903

Southern hake 37095 39774 45943 32200 31742 33361 39323 58342 72668 64298

Senegalese hake 30000 13912 20114 26161 14013 8420 23456 16469 15580 19419

Silver hake 62439 63748 78780 53477 95924 98902 102292 77920 90725 105905

South Pacific hake 191438 102779 52891 31260 45328 47064 74278 64286 149831 156176

North Pacific hake 57086 142212 115280 124138 146470 118605 222806 372682 255108 315655

Shallow-water Cape hake 0 0 0 0 5 16 19 19 5 2

Rainbow sardine 40974 37843 32102 31923 47354 40184 40215 42896 49235 44450

Japanese pilchard 2595315 3613379 3966090 4464825 5156086 4722862 5191036 5321064 5428922 5142930

Southern African pilchard 58120 91726 58074 79654 78284 85792 86536 106921 101146 102567

European pilchard 967405 1000023 865359 960742 913590 926110 980587 1184213 1366307 1539138

Round sardinella 244302 205781 245611 278702 230010 343266 384457 448191 454822 485120

Goldstripe sardinella 92646 108714 98980 104617 109393 108543 120646 118299 134076 141888

Brazilian sardinella 146276 111967 98873 139377 137236 123962 126197 91316 65139 78116

Japanese sardinella 5102 4244 5625 10606 10829 8994 14033 10300 10693 7280

Bali sardinella 52354 44172 56987 90900 79365 54058 51387 61531 94644 99387

Indian oil sardine 295078 386736 311744 268456 306995 290229 292499 265704 251173 300210

Elongate ilisha 18169 16665 17604 15338 19711 18593 24659 15470 16300 18289

Pacific sandlance 201227 163548 127887 123262 170236 124656 143387 124672 83560 77850

Golden threadfin bream 6592 6306 4817 4957 5298 5844 6737 6405 9760 8131 Antarctic Krill 356978 288868 373586 138351 104680 180807 425871 346505 364173 394394

70

Fish commonly caught for 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 non-food and reduction Chilean jack mackerel 3828452 3953748 3379343 3376871 4261941 4955186 4378843 3597117 2025758 1423447 Peruvian anchovy 3771577 4017106 6157269 8482463 12520611 8644576 8863714 7685098 1729064 8723265 Blue whiting 577493 448104 475254 550424 493973 544310 632471 712279 1185003 1321195 Japanese anchovy 536271 613664 662540 1001372 820626 972008 1254487 1575399 1937750 1674762 Atlantic herring 1541590 1404217 1546449 1641860 1930045 2352857 2328688 2533912 2421462 2411408 Chub mackerel 1330358 1182964 963326 1475721 1544017 1578164 2182476 2401727 1892371 1921299 Capelin 1006030 1259142 2115140 1742686 884404 748800 1527422 1603338 982312 904045 European pilchar 1521993 1464150 1156750 1076230 1133637 1208655 996314 1001734 954628 912683 Californian pilchard 313602 325330 279293 272630 300714 363464 450596 498653 381898 405402 European sprat 244876 273108 288784 380675 579681 601998 671616 700239 696228 684189 Gulf menhaden 519583 550730 432848 551822 767448 472039 491612 597565 497461 694242 South American pilchard 4253718 4189889 3057073 1966530 1746544 1503131 1493936 722807 937269 442790 Atlantic mackerel 657866 681641 784816 840833 855596 794329 559251 555608 666964 618014 Norway pout 295634 303371 452926 324318 291005 389800 275667 211394 97478 112613 Southern African anchovy 200605 167657 386133 298680 180675 218331 41792 62640 110296 180954 Horse mackarel 405480 366090 426076 515361 434438 559867 474625 455109 350298 320186 Pacific herring 199488 215522 227434 211269 184651 211676 257870 436701 506149 468928 Pacific saury 435869 402017 384444 402930 335604 350287 276111 388643 180973 187898 Atlantic menhaden 428198 397525 340546 347806 286502 365736 304665 322239 276230 208000

Argentine hake 419750 518902 475759 526822 526132 636385 688650 652104 528660 375995

European hake 98775 107721 115913 114660 113129 119906 92332 76958 66159 70553

Southern hake 61199 47784 49865 32005 28797 39463 36970 39073 43201 47560

Senegalese hake 15228 14854 14246 13872 14435 14779 16485 16430 18318 23219

Silver hake 90843 82794 45305 45957 24380 35480 43164 33565 31892 27609

South Pacific hake 224602 140168 93054 152962 203812 256585 323470 265573 162516 140910

North Pacific hake 263797 130468 153548 203375 369421 236436 295219 325048 318475 308739

Shallow-water Cape hake 17 109 219 92 24 26 832 777 906 2060

Rainbow sardine 38108 35632 36279 25949 40094 39904 41347 38045 42960 48265

Japanese pilchard 4732154 3774247 2488533 1796132 1313739 733427 430837 408476 282017 495962

Southern African pilchard 149279 120865 134220 166775 209901 158002 106381 144681 196581 175969

European pilchard 1521993 1464150 1156750 1076230 1133637 1208655 996314 1001734 954628 912683

Round sardinella 484866 540197 495707 401767 359886 412811 562366 469882 517362 420242

Goldstripe sardinella 134972 136626 139352 152560 166452 161096 157104 156914 174691 162710

Brazilian sardinella 32106 64323 64846 50015 84648 60212 97093 117642 82283 25518

Japanese sardinella 4205 4463 3597 24383 23974 18345 10663 5593 1973 6674

Bali sardinella 113515 145055 137022 122039 128202 98905 88590 138636 153965 89286

Indian oil sardine 338135 253215 270668 262302 197717 197601 223355 298979 257073 222278

Elongate ilisha 24667 31685 30296 28966 32839 47101 51969 72004 75088 95986

Pacific sandlance 75545 90107 124273 106568 109344 108124 115766 108666 90688 82918

Golden threadfin bream 12511 7685 8933 9841 4142 3664 4261 4401 3681 3990 Antarctic Krill 344364 355460 302911 83086 83063 117448 91150 75653 90098 101959

71

Fish commonly caught for non-food and 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 reduction Chilean jack mackerel 1542812 2528924 1750078 1790007 1873900 1747955 1992783 1953710 1430129 1252552 Peruvian anchovy 11276357 7213077 9702614 6203751 10679338 10244166 7007157 7611858 7419295 6910467 Blue whiting 1472105 1821887 1572594 2385036 2428955 2070286 2038723 1684853 1283536 640953 Japanese anchovy 1563262 1651361 1678869 1892856 1629486 1481442 1509170 1390596 1265763 1071200 Atlantic herring 2381011 1952605 1873503 1958928 2020491 2315431 2224747 2368656 2479202 2509260 Chub mackerel 1422804 1800045 1439305 1817748 1956679 1991021 1974021 1714734 1900387 162410 Capelin 1484818 1667702 1980885 1143971 663533 751905 268859 422700 254450 364097 European pilchar 947685 1139051 1097324 1050093 1060087 1070234 1034417 981506 1043560 1217346 Californian pilchard 546079 685497 722071 633554 565280 339130 355527 559520 742028 758070 European sprat 658412 648677 621808 637848 689435 792053 592879 575209 562175 667187 Gulf menhaden 591434 528506 582497 522195 464148 369906 408875 456576 420719 454758 South American pilchard 338131 135712 27338 20037 6898 4507 1268 1035 400 205 Atlantic mackerel 685545 703375 761340 689593 706080 560038 547912 566096 610994 706394 Norway pout 204845 90837 107879 37833 22513 354 54348 4809 39223 57261 Southern African anchovy 267986 289323 254643 260525 192305 283446 135463 252997 266105 174493 Horse mackarel 230135 249938 211736 208794 205423 218871 210797 204344 184324 242209 Pacific herring 455029 399309 313032 298510 294602 324259 342742 267947 283580 305596 Pacific saury 306069 376173 335473 446066 355790 478226 394861 524947 622119 476883 Atlantic menhaden 207122 261401 211574 203263 215163 194243 183868 215506 187742 182210

Argentine hake 246744 306771 412068 380283 480588 422715 406876 346832 315516 331359

European hake 71241 57914 66503 72909 81168 88989 86426 75373 81553 93927

Southern hake 52478 48737 42566 52264 56968 47887 47776 47352 40103 42774

Senegalese hake 24688 23584 7486 6393 5528 2294 3585 5161 4524 13489

Silver hake 25756 33000 24293 20223 22384 18903 17935 18418 18723 18415

South Pacific hake 193504 246265 162291 123008 112248 78036 77436 77534 83256 94306

North Pacific hake 229094 233919 187665 210371 341207 364069 356651 274275 312056 172003

Shallow-water Cape hake 658 1863 3225 1457 1799 1600 1800 5876 2565 2146

Rainbow sardine 36754 37303 27175 29687 31360 38314 35111 35158 30639 29724

Japanese pilchard 283889 315759 208805 191355 203490 185164 235092 248332 192039 195724

Southern African pilchard 161448 200100 264886 312249 402435 274043 219642 176782 114057 108049

European pilchard 947685 1139051 1097324 1050093 1060087 1070234 1034417 981506 1043560 1217346

Round sardinella 371240 525681 479543 514791 486733 434762 375241 334160 379446 315749

Goldstripe sardinella 172219 185912 182026 153771 145428 177302 170522 169823 174356 175800

Brazilian sardinella 17053 39847 22057 25266 53421 42657 54201 55940 74631 83286

Japanese sardinella 4603 766 796 885 755 1756 953 795 4893 5983

Bali sardinella 88744 103710 132170 136436 103362 96994 163129 176665 139350 139010

Indian oil sardine 418091 457490 361607 373972 382186 360981 377693 385082 428529 422560

Elongate ilisha 92519 86500 80425 81558 80704 84490 92183 88800 94192 98657

Pacific sandlance 66129 92967 72901 283621 259261 266443 266026 188429 197529 181510

Golden threadfin bream 4824 3536 2995 4274 3523 3684 2670 2626 1754 1886 Antarctic Krill 114429 104182 125987 117728 118167 129026 106635 104586 156521 123949

Source:FAO/FIGIS(2011)

72

APPENDIX 2 – ANNUAL NOMINAL CATCHES (Tons) OF ANTARCTIC KRILL, SELECTED MARINE FISHES AND WHALES PER YEAR (1950 – 2009) IN THE SOUTHERN OCEAN

Annual nominal catches (t) 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

Antarctic krill 0 0 0 0 0 0 0 0 0 0 0 Marine fishes 0 0 0 0 0 0 0 0 0 0 0 Whales 32396 33945 35320 30653 34869 37780 38538 36214 40007 41570 41354

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

Antarctic krill 0 0 0 0 0 0 0 0 0 0 0 Marine fishes 0 0 0 0 0 1100 12900 5400 89100 399709 220531 Whales 43677 39981 30206 30995 32569 24696 20245 15089 11496 11999 12199

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

Antarctic krill 0 59 19339 41352 1552 75267 83358 263116 357047 289726 373656 Marine fishes 192937 28772 51730 35768 59107 185449 320008 113718 119766 116526 137934 Whales 14570 15627 18372 16043 10907 11791 7783 7819 8074 6240 7154

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

Antarctic krill 144710 97399 259135 378739 400835 388953 352271 276099 331318 257663 60783 Marine fishes 255035 100114 51922 74943 117394 114917 67180 98573 78200 11664 6773 Whales 6447 6055 4968 4969 4969 273 241 330 327 288 330

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Antarctic krill 84645 134419 91150 75653 90026 101957 114426 104182 125987 117728 118224 Marine fishes 7359 11980 9350 12777 13695 14223 22581 16342 20364 24816 20644 Whales 330 330 440 440 438 389 439 440 440 441 445

2005 2006 2007 2008 2009 2010 Antarctic krill 129057 106595 104621 156521 125824 211180

Marine fishes 20387 21263 22340 20420 20176 n/d

Whales 441 856 510 551 679 n/d

Whalesincludeblue whales, fin whale, humpback whale, killer whale, longfinnedpilot whale, minke whale,northernbottlenosewhale,seiwhale,spermwhaleandtoothedwhalesnei.Marinefishesinclude marbled rockcod (Notothenia rossii), mackerel icefish (Champsocephalus gunnari), grey rockcod (Nothotenia squamifrons), patagonian rockcod (Patagonotothen Notothenia) guntheri), subAntarctic (recordedascarlsbergi),thePatagoniantoothfish(DissostichuseleginoidesandD. mawsonii),thespinyicefish(Chaenodracowilsoni).Source:FAO/FIGIS(2011)

73

APPENDIX 3 – ANNUAL NOMINAL CATCHES (Tons) BY COUNTRY AND DECADE IN THE SOUTHERN OCEAN (1970-2009)

Total krill catch (tons) by country and decade in the Southern Ocean (1970-2009)

1970s Tons 1980s Tons

Japan 83631 Japan 520162

Poland 8578 Poland 17815

Un. Sov. Soc. Rep. 535395 Un. Sov. Soc. Rep. 3080411

Chile 368 Chile 24118

German Dem. Republic 110 German Dem. Republic 446

Korea, Republic of 511 Korea, Republic of 10876

Spain 379

1990s Tons 2000s Tons

Argentina 6524 Argentina 172

Japan 650155 Japan 410926

Poland 127597 Poland 94179

Un. Sov. Soc. Rep. 575429 Chile 2

Chile 21341 Korea, Republic of 217971

Korea, Republic of 8648 Russian Federation 997

India 6 Ukraine 121793

Latvia 71 United Kingdom 18

Panama 637 Uruguay 6477

Russian Federation 105466 Norway 112261

Ukraine 143922 United States of America 34665

United Kingdom 942

Uruguay 3444

South Africa 3

Source:CCAMLR(2011)

74

APPENDIX 4 – ANNUAL NOMINAL CATCHES (Tons) OF ANTARCTIC KRILL PER YEAR AND SUBAREA IN FAO's FISHING AREA 48 (1970 -2008)

Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

Peninsular (Subarea 48.1) 0 0 0 0 0 276 92 0 0 49439

South Orkney (Subarea 48.2) 0 0 0 0 0 0 0 0 0 173765

South Georgia (Subarea 48.3) 0 0 0 0 0 0 6966 2 18 133774

South Sandwich (Subarea 48.4) 0 0 19 0 0 0 0 101 130 0

Weddel Sea (Subarea 48.5) 0 0 0 0 0 0 0 0 0 0

Bouvet (Subarea 48.6) 0 0 40 200 0 0 0 0 0 0

Not specified in which subarea 0 0 0 19139 41352 609 68301 78837 266386 0

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

Peninsular (Subarea 48.1) 92859 69023 531 32128 11592 42113 70515 78918 105554 42477

South Orkney (Subarea 48.2) 60540 257695 125605 64112 123830 241673 19779 94659 82406 220518

South Georgia (Subarea 48.3) 135252 46868 11480 8440 45385 142084 256206 190492 206354 81369

South Sandwich (Subarea 48.4) 0 0 0 0 0 0 0 0 0 0

Weddel Sea (Subarea 48.5) 0 0 0 0 0 1 0 0 0 0

Bouvet (Subarea 48.6) 217 0 735 0 0 0 5 104 0 0

Not specified in which subarea 0 0 0 0 0 0 0 0 0 0

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Peninsular (Subarea 48.1) 64641 78385 37716 45085 35025 61964 48843 56575 38897 71977

South Orkney (Subarea 48.2) 167257 123186 12670 19259 48833 2734 99 6673 62077 16891

South Georgia (Subarea 48.3) 123562 101310 30040 18648 33590 26452 26711 26776 985 25557

South Sandwich (Subarea 48.4) 0 0 50 0 0 0 0 0 0 0

Weddel Sea (Subarea 48.5) 0 30 0 0 0 0 0 0 0 0

Bouvet (Subarea 48.6) 0 0 33 0 0 0 0 0 0 0

Not specified in which subarea 0 0 2577 71 0 0 0 74 0 4

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008

Peninsular (Subarea 48.1) 46778 10646 35377 13882 7095 88876 18419 2884 32206

South Orkney (Subarea 48.2) 4981 72059 15426 46456 73494 3103 65591 93384 91742

South Georgia (Subarea 48.3) 52423 43282 66925 57829 48437 14613 20576 60253 1

South Sandwich (Subarea 48.4) 0 0 0 0 0 0 0 0 0

Weddel Sea (Subarea 48.5) 0 0 0 0 0 0 0 0 0

Bouvet (Subarea 48.6) 0 0 0 0 0 0 0 0 0

Not specified in which subarea 0 0 0 0 0 43 0 0 0

Source:CCAMLR(2011)

75

APPENDIX 5 – CHANGES IN MEAN DENSITY (N/mˉ²) OF DIFFERENT LANTERN FISH SPECIES IN THE SCOTIA SEA (1991 – 2004)

Year Region Specie Lat Long Density

2004 Scotia Sea Electrona carlsbergi 53 56 S 40 57 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 22 S 38 29 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 22 S 38 28 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 42 S 39 34 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 29 S 39 27 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 31 S 38 14 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 32 S 38 17 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 33 S 37 50 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 38 S 38 18 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 25 S 41 34 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 28 S 40 38 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 29 S 40 10 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 32 S 38 14 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 19 S 37 57 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 42 S 40 38 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 47 S 39 5 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 35 S 42 42 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 47 S 40 13 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 47 S 39 4 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 26 S 42 1 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 26 S 42 4 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 29 S 41 25 W 0,049489881

2004 Scotia Sea Electrona carlsbergi 53 30 S 41 34 W 0,049489881

2004 Scotia Sea Electrona antarctica 53 56 S 40 57 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 22 S 38 29 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 22 S 38 28 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 42 S 39 34 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 29 S 39 27 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 31 S 38 14 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 32 S 38 17 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 33 S 37 50 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 38 S 38 18 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 25 S 41 34 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 28 S 40 38 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 29 S 40 10 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 32 S 38 14 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 19 S 37 57 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 42 S 40 38 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 47 S 39 5 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 35 S 42 42 W 0,02430788

76

2004 Scotia Sea Electrona antarctica 53 47 S 40 13 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 47 S 39 4 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 26 S 42 1 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 26 S 42 4 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 29 S 41 25 W 0,02430788

2004 Scotia Sea Electrona antarctica 53 30 S 41 34 W 0,02430788

2004 Scotia Sea Electrona subaspera 53 42 S 40 38 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 47 S 39 5 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 35 S 42 42 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 47 S 40 13 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 47 S 39 4 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 26 S 42 1 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 26 S 42 4 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 29 S 41 25 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 30 S 41 34 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 56 S 40 57 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 38 S 38 18 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 25 S 41 34 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 28 S 40 38 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 29 S 40 10 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 32 S 38 14 W 1,94507E-05

2004 Scotia Sea Electrona subaspera 53 19 S 37 57 W 1,94507E-05

2004 Scotia Sea Electrona spp. 53 56 S 40 57 W 0,004727775

2004 Scotia Sea Electrona spp. 53 42 S 39 34 W 0,004727775

2004 Scotia Sea Gymnoscopelus bolini 53 56 S 40 57 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 22 S 38 29 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 22 S 38 28 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 42 S 39 34 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 29 S 39 27 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 31 S 38 14 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 32 S 38 17 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 33 S 37 50 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 38 S 38 18 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 25 S 41 34 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 28 S 40 38 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 29 S 40 10 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 32 S 38 14 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 19 S 37 57 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 42 S 40 38 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 47 S 39 5 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 35 S 42 42 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 47 S 39 4 W 0,00059771

2004 Scotia Sea Gymnoscopelus bolini 53 26 S 42 4 W 0,00059771

2004 Scotia Sea Gymnoscopelus fraseri 53 56 S 40 57 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 22 S 38 29 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 22 S 38 28 W 0,024941329

77

2004 Scotia Sea Gymnoscopelus fraseri 53 42 S 39 34 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 29 S 39 27 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 31 S 38 14 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 32 S 38 17 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 33 S 37 50 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 38 S 38 18 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 25 S 41 34 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 28 S 40 38 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 29 S 40 10 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 32 S 38 14 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 19 S 37 57 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 42 S 40 38 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 47 S 39 5 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 35 S 42 42 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 47 S 40 13 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 47 S 39 4 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 26 S 42 1 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 26 S 42 4 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 29 S 41 25 W 0,024941329

2004 Scotia Sea Gymnoscopelus fraseri 53 30 S 41 34 W 0,024941329

2004 Scotia Sea Gymnoscopelus microlampas 53 42 S 40 38 W 0,000606923

2004 Scotia Sea Gymnoscopelus microlampas 53 47 S 39 5 W 0,000606923

2004 Scotia Sea Gymnoscopelus microlampas 53 35 S 42 42 W 0,000606923

2004 Scotia Sea Gymnoscopelus microlampas 53 47 S 39 4 W 0,000606923

2004 Scotia Sea Gymnoscopelus microlampas 53 38 S 38 18 W 0,000606923

2004 Scotia Sea Gymnoscopelus microlampas 53 25 S 41 34 W 0,000606923

2004 Scotia Sea Gymnoscopelus microlampas 53 28 S 40 38 W 0,000606923

2004 Scotia Sea Gymnoscopelus microlampas 53 29 S 40 10 W 0,000606923

2004 Scotia Sea Gymnoscopelus microlampas 53 32 S 38 14 W 0,000606923

2004 Scotia Sea Gymnoscopelus microlampas 53 19 S 37 57 W 0,000606923

2004 Scotia Sea Gymnoscopelus nicholsi 53 56 S 40 57 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 22 S 38 29 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 22 S 38 28 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 42 S 39 34 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 29 S 39 27 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 31 S 38 14 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 32 S 38 17 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 33 S 37 50 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 38 S 38 18 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 25 S 41 34 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 28 S 40 38 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 29 S 40 10 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 32 S 38 14 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 19 S 37 57 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 42 S 40 38 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 47 S 39 5 W 0,032404089

78

2004 Scotia Sea Gymnoscopelus nicholsi 53 35 S 42 42 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 47 S 40 13 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 47 S 39 4 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 26 S 42 1 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 26 S 42 4 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 29 S 41 25 W 0,032404089

2004 Scotia Sea Gymnoscopelus nicholsi 53 30 S 41 34 W 0,032404089

2004 Scotia Sea Gymnoscopelus braueri 53 56 S 40 57 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 22 S 38 29 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 22 S 38 28 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 42 S 39 34 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 29 S 39 27 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 31 S 38 14 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 32 S 38 17 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 33 S 37 50 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 38 S 38 18 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 25 S 41 34 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 28 S 40 38 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 29 S 40 10 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 32 S 38 14 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 19 S 37 57 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 42 S 40 38 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 47 S 39 5 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 35 S 42 42 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 47 S 40 13 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 47 S 39 4 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 26 S 42 1 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 26 S 42 4 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 29 S 41 25 W 0,038017524

2004 Scotia Sea Gymnoscopelus braueri 53 30 S 41 34 W 0,038017524

2004 Scotia Sea Gymnoscopelus spp 53 42 S 40 38 W 0,000551062

2004 Scotia Sea Gymnoscopelus spp 53 47 S 39 5 W 0,000551062

2004 Scotia Sea Gymnoscopelus spp 53 35 S 42 42 W 0,000551062

2004 Scotia Sea Gymnoscopelus spp 53 47 S 40 13 W 0,000551062

2004 Scotia Sea Gymnoscopelus spp 53 26 S 42 1 W 0,000551062

2004 Scotia Sea Gymnoscopelus spp 53 29 S 41 25 W 0,000551062

2004 Scotia Sea Gymnoscopelus spp 53 30 S 41 34 W 0,000551062

2004 Scotia Sea Gymnoscopelus spp 53 38 S 38 18 W 0,000551062

2004 Scotia Sea Gymnoscopelus spp 53 25 S 41 34 W 0,000551062

2004 Scotia Sea Gymnoscopelus spp 53 28 S 40 38 W 0,000551062

2004 Scotia Sea Gymnoscopelus spp 53 29 S 40 10 W 0,000551062

2004 Scotia Sea Gymnoscopelus spp 53 32 S 38 14 W 0,000551062

2004 Scotia Sea Gymnoscopelus spp 53 19 S 37 57 W 0,000551062

2004 Scotia Sea Krefftichthys anderssoni 53 56 S 40 57 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 22 S 38 29 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 22 S 38 28 W 0,018279526

79

2004 Scotia Sea Krefftichthys anderssoni 53 42 S 39 34 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 29 S 39 27 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 31 S 38 14 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 32 S 38 17 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 33 S 37 50 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 38 S 38 18 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 25 S 41 34 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 28 S 40 38 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 29 S 40 10 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 32 S 38 14 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 19 S 37 57 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 42 S 40 38 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 47 S 39 5 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 35 S 42 42 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 47 S 40 13 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 47 S 39 4 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 26 S 42 1 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 26 S 42 4 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 29 S 41 25 W 0,018279526

2004 Scotia Sea Krefftichthys anderssoni 53 30 S 41 34 W 0,018279526

2004 Scotia Sea Lampanyctus achirus 53 56 S 40 57 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 22 S 38 29 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 22 S 38 28 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 42 S 39 34 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 29 S 39 27 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 31 S 38 14 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 32 S 38 17 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 33 S 37 50 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 38 S 38 18 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 25 S 41 34 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 28 S 40 38 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 29 S 40 10 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 32 S 38 14 W 0,084161657

2004 Scotia Sea Lampanyctus achirus 53 19 S 37 57 W 0,084161657

2004 Scotia Sea Protomyctophum gemmatum 53 56 S 40 57 W 0,005755421

2004 Scotia Sea Protomyctophum gemmatum 53 22 S 38 29 W 0,005755421

2004 Scotia Sea Protomyctophum gemmatum 53 22 S 38 28 W 0,005755421

2004 Scotia Sea Protomyctophum gemmatum 53 42 S 39 34 W 0,005755421

2004 Scotia Sea Protomyctophum gemmatum 53 29 S 39 27 W 0,005755421

2004 Scotia Sea Protomyctophum gemmatum 53 31 S 38 14 W 0,005755421

2004 Scotia Sea Protomyctophum gemmatum 53 32 S 38 17 W 0,005755421

2004 Scotia Sea Protomyctophum gemmatum 53 38 S 38 18 W 0,005755421

2004 Scotia Sea Protomyctophum gemmatum 53 25 S 41 34 W 0,005755421

2004 Scotia Sea Protomyctophum gemmatum 53 28 S 40 38 W 0,005755421

2004 Scotia Sea Protomyctophum gemmatum 53 29 S 40 10 W 0,005755421

2004 Scotia Sea Protomyctophum gemmatum 53 32 S 38 14 W 0,005755421

80

2004 Scotia Sea Protomyctophum gemmatum 53 19 S 37 57 W 0,005755421

2004 Scotia Sea Protomyctophum tenisoni 53 42 S 40 38 W 0,000110212

2004 Scotia Sea Protomyctophum tenisoni 53 47 S 39 5 W 0,000110212

2004 Scotia Sea Protomyctophum tenisoni 53 35 S 42 42 W 0,000110212

2004 Scotia Sea Protomyctophum tenisoni 53 47 S 40 13 W 0,000110212

2004 Scotia Sea Protomyctophum tenisoni 53 26 S 42 1 W 0,000110212

2004 Scotia Sea Protomyctophum tenisoni 53 29 S 41 25 W 0,000110212

2004 Scotia Sea Protomyctophum tenisoni 53 30 S 41 34 W 0,000110212

2004 Scotia Sea Protomyctophum tenisoni 53 38 S 38 18 W 0,000110212

2004 Scotia Sea Protomyctophum tenisoni 53 25 S 41 34 W 0,000110212

2004 Scotia Sea Protomyctophum tenisoni 53 28 S 40 38 W 0,000110212

2004 Scotia Sea Protomyctophum tenisoni 53 29 S 40 10 W 0,000110212

2004 Scotia Sea Protomyctophum tenisoni 53 32 S 38 14 W 0,000110212

2004 Scotia Sea Protomyctophum tenisoni 53 19 S 37 57 W 0,000110212

2004 Scotia Sea Protomyctophum bolini 53 56 S 40 57 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 22 S 38 29 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 22 S 38 28 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 42 S 39 34 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 29 S 39 27 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 31 S 38 14 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 32 S 38 17 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 33 S 37 50 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 38 S 38 18 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 25 S 41 34 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 28 S 40 38 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 29 S 40 10 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 32 S 38 14 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 19 S 37 57 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 42 S 40 38 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 47 S 39 5 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 35 S 42 42 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 47 S 40 13 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 47 S 39 4 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 26 S 42 1 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 26 S 42 4 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 29 S 41 25 W 0,041323396

2004 Scotia Sea Protomyctophum bolini 53 30 S 41 34 W 0,041323396

2004 Scotia Sea Protomyctophum parallelum 53 56 S 40 57 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 22 S 38 29 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 22 S 38 28 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 42 S 39 34 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 29 S 39 27 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 31 S 38 14 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 32 S 38 17 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 33 S 37 50 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 38 S 38 18 W 0,004430087

81

2004 Scotia Sea Protomyctophum parallelum 53 25 S 41 34 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 28 S 40 38 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 29 S 40 10 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 32 S 38 14 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 19 S 37 57 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 42 S 40 38 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 47 S 39 5 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 35 S 42 42 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 47 S 39 4 W 0,004430087

2004 Scotia Sea Protomyctophum parallelum 53 26 S 42 4 W 0,004430087

2004 Scotia Sea Protomyctophum choriodon 53 56 S 40 57 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 22 S 38 29 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 22 S 38 28 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 42 S 39 34 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 29 S 39 27 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 31 S 38 14 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 32 S 38 17 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 33 S 37 50 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 38 S 38 18 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 25 S 41 34 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 28 S 40 38 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 29 S 40 10 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 32 S 38 14 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 19 S 37 57 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 42 S 40 38 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 47 S 39 5 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 35 S 42 42 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 47 S 40 13 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 47 S 39 4 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 26 S 42 1 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 26 S 42 4 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 29 S 41 25 W 0,02304387

2004 Scotia Sea Protomyctophum choriodon 53 30 S 41 34 W 0,02304387

2004 Scotia Sea Protomyctophum spp 53 56 S 40 57 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 22 S 38 29 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 22 S 38 28 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 42 S 39 34 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 29 S 39 27 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 31 S 38 14 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 32 S 38 17 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 33 S 37 50 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 38 S 38 18 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 25 S 41 34 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 28 S 40 38 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 29 S 40 10 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 32 S 38 14 W 9,72315E-05

82

2004 Scotia Sea Protomyctophum spp 53 19 S 37 57 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 42 S 40 38 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 47 S 39 5 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 35 S 42 42 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 47 S 40 13 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 47 S 39 4 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 26 S 42 1 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 26 S 42 4 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 29 S 41 25 W 9,72315E-05

2004 Scotia Sea Protomyctophum spp 53 30 S 41 34 W 9,72315E-05

2004 Scotia Sea Nemichthys curvirostris 53 56 S 40 57 W 0,012517828

1991 Western Scotia Sea Nansenia antarctica 57 03.8' 08.7' S 55 08.6' 25.9' W 0,024230769

1991 South Georgia Nansenia antarctica 53 22.5' 39.1 S 38 31.9' 55.7' W 0,011538462

1991 Western Scotia Sea Bathylagus antarcticus 57 03.8' 08.7' S 55 08.6' 25.9' W 0,428076923

1991 South Georgia Bathylagus antarcticus 53 22.5' 39.1 S 38 31.9' 55.7' W 0,118461538

1991 Western Scotia Sea Cyclothone spp 53 03.8' 08.7' S 38 08.6' 25.9' W 0,073846154

1991 South Georgia Cyclothone spp 53 22.5' 39.1 S 38 31.9' 55.7' W 0,08125

1991 Western Scotia Sea Borostomias antarcticus 57 03.8' 08.7' S 55 08.6' 25.9' W 0,011538462

1991 South Georgia Borostomias antarcticus 53 22.5' 39.1 S 38 31.9' 55.7' W 0,015865385

1991 Western Scotia Sea Stomias Igracilis 57 03.8' 08.7' S 55 08.6' 25.9' W 0,008653846

1991 South Georgia Stomias Igracilis 53 22.5' 39.1 S 38 31.9' 55.7' W 0,000961538

1991 Western Scotia Sea Benthalbella elongata 53 03.8' 08.7' S 38 08.6' 25.9' W 0,008653846

1991 South Georgia Benthalbella elongata 53 22.5' 39.1 S 38 31.9' 55.7' W 0,012692308

1991 Western Scotia Sea Notolepis coatsi 57 03.8' 08.7' S 55 08.6' 25.9' W 0,01625

1991 South Georgia Notolepis coatsi 53 22.5' 39.1 S 38 31.9' 55.7' W 0,019230769

1991 Western Scotia Sea Electrona antarctica 57 03.8' 08.7' S 55 08.6' 25.9' W 0,203076923

1991 South Georgia Electrona antarctica 53 22.5' 39.1 S 38 31.9' 55.7' W 0,349038462

1991 Western Scotia Sea Electrona carlsbergi 53 03.8' 08.7' S 38 08.6' 25.9' W 0,101538462

1991 South Georgia Electrona carlsbergi 53 22.5' 39.1 S 38 31.9' 55.7' W 0,006057692

1991 Western Scotia Sea Gymnoscopelus bolini 57 03.8' 08.7' S 55 08.6' 25.9' W 0,006153846

1991 South Georgia Gymnoscopelus bolini 53 22.5' 39.1 S 38 31.9' 55.7' W 0,004326923

1991 Western Scotia Sea Gymnoscopelus brauen 57 03.8' 08.7' S 55 08.6' 25.9' W 0,272307692

1991 South Georgia Gymnoscopelus brauen 53 22.5' 39.1 S 38 31.9' 55.7' W 0,394519231

1991 Western Scotia Sea Gymnoscopelus fraseri 53 03.8' 08.7' S 38 08.6' 25.9' W 0,001346154

1991 South Georgia Gymnoscopelus fraseri 53 22.5' 39.1 S 38 31.9' 55.7' W 0,014423077

1991 Western Scotia Sea Gymnoscopelus nicholsi 57 03.8' 08.7' S 55 08.6' 25.9' W 0,001730769

1991 South Georgia Gymnoscopelus nicholsi 53 22.5' 39.1 S 38 31.9' 55.7' W 0,007307692

1991 Western Scotia Sea Krefftichthys anderssoni 53 03.8' 08.7' S 38 08.6' 25.9' W 0,298269231

1991 South Georgia Krefftichthys anderssoni 53 22.5' 39.1 S 38 31.9' 55.7' W 0,458653846

1991 Western Scotia Sea Lampanyctus achirus 57 03.8' 08.7' S 55 08.6' 25.9' W 0,029615385

1991 South Georgia Lampanyctus achirus 53 22.5' 39.1 S 38 31.9' 55.7' W 0,04125

1991 Western Scotia Sea Protomyctophum andnashevi 53 03.8' 08.7' S 38 08.6' 25.9' W 0

1991 South Georgia Protomyctophum andnashevi 53 22.5' 39.1 S 38 31.9' 55.7' W 0,000192308

1991 Western Scotia Sea Protomyctophurn bolini 57 03.8' 08.7' S 55 08.6' 25.9' W 0,178269231

1991 South Georgia Protomyctophurn bolini 53 22.5' 39.1 S 38 31.9' 55.7' W 0,176346154

1991 Western Scotia Sea Protomyctophum choriodon 53 03.8' 08.7' S 38 08.6' 25.9' W 0

83

1991 South Georgia Protomyctophum choriodon 53 22.5' 39.1 S 38 31.9' 55.7' W 0,016923077

1991 Western Scotia Sea Protomyctophum gemmatum 57 03.8' 08.7' S 55 08.6' 25.9' W 0,006730769

1991 South Georgia Protomyctophum gemmatum 53 22.5' 39.1 S 38 31.9' 55.7' W 0

1991 Western Scotia Sea Melanonus gracihs 53 03.8' 08.7' S 38 08.6' 25.9' W 0

1991 South Georgia Melanonus gracihs 53 22.5' 39.1 S 38 31.9' 55.7' W 0,000961538

1991 Western Scotia Sea Nemichthys scolopaceus 57 03.8' 08.7' S 55 08.6' 25.9' W 0,000961538

1991 South Georgia Nemichthys scolopaceus 53 22.5' 39.1 S 38 31.9' 55.7' W 0,002307692

1991 Western Scotia Sea Cyanomacrurus piriei 53 03.8' 08.7' S 38 08.6' 25.9' W 0,006923077

1991 South Georgia Cyanomacrurus piriei 53 22.5' 39.1 S 38 31.9' 55.7' W 0,018846154

1991 Western Scotia Sea Poromitra crassiceps 57 03.8' 08.7' S 55 08.6' 25.9' W 0,02125

1991 South Georgia Poromitra crassiceps 53 22.5' 39.1 S 38 31.9' 55.7' W 0,022884615

1991 Western Scotia Sea Paradiplospinus gracilis 53 03.8' 08.7' S 38 08.6' 25.9' W 0

1991 South Georgia Paradiplospinus gracilis 53 22.5' 39.1 S 38 31.9' 55.7' W 0,008461538 44–50 1996 NW Weddell Sea Electrona antarctica 62–64 S 0.004 W 44–50 1996 NW Weddell Sea Electrona antarctica 62–64 S 0.265 W

Source:Piatkowskiletal(1994),Collinsetal(2004)andFloresetal(2008)

84

APPENDIX 6 – CHANGES IN MEAN DENSITY (IND. Mˉ²) OF ANTARCTIC KRILL (1976-2003) IN THE SCOTIA SEA

Year Krill density (no. krill/m2) in the Scotia Sea

1976 146,9499999 1977 N/D 1978 17,62700002 1979 N/D 1980 N/D 1981 29,29304023 1982 78,97 1983 N/D 1984 27,04124668 1985 21,54999998 1986 N/D 1987 19,20000001 1988 34,37654548 1989 11,11062501 1990 6,594000003 1991 N/D 1992 5,039999995 1993 12,80545641 1994 3,434447492 1995 7,745047953 1996 16,4571978 1997 29,96688133 1998 24,52072456 1999 2,216189873 2000 6,470000005 2001 16,94 2002 6,280000004 2003 2,159999999

Source:Atkinsonetal(2009)

85

APPENDIX 7 – DEVELOPMENT OF CONSERVATION MEASURES ON KRILL FISHERT IN THE SCOTIA SEA (1980-2010)

Development of conservation measures on the krill fishery in the Scotia Sea (P2)

Conservation Measure N° 1980/81 1981/82 1982/83 1983/84 1984/85 1985/86 1986/87 1987/88 1988/89 1989/90 Still in Still force Closure of waters adjacent to South Georgia 1 n/a n/a n/a n/a A → → → → L L Regulation of fishing around South Georgia 7 n/a n/a n/a n/a n/a n/a A → → → x (statistical subarea 48.3) Catch Reporting System in Statistical Subarea 17 n/a n/a n/a n/a n/a n/a n/a n/a n/a A L 48.3 in the 1989/90 Season Table. The development of conservation measures (CM’s) on Antarctic krill fishery in the ScotiaSea(19801990).´A`meansadopted;´R`meansrevised,´L`meanslapsed;´→`means inforceandcarriedtothenextyear;and´n/a`meansnotadoptedyet.Thelastcellmarkedwith ´X`meansthattheCMisstillinforce Development of conservation measures on the krill fishery in the Scotia Sea (P3)

Conservation Measure N° force Still in Still 1990/91 1991/92 1992/93 1993/94 1994/95 1995/96 1996/97 1997/98 1998/99 1999/00 Regulation of fishing around South Georgia 7 → → → → → → → → → → x (Subarea 48.3) Catch reporting system in statistical subarea 17 L ------L 48.3 for the 1989/90 season Procedure for according protection to CEMP 18 A → → → R → → → → → x site Catch and Effort System in Statistical Subarea 25 A L ------L 48.3 Net Monitor Cables 30 n/a A → → → → → → → L L Precautionary catch limitations on Euphausia 32 n/a A → → → → → → → → x superba in Subarea 48.3 Monthly catch and effort reporting 40 n/a A → → → → → → → → x Allocation of precautionary catch limit on Euphausia superba in Statistical Area 48 to 46 n/a n/a A → → L - - - - L Statistical Subareas Scientific research exemption provisions 47 n/a n/a A L ------L Limitation of the by-catch in Subarea 48.3 for 50 n/a n/a A L ------L the 1992/93 season Ten-day catch and effort reporting 61 n/a n/a A → → → → → → → x Protection of the Seals Islands CEMP site 62 n/a n/a A → → → → → → → L Regulation of the use and disposal of plastic 63 n/a n/a n/a A → → → → → → L packaging bands Application of measures to research 64 n/a n/a n/a A → → → → → → x Limitation of the by-catch in subarea 48.3 for 68 n/a n/a n/a A L - - - - - L the 1993/94 Season Protection of the Cape Shirreff CEMP site 82 n/a n/a n/a n/a A → → → → → L Limitation of the by-catch in subarea 48.3 for 85 n/a n/a n/a n/a A L - - - - L the 1994/95 season Limitation of the by-catch in subarea 48.3 95 n/a n/a n/a n/a n/a A → → → → x Scheme to promote compliance by non- 118 n/a n/a n/a n/a n/a n/a n/a A R → x Contracting Party vessels Licensing and inspection obligations of 119 n/a n/a n/a n/a n/a n/a n/a A R → x Contracting Parties Marking of fishing vessels and gear 146 n/a n/a n/a n/a n/a n/a n/a n/a A → x Automated satellite-linked vessel monitoring 148 n/a n/a n/a n/a n/a n/a n/a n/a A → x systems (VMS) Minimization of the incidental mortality of seabirds and marine mammals in the course of 173 n/a n/a n/a n/a n/a n/a n/a n/a n/a A x trawl fishing in the Convention Area

86

Development of conservation measures on the krill fishery in the Scotia Sea (P4)

Conservation Measure Old Old N° New New N° 2000/01 2001/02 2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 Still in Still force

Marking of fishing vessels and gear 10.01 146 → → → → → → → → → → x

Licensing and inspection obligations of 10.02 119 → R → → R → R R R → x Contracting Parties

Automated satellite-linked vessel monitoring 10.04 148 → R R → R R R R R → x systems (VMS)

Scheme to promote compliance by 10.06 - n/a n/a A → R R R → R → x Contracting Party vessels

Scheme to promote compliance by non- 10.07 CM118 → R R R → R R → R R x Contracting Party vessels

Scheme to promote compliance by 10.08 - n/a n/a n/a n/a n/a n/a A → → R x Contracting Part nationals

Notifications of intent to participate in a 21.03 - n/a n/a n/a n/a n/a n/a A R R R x fishery for Euphausia superb

Ten-day catch and effort reporting 23.02 61 → → → → → → → → → → x

Monthly catch and effort reporting 23.03 40 → → → → → → → → → → x

Data reporting for krill fisheries 23.06 - n/a n/a A → R R → R → R x Application of measures to research 24.01 64 R → R R → R → → R R x

Regulation of the use and disposal of plastic 25.01 63 → → → → → → L - - - L packaging bands

Minimization of the incidental mortality of seabirds and marine mammals in the course 25.03 173 → → → R → → → → → R x of trawling

General environmental protection during 26.01 - n/a n/a n/a n/a n/a n/a A → R R x fishing

Regulation of fishing around South Georgia 31.01 7 → → → → → → → → → → x (Subarea 48.3)

General measure for the closure of all 31.02 - n/a n/a n/a n/a n/a n/a n/a A → → x fisheries

Fishing seasons 32.01 217 n/a A → → → → → → → → x

Limitation of the by-catch in Subarea 48.3 33.01 95 → → → → → → → → → → x

Precautionary catch limitations on Euphausia 51.01 32 R → R → → → R R R → x superba in Subareas 48.1, 48.2, 48.3 and 48.4

General measure for exploratory fisheries for 51.04 - n/a n/a n/a n/a n/a n/a n/a n/a A R x Euphausia superba

General measure for scientific observation in 51.06 - n/a n/a n/a n/a n/a n/a n/a n/a n/a A x fisheries for Euphausia superba

Distribution of the trigger limit in the fishery for Euphausia superba in Subareas 48.1, 48.2, 51.07 - n/a n/a n/a n/a n/a n/a n/a n/a n/a A x 48.3, 48.4 Procedure for according protection to CEMP 91.01 18 R → → → R → → → → → x site

Protection of the Cape Sherriff CEMP site 91.02 82 R → → → R → → → → L L

Protection of the Seals Islands CEMP site N/D 62 R → → → R → → L - - L

Protection of the South Orkney Islands 91.03 - n/a n/a n/a n/a n/a n/a n/a n/a n/a A x southern shelf

87

APPENDIX 8 – GLOBAL AQUACULTURE PRODUCTION IN COMPARISION WITH WORLD CAPTURE FISHERY AND AQUACULTURE PRODUCTION IN ASIA AND CHINA

Mtons 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

Global fish capture production 62,8 62,8 58,6 59,2 62,4 61,9 65,3 63,9 66,0 66,5 67,2

Global aquaculture production 2,6 2,7 3,0 3,1 3,3 3,6 3,7 4,1 4,2 4,3 4,7

Aquaculture production in China 0,8 0,9 0,9 0,9 1,0 1,0 1,0 1,2 1,2 1,2 1,3 Aquaculture production in Asian countries 1,0 1,1 1,2 1,3 1,4 1,5 1,7 1,8 1,9 2,0 2,2 excluding China

Mtons 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Global fish capture production 69,4 71,1 71,1 76,7 78,3 83,8 84,4 87,8 88,3 84,7 83,7

Global aquaculture production 5,2 5,7 6,2 6,9 8,0 9,2 10,6 11,7 12,3 13,1 13,7

Aquaculture production in China 1,5 1,7 2,0 2,4 3,2 4,0 4,9 5,6 6,0 6,5 6,9 Aquaculture production in Asian countries 2,4 2,5 2,7 2,8 3,1 3,3 3,7 4,0 4,1 4,3 4,6 excluding China

Mtons 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Global fish capture production 85,2 86,6 92,1 92,4 93,8 93,1 85,7 91,5 93,6 90,8 91,0

Global aquaculture production 15,4 17,8 20,8 24,4 26,6 27,3 28,4 30,7 32,4 34,6 36,8

Aquaculture production in China 8,3 10,4 13,0 15,9 17,7 18,0 18,7 20,1 21,5 22,7 24,1 Aquaculture production in Asian countries 4,9 5,2 5,4 5,8 6,0 6,1 6,2 6,8 6,9 7,6 8,2 excluding China

Mtons 2003 2004 2005 2006 2007 2008 Global fish capture production 88,3 92,5 92,2 89,9 90,1 89,6 Global aquaculture production 38,9 41,9 44,3 47,3 49,9 53,0 Aquaculture production in China 25,1 26,6 28,1 29,9 31,4 32,7 Aquaculture production in Asian countries 9,1 10,3 11,1 12,0 12,8 14,3 excluding China

Source:FAO/FIGIS(2011)

88

APPENDIX 9 – GLOBAL FISH MEAL/OIL MARKET

Fish meal use Fish oil use Fish meal production Fish oil production Fish meal price (US$) Fish oil price (US$) (Mtons) (Mtons) (Mtons) (Mtons) 1970 N/D N/D N/D N/D N/D N/D

1971 N/D N/D N/D N/D N/D N/D

1972 N/D N/D N/D N/D N/D N/D

1973 N/D N/D N/D N/D N/D N/D

1974 N/D N/D N/D N/D N/D N/D

1975 N/D N/D N/D N/D N/D N/D

1976 N/D N/D 4,707511 0,972237 N/D N/D

1977 N/D N/D 4,329839 1,008513 N/D N/D

1978 N/D N/D 4,647403 1,119745 N/D N/D

1979 N/D N/D 4,852039 1,170479 N/D N/D

1980 N/D N/D 4,726992 1,216325 N/D N/D

1981 N/D N/D 4,827013 1,16313 944,36 N/D

1982 N/D N/D 5,120558 1,294866 673,11 N/D

1983 N/D N/D 5,016643 1,13475 870,02 N/D

1984 N/D N/D 5,836035 1,513379 685,16 320

1985 N/D N/D 6,024313 1,480905 510,36 276

1986 N/D N/D 6,497619 1,673755 595,95 150

1987 N/D N/D 6,268598 1,45419 635,54 196

1988 N/D N/D 6,626697 1,558825 673,44 445

1989 N/D N/D 6,673484 1,635145 642,39 196

1990 N/D N/D 6,156286 1,411752 715,45 244

1991 N/D N/D 6,308449 1,376175 501,56 271

1992 N/D N/D 6,137021 1,068785 533,75 367

1993 N/D N/D 6,394604 1,215971 375,25 371

1994 N/D N/D 7,342816 1,503944 401,81 283

1995 1,882 0,474 6,746042 1,38162 539,09 448

1996 2,093 0,535 6,820498 1,381548 577,42 395

1997 2,326 0,575 6,414797 1,16938 627,37 532

1998 2,535 0,589 5,322931 0,856211 706,68 771

1999 2,708 0,622 6,477574 1,392834 393,63 288

2000 2,922 0,631 6,887004 1,325083 471,25 253

2001 3,126 0,718 6,20565 1,098454 525,21 461

2002 3,324 0,695 6,185033 0,851766 652,11 574

2003 3,845 0,768 5,490422 0,946669 668,62 580

2004 4,06 0,809 6,514311 1,063017 666,62 695

2005 4,3 0,843 6,263376 0,920699 656,46 705

2006 3,724 0,835 5,403625 0,955665 959,07 820

2007 3,641 0,778 5,647309 1,067391 1212,95 905

2008 N/D N/D 6,177295 1,060472 1265,05 1815

2009 N/D N/D N/D N/D 1222,51 800

2010 N/D N/D N/D N/D 1705,03 846

2011 N/D N/D N/D N/D 1590,95 1380

89

Largest producers (tons) of fish meal (1976-2008)

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

China 0 0 0 0 0 0 0 50000 53000 54500 51200 56800 Peru 886372 496954 669658 687953 458125 478277 665499 251738 568363 717104 973114 821417 Chile 251745 255107 374991 512597 571857 688318 795768 827743 1022727 1111623 1282357 1081138 Thailand 119880 141600 218165 186437 194200 201701 211814 204811 222558 220358 213005 228660

Denmark 328212 306968 272536 329085 351278 330099 317428 335539 342208 302584 300248 283747

Japan 744030 759396 803140 810258 781990 804742 888001 1040182 1145464 1059089 1103015 1042486

Iceland 110531 162667 202165 207860 172088 148436 51062 68077 171695 174765 178495 159297

Norway 464000 464800 331524 327940 297700 299500 284301 346858 286589 238266 194135 183100

Russian 0 0 0 0 0 0 0 0 0 0 0 0 Federation Un. Sov. Soc. 645430 591610 503359 510659 555130 554400 600180 605200 673530 657280 746450 766340 Rep. World 4 707 511 4 329 839 4 647 403 4 852 039 4 726 992 4 827 013 5 120 558 5 016 643 5 836 035 6 024 313 6 497 619 6 268 598

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

China 58700 90000 110000 100000 100000 142000 184803 260995 359481 533761 692555 601910

Peru 1126242 1169193 1204210 1311634 1441787 1788816 2417217 1789228 1924953 1597134 832093 1769532

Chile 1112229 1381161 1073207 1229758 1269588 1191785 1551670 1554321 1401138 1227391 646718 1004868

Thailand 237156 268524 287408 282808 351111 358199 381361 371085 381903 386083 410360 398530

Denmark 362736 340751 271679 363445 358514 341583 402192 446686 397872 395255 404952 375906

Japan 991121 954475 884759 753559 581602 543641 478312 373688 363453 363444 392884 465513

Iceland 192065 143641 150081 82685 173560 194838 177634 176067 231080 223825 226403 242068

Norway 183560 199690 167030 209431 259255 295213 201455 236667 242996 253402 299396 240808 Russian 0 0 0 0 261700 226930 179180 191600 206800 194260 163422 154640 Federation Un. Sov. Soc. 769030 751599 694864 631964 0 0 0 0 0 0 0 0 Rep. World 6 626 697 6 673 484 6 156 286 6 308 449 6 137 021 6 394 604 7 342 816 6 746 042 6 820 498 6 414 797 5 322 931 6 477 574

2000 2001 2002 2003 2004 2005 2006 2007 2008

China 721815 723198 502000 585088 658359 720190 677568 1054184 1479961

Peru 2241529 1635427 1839209 1224484 1971449 1930727 1342391 1399047 1414728

Chile 880744 779621 845140 706531 1015957 866121 710142 703081 642872

Thailand 387016 451899 474789 598530 541200 473270 461266 428000 468000

Denmark 280945 407690 385251 258128 302484 320228 286563 175427 236625

Japan 452008 298567 290258 295167 230625 221939 219615 202059 204182

Iceland 253249 258600 301458 225159 254894 196796 124528 127854 148215

Norway 264100 216000 241000 212100 215100 154300 169500 171500 130500 Russian 127460 98876 64672 73552 57212 58337 66502 69373 75259 Federation Un. Sov. Soc. 0 0 0 0 0 0 0 0 0 Rep. World 6 887 004 6 205 650 6 185 033 5 490 422 6 514 311 6 263 376 5 403 625 5 647 309 6 177 295

90

Largest importers of fish meal (1976-2008)

Tons 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

China 0 0 0 0 0 0 0 0 108226 191262 201447 220680

Japan 59543 181143 84923 101645 141008 84068 44275 95071 61618 80256 161488 187298

Norway 12 76 12 20 126 5 38 94 142 2543 5081 46

Vietnam 0 0 . 0 0 0 0 0 0 0 0 0 0

Denmark 7691 10698 6351 6987 6630 8450 7345 7976 16932 16805 20639 9776

United Kingdom 253634 213589 191520 255129 214559 173208 213088 162254 173349 236237 236121 248548

Spain 3819 9223 6130 11285 1482 3168 2426 8134 11962 14181 9064 17516

Russian Federation 0 0 0 0 0 0 0 0 0 0 0 0

Chile 0 0 0 0 0 0 0 0 0 0 0 0

Korea, Republic of 0 3296 6116 17548 100 2255 1632 9966 4270 4394 7102 17968

Thailand 200 7 639 11 466 62 5 0 17 5 148 93

World 1 962 096 2 036 027 1 947 495 2 299 930 2 179 739 1 996 310 2 424 101 2 236 713 2 490 522 3 066 599 3 192 821 3 154 847

Tons 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

China 456835 472310 223904 634291 639546 434198 668792 693321 884479 988455 420035 634298

Japan 231506 171445 232045 288377 337054 305114 383461 593889 412245 437298 329627 346329

Norway 14023 38012 21592 40512 51905 43218 60753 121288 105462 128447 99753 144688

Viet Nam 0 0 0 0 0 1600 3300 5625 5216 6652 898 10961

Denmark 7846 12247 25873 11185 44378 70437 56345 80792 107239 86685 94878 139768

United Kingdom 265505 265070 273973 258100 242073 251820 248370 236770 241282 284662 238302 220896

Spain 31774 18611 19729 28071 29163 52037 77966 60569 62161 93081 61 045 90105

Russian Federation 0 0 0 0 6251 443 37489 60499 22999 50598 211 117185

Chile 0 0 0 0 2 160 8 31 285 529 755 226

Korea, Republic of 24059 28788 35399 40673 27828 30934 38860 44234 46112 42494 24 804 29411

Thailand 2969 15651 26247 53119 66911 142103 206375 194875 185995 80844 34687 114123

World 3 307 919 3 557 039 3 326 876 3 332 234 3 430 741 3 922 655 4 913 737 4 566 347 4 203 340 4 356 947 2 857 160 3 545 966

Tons 2000 2001 2002 2003 2004 2005 2006 2007 2008

China 1189252 904130 960524 802842 1127883 1582747 983211 969832 1351354 Japan 338140 462309 480015 384359 402217 376412 412429 350594 309607 Norway 185032 143204 128268 149762 161717 202318 210738 222932 242336 Viet Nam 1040 31255 24688 54226 58059 94142 112542 113293 125764 Denmark 131057 125846 135297 164966 131326 133687 126694 117819 108957 United Kingdom 240840 234692 191992 183442 142492 138154 139406 87670 93268 Spain 119990 107365 86776 92578 101225 80730 60495 68051 82975

Russian Federation 75414 130109 101031 112879 84456 102065 57219 59706 72315

Chile 40 5550 8813 10195 49034 12538 53292 38917 48119

Korea, Republic of 47154 55238 38951 39219 44741 48060 48277 43302 36951

Thailand 126582 121441 41290 19574 20468 21383 23282 13321 12968

World 4 445 495 4 187 362 3 794 551 3 495 289 3 783 656 4 304 483 3 704 468 3 314 253 3 668 44

91

Largest fish oil producers (tons) (1976-2008)

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

Peru 108811 109420 131637 129810 79347 76994 187416 16581 143160 121052 251843 109086

Chile 34969 57780 75706 108922 111000 127270 144979 56984 184034 184092 224931 172159

China 0 0 0 0 0 0 0 0 0 0 6141 11187

Denmark 97126 96761 79089 83915 124269 115667 100840 91350 84906 86770 90638 89390

USA 92797 60411 134395 121541 141754 83599 157631 181137 169103 129310 152773 135397

Japan 165617 208230 243532 253420 263057 279106 313124 349897 417240 403631 482883 458601

Iceland 34727 75544 98988 94448 89960 84929 14640 26704 90146 119020 105835 82154

Norway 242915 226354 173506 199766 187027 172800 178199 217200 189774 152158 98994 78438 Un. Sov. Soc. 35810 34940 31349 32269 42359 49281 66457 73318 92712 85010 94820 111300 Rep. World 972237 1008513 1119745 1170479 1216325 1163130 1294866 1134750 1513379 1480905 1673755 1454190

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Peru 203273 318304 191726 181886 161376 250135 486296 373928 422548 330042 122956 514818

Chile 187981 260078 188270 241211 152990 191177 289510 326102 291802 205971 106693 201376

China 13798 14000 10695 10000 10000 10000 9024 10142 10673 8417 7034 35701

Denmark 92099 78493 84167 130143 137101 104524 143612 184051 141949 131087 136143 129267

USA 101938 102276 136588 123956 83791 137944 132397 109744 112673 128540 101220 129811

Japan 485802 448835 418063 315480 146044 106719 70502 47320 13312 10851 57901 68517

Iceland 94442 53745 75401 34668 85216 116450 85481 85218 138789 131573 89934 87734

Norway 91710 77260 51795 90670 118060 130132 118057 86162 92322 87995 101808 99866 Un. Sov. Soc. 112450 118820 127112 120403 0 0 0 0 0 0 0 0 Rep. World 1558825 1635145 1411752 1376175 1068785 1215971 1503944 1381620 1381548 1169380 856211 1392834

2000 2001 2002 2003 2004 2005 2006 2007 2008

Peru 587312 302875 188949 206154 349821 290422 279802 309824 293025

Chile 180199 141050 128453 130222 195263 168923 180214 180096 193339

China 15790 18434 23454 18873 23102 30000 50000 72500 92345

Denmark 102301 123648 102576 117784 100027 82303 107102 119858 88990

USA 87249 126743 95648 88769 81376 71523 64749 69040 86194

Japan 59790 63000 64200 66956 68210 62741 69107 60082 62700

Iceland 78533 101109 66297 129888 66255 48899 37955 61467 53837

Norway 85717 69057 64509 55596 39455 33428 42340 46917 39608 Un. Sov. Soc. 0 0 . 0 0 0 0 0 0 0 Rep. World 1325083 1098454 851766 946669 1063017 920699 955665 1067391 1060472

92

Largest fish oil importers (1976-2008)

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

Norway 11372 9561 17758 28732 38203 15022 16937 5732 27151 51871 79216 48904

Denmark 2861 2390 3071 3240 2184 1121 1662 836 2695 2791 2333 22171

Chile 6 2 7 30 8 7 120 0 0 0 0 - 0

China 0 0 0 . 0 . 0 . 0 0 . 0 . 0 . 0 . 0 . 968 United 211998 185435 217228 214783 238646 221613 248787 197267 230668 264919 169685 204029 Kingdom Germany 132654 141552 137130 177627 172254 176569 189623 160709 242583 278104 192753 148075

World 609919 568092 652499 762098 751585 731454 795218 723174 942899 1081068 813609 820523

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Norway 102584 109570 75307 74873 72126 112994 138812 174551 175739 201675 157126 219570

Denmark 23388 20909 21471 16529 19317 34741 23244 14615 14092 40765 25522 22764

Chile 0 0 0 0 6515 5078 1416 1572 15463 11356 12038 60302

China 1114 1030 752 1399 2045 3501 2805 6870 10724 1761 5133 2737 United 163831 177875 161818 140192 121331 131066 138393 128463 79576 71254 49458 46823 Kingdom Germany 137436 194094 108190 111566 68205 72025 89800 87609 66432 42000 11774 12335

World 798800 907025 802382 730901 599002 683049 903999 1E+06 871617 812302 485994 742798

2000 2001 2002 2003 2004 2005 2006 2007 2008

Norway 234822 246064 183531 199956 199526 214464 188803 231301 200465

Denmark 29644 30772 27266 47829 65508 94557 128197 158388 103812

Chile 94625 66613 32315 91739 87626 62586 75232 91596 80896

China 25826 3862 3918 9542 16740 15472 30258 30805 38798 United 45964 60448 35896 48124 56492 31175 19507 22681 27046 Kingdom Germany 14312 13239 13757 10316 8127 6711 6520 6724 7900

World 865768 823787 600538 695693 755776 781653 776617 906493 842532

Source:Taconetal(2008)andFAO/FIGIS(2011)

93

APPENDIX 10 – PRODUCTION, IMPORT AND USING RATE (tons) OF LEADING FISH MEAL CONSUMING COUNTRIES (1976-2008)

Tons 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

Import 0 0 0 0 0 0 0 0 108226 191262 201447

Production 0 0 0 0 0 0 0 50000 53000 54500 51200

China Prod+Imp. 0 0 0 0 0 0 0 50000 161226 245762 252647

Export 0 0 0 0 0 0 0 0 0 0 0

Total Use 0 0 0 0 0 0 0 50000 161226 245762 252647

Tons 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

Import 59543 181143 84923 101645 141008 84068 44275 95071 61618 80256 161488

Production 744030 759396 803140 810258 781990 804742 888001 1040182 1145464 1059089 1103015

Japan Prod+Imp. 803573 940539 888063 911903 922998 888810 932276 1135253 1207082 1139345 1264503

Export 48975 37466 64269 57695 43254 73653 135658 79649 135333 157438 167192

Total Use 754598 903073 823794 854208 879744 815157 796618 1055604 1071749 981907 1097311

Tons 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

Import 12 76 12 20 126 5 38 94 142 2543 5081

Production 464000 464800 331524 327940 297700 299500 284301 346858 286589 238266 194135

Norway Prod+Imp. 464012 464876 331536 327960 297826 299505 284339 346952 286731 240809 199216

Export 415523 461557 283741 326642 274674 266311 228443 283720 248436 173699 92300

Total Use 48489 3319 47795 1318 23152 33194 55896 63232 38295 67110 106916

Tons 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

Import 0 0 . 0 0 0 0 0 0 0 0 0

Production 0 . 0 . 0 . 0 . 0 . 5997 4285 4823 5344 4877 5358

Vietnam Prod+Imp. 0 0 0 0 0 5997 4285 4823 5344 4877 5358

Export 0 . 0 . 0 . 0 . 0 . 0 0 . 0 . 0 . 73 56 Total Use 0 0 0 0 0 5997 4285 4823 5344 4804 5302

Tons 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

Import 253634 213589 191520 255129 214559 173208 213088 162254 173349 236237 236121

Production 81000 78000 66000 58600 68300 59735 56437 54200 55000 53000 46970 United Prod+Imp. 334634 291589 257520 313729 282859 232943 269525 216454 228349 289237 283091 Kingdom Export 7608 10374 8799 6454 8155 3328 1953 3357 2234 3076 6041

Total Use 327026 281215 248721 307275 274704 229615 267572 213097 226115 286161 277050

Tons 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

Import 7691 10698 6351 6987 6630 8450 7345 7976 16932 16805 20639

Production 328212 306968 272536 329085 351278 330099 317428 335539 342208 302584 300248 Denmark Prod+Imp. 335903 317666 278887 336072 357908 338549 324773 343515 359140 319389 320887 Export 284562 263824 246598 258452 294682 267396 253815 269112 261770 217794 224661

Total Use 51341 53842 32289 77620 63226 71153 70958 74403 97370 101595 96226

94

Tons 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

Import 7000 14727 0 - 0 - 0 - 0 - 0 - 0 - 60000 82902 88778

Production 645430 591610 503359 510659 555130 554400 600180 605200 673530 657280 746450 Un. Sov. Prod+Imp. 652430 606337 503359 510659 555130 554400 600180 605200 733530 740182 835228 Soc. Rep. Export 18000 13615 21465 20283 22469 11877 8900 11386 7614 10445 11794

Total Use 634430 592722 481894 490376 532661 542523 591280 593814 725916 729737 823434

Tons 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

Import 0 3296 6116 17548 100 2255 1632 9966 4270 4394 7102

Production 13395 13560 21822 17715 9616 15221 24860 33035 28228 61913 83640 Korea, Prod+Imp. 13395 13560 21822 17715 9616 15221 24860 33035 28228 61913 83640 Republic of Export 10440 5055 1692 679 2414 784 791 2687 3327 2010 2842

Total Use 2955 8505 20130 17036 7202 14437 24069 30348 24901 59903 80798

Tons 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

Import 200 7 639 11 466 62 5 0 17 5 148

Production 119880 141600 218165 186437 194200 201701 211814 204811 222558 220358 213005

Thailand Prod+Imp. 120080 141607 218804 186448 194666 201763 211819 204811 222575 220363 213153

Export 49083 78841 109828 138724 126528 134110 103854 128007 129313 128464 141833

Total Use 70997 62766 108976 47724 68138 67653 107965 76804 93262 91899 71320

Tons 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Import 220680 456835 472310 223904 634291 639546 434198 668792 693321 884479 988455

Production 56800 58700 90000 110000 100000 100000 142000 184803 260995 359481 533761

China Prod+Imp. 277480 515535 562310 333904 734291 739546 576198 853595 954316 1243960 1522216

Export 432 801 1046 2233 2327 1077 491 378 5519 1494 2401

Total Use 277048 514734 561264 331671 731964 738469 575707 853217 948797 1242466 1519815

Tons 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Import 187298 231506 171445 232045 288377 337054 305114 383461 593889 412245 437298

Production 1042486 991121 954475 884759 753559 581602 543641 478312 373688 363453 363444

Japan Prod+Imp. 1229784 1222627 1125920 1116804 1041936 918656 848755 861773 967577 775698 800742 Export 216593 212645 22859 147471 113444 44441 40614 20696 18605 16221 8165 Total Use 1013191 1009982 1103061 969333 928492 874215 808141 841077 948972 759477 792577

Tons 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Import 46 14023 38012 21592 40512 51905 43218 60753 121288 105462 128447

Production 183100 183560 199690 167030 209431 259255 295213 201455 236667 242996 253402

Norway Prod+Imp. 183146 197583 237702 188622 249943 311160 338431 262208 357955 348458 381849

Export 87997 68916 45120 45345 110520 139687 139218 71380 65649 86696 63614

Total Use 95149 128667 192582 143277 139423 171473 199213 190828 292306 261762 318235

95

Tons 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Import 0 0 0 0 0 0 1600 3300 5625 5216 6652

Production 6577 10134 2430 1856 16570 25470 25500 26000 24840 24902 25000

Vietnam Prod+Imp. 6577 10134 2430 1856 16570 25470 27100 29300 30465 30118 31652 Export 220 42 60 330 134 357 0 . 0 . 1160 1098 4700 Total Use 6357 10092 2370 1526 16436 25113 27100 29300 29305 29020 26952

Tons 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Import 248548 265505 265070 273973 258100 242073 251820 248370 236770 241282 284662

Production 51000 50000 49000 50600 50200 47700 52386 47661 49562 54565 51005 United Prod+Imp. 299548 315505 314070 324573 308300 289773 304206 296031 286332 295847 335667 Kingdom Export 6848 3901 5128 4630 3569 5686 8876 18631 24632 17337 20572

Total Use 292700 311604 308942 319943 304731 284087 295330 277400 261700 278510 315095

Tons 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Import 9776 7846 12247 25873 11185 44378 70437 56345 80792 107239 86685

Production 283747 362736 340751 271679 363445 358514 341583 402192 446686 397872 395255

Denmark Prod+Imp. 293523 370582 352998 297552 374630 402892 412020 458537 527478 505111 481940

Export 200443 252373 232508 169859 246990 268791 267718 285360 347914 331607 286382

Total Use 93080 118209 120490 127693 127640 134101 144302 173177 179564 173504 195558

Tons 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Import 10000 51500 17850 31 655 0 0 0 0 0 0

Production 766340 769030 751599 694864 631964 0 0 0 0 0 0 Un. Sov. Prod+Imp. 776340 820530 769449 694895 632619 0 0 0 0 0 0 Soc. Rep. Export 12161 11368 11348 8041 4191 0 0 0 0 0 0

Total Use 764179 809162 758101 686854 628428 0 0 0 0 0 0

Tons 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Import 17968 24059 28788 35399 40673 27828 30934 38860 44234 46112 42494

Production 76836 72195 36058 87375 59568 61560 50423 47225 57391 46191 38183 Korea, Prod+Imp. 76836 72195 36058 87375 59568 61560 50423 47225 57391 46191 38183 Republic of Export 5002 4883 3402 4996 22606 11401 14475 16033 21979 24211 23505

Total Use 71834 67312 32656 82379 36962 50159 35948 31192 35412 21980 14678

Tons 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Import 93 2969 15651 26247 53119 66911 142103 206375 194875 185995 80844

Production 228660 237156 268524 287408 282808 351111 358199 381361 371085 381903 386083 Thailand Prod+Imp. 228753 240125 284175 313655 335927 418022 500302 587736 565960 567898 466927 Export 154620 72314 38085 15417 11035 3990 4936 3039 2153 1504 1823

Total Use 74133 167811 246090 298238 324892 414032 495366 584697 563807 566394 465104

96

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Import 420035 634298 1189252 904130 960524 802842 1127883 1582747 983211 969832 1351354

Production 692555 601910 721815 723198 502000 585088 658359 720190 677568 1054184 1479961

China Prod+Imp. 1112590 1236208 1911067 1627328 1462524 1387930 1786242 2302937 1660779 2024016 2831315

Export 2288 1898 2712 4121 8326 8560 7037 5927 17973 12298 5407

Total Use 1110302 1234310 1908355 1623207 1454198 1379370 1779205 2297010 1642806 2011718 2825908

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Import 329627 346329 338140 462309 480015 384359 402217 376412 412429 350594 309607

Production 392884 465513 452008 298567 290258 295167 230625 221939 219615 202059 204182

Japan Prod+Imp. 722511 811842 790148 760876 770273 679526 632842 598351 632044 552653 513789

Export 9647 10848 14881 14377 17735 18485 18634 16552 13590 13562 6268

Total Use 712864 800994 775267 746499 752538 661041 614208 581799 618454 539091 507521

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Import 99753 144688 185032 143204 128268 149762 161717 202318 210738 222932 242336

Production 299396 240808 264100 216000 241000 212100 215100 154300 169500 171500 130500

Norway Prod+Imp. 399149 385496 449132 359204 369268 361862 376817 356618 380238 394432 372836

Export 153982 153157 87530 85260 123009 73431 67497 52529 42077 41769 26258

Total Use 245167 232339 361602 273944 246259 288431 309320 304089 338161 352663 346578

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Import 898 10961 1040 31255 24688 54226 58059 94142 112542 113293 125764

Production 25400 25500 25400 27900 31200 32200 33000 36400 46700 51300 46500

Vietnam Prod+Imp. 26298 36461 26440 59155 55888 86426 91059 130542 159242 164593 172264

Export 6500 4000 7200 5692 11430 6361 58059 8724 28344 19935 16510

Total Use 19798 32461 19240 53463 44458 80065 33000 121818 130898 144658 155754

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Import 238302 220896 240840 234692 191992 183442 142492 138154 139406 87670 93268

Production 51858 53432 50000 47000 47700 51700 51000 53000 53300 56200 55700 United Prod+Imp. 290160 274328 290840 281692 239692 235142 193492 191154 192706 143870 148968 Kingdom Export 19474 17920 15984 13761 10304 6222 4409 8556 8941 4302 12275

Total Use 270686 256408 274856 267931 229388 228920 189083 182598 183765 139568 136693

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Import 94878 139768 131057 125846 135297 164966 131326 133687 126694 117819 108957

Production 404952 375906 280945 407690 385251 258128 302484 320228 286563 175427 236625

Denmark Prod+Imp. 499830 515674 412002 533536 520548 423094 433810 453915 413257 293246 345582

Export 302795 319756 301966 305836 301191 202631 245854 243366 232298 144717 200827

Total Use 197035 195918 110036 227700 219357 220463 187956 210549 180959 148529 144755

97

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Import 0 0 0 0 0 0 0 0 0 0 0

Production 0 0 0 0 0 0 0 0 0 0 0 Un. Sov. Soc. Rep. Prod+Imp. 0 0 0 0 0 0 0 0 0 0 0 Export 0 0 0 0 0 0 0 0 0 0 0

Total Use 0 0 0 0 0 0 0 0 0 0 0

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Import 24 804 29411 47154 55238 38951 39219 44741 48060 48277 43302 36951

Production 48059 43200 34453 33279 10142 11722 8566 10040 5795 3860 7140

Korea, Prod+Imp. 48059 43200 34453 33279 10142 11722 8566 10040 5795 3860 7140 Republic of Export 24636 29464 30369 29003 24768 35702 24102 30980 31726 35348 30307

Total Use 23423 13736 4084 4276 -14626 -23980 -15536 -20940 -25931 -31488 -23167

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Import 34687 114123 126582 121441 41290 19574 20468 21383 23282 13321 12968

Production 410360 398530 387016 451899 474789 598530 541200 473270 461266 428000 468000

Thailand Prod+Imp. 445047 512653 513598 573340 516079 618104 561668 494653 484548 441321 480968

Export 25959 5359 9886 7064 19922 11423 20141 31334 76739 93871 21700

Total Use 419088 507294 503712 566276 496157 606681 541527 463319 407809 347450 459268

Source:FAO/FIGIS(2011)

98

APPENDIX 11 – PRODUCTION, IMPORT AND USING RATE OF LEADING FISH OIL CONSUMING COUNTRIES (1976-2008)

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

Import 11372 9561 17758 28732 38203 15022 16937 5732 27151 51871 79216 48904

Production 242915 226354 173506 199766 187027 172800 178199 217200 189774 152158 98994 78438

Norway Prod+Imp. 254287 235915 191264 228498 225230 187822 195136 222932 216925 204029 178210 127342

Export 151385 142561 83523 93975 93197 118564 111504 137276 85953 122959 44822 77721

Total Use 102902 93354 107741 134523 132033 69258 83632 85656 130972 81070 133388 49621

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

Import 2861 2390 3071 3240 2184 1121 1662 836 2695 2791 2333 22171

Production 97126 96761 79089 83915 124269 115667 100840 91350 84906 86770 90638 89390

Denmark Prod+Imp. 99987 99151 82160 87155 126453 116788 102502 92186 87601 89561 92971 111561

Export 85677 74487 66090 65116 104864 88862 69825 68258 64155 61061 62441 39645

Total Use 14310 24664 16070 22039 21589 27926 32677 23928 23446 28500 30530 71916

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

Import 6 2 7 30 8 7 120 0 0 0 0 - 0

Production 34969 57780 75706 108922 111000 127270 144979 56984 184034 184092 224931 172159

Chile Prod+Imp. 34975 57782 75713 108952 111008 127277 145099 56984 184034 184092 224931 172159 Export 20234 26017 55897 51787 87880 71604 89232 18575 94748 135026 114022 91592 Total Use 14741 31765 19816 57165 23128 55673 55867 38409 89286 49066 110909 80567

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

Import 0 0 0 0 0 0 0 0 0 0 0 968

Production 0 0 0 0 0 0 0 0 0 0 6141 11187 China Prod+Imp. 0 0 0 0 0 0 0 0 0 0 6141 12155 Export 0 0 0 0 0 0 0 0 0 0 0 5 Total Use 0 0 0 0 0 0 0 0 0 0 6141 12150

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

Import 211998 185435 217228 214783 238646 221613 248787 197267 230668 264919 169685 204029

Production 16000 16000 15000 10000 14000 12065 10407 7455 9000 8900 6500 6900 United Kingdom Prod+Imp. 227998 201435 232228 224783 252646 233678 259194 204722 239668 273819 176185 210929 Export 6736 6287 5826 2725 1662 1203 4249 1819 1130 4082 5297 4845

Total Use 221262 195148 226402 222058 250984 232475 254945 202903 238538 269737 170888 206084

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

Import 132654 141552 137130 177627 172254 176569 189623 160709 242583 278104 192753 148075 Production 11034 10901 10593 9697 9739 11194 10479 10173 10327 9945 8314 8124

Germany Prod+Imp. 143688 152453 147723 187324 181993 187763 200102 170882 252910 288049 201067 156199 Export 6965 4918 7113 4036 4214 4738 5060 11824 11551 19274 13543 9003

Total Use 136723 147535 140610 183288 177779 183025 195042 159058 241359 268775 187524 147196

99

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Import 102584 109570 75307 74873 72126 112994 138812 174551 175739 201675 157126 219570

Production 91710 77 260 51 795 90670 118060 130132 118057 86162 92322 87995 101808 99866

Norway Prod+Imp. 194294 109570 75307 165543 190186 243126 256869 260713 268061 289670 258934 319436

Export 49500 42997 45817 62696 57261 65406 68448 90126 73367 58632 44746 57304

Total Use 144794 66573 29490 102847 132925 177720 188421 170587 194694 231038 214188 262132

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Import 23388 20909 21471 16529 19317 34741 23244 14615 14092 40765 25522 22764

Production 92099 78493 84167 130143 137101 104524 143612 184051 141949 131087 136143 129267

Denmark Prod+Imp. 115487 99402 105638 146672 156418 139265 166856 198666 156041 171852 161665 152031

Export 48117 27558 39372 78417 94283 74847 97150 140588 107951 104097 75807 94296

Total Use 67370 71844 66266 68255 62135 64418 69706 58078 48090 67755 85858 57735

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Import 0 0 0 0 6515 5078 1416 1572 15463 11356 12038 60302

Production 187981 260078 188270 241211 152990 191177 289510 326102 291802 205971 106693 201376

Chile Prod+Imp. 187981 260078 188270 241211 159505 196255 290926 327674 307265 217327 118731 261678

Export 75469 141858 83919 108738 51832 71171 165719 150582 127189 32355 4466 64546

Total Use 112512 118220 104351 132473 107673 125084 125207 177092 180076 184972 114265 197132

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Import 1114 1030 752 1399 2045 3501 2805 6870 10724 1761 5133 2737

Production 13798 14000 10695 10000 10000 10000 9024 10142 10673 8417 7034 35701

China Prod+Imp. 14912 15030 11447 11399 12045 13501 11829 17012 21397 10178 12167 38438

Export 2 0 44 13 203 257 98 128 170 209 2271 913

Total Use 14910 15030 11403 11386 11842 13244 11731 16884 21227 9969 9896 37525

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Import 163831 177875 161818 140192 121331 131066 138393 128463 79576 71254 49458 46823

Production 7700 7100 9124 7743 10245 10752 11314 11499 12044 8824 9619 11600 United Kingdom Prod+Imp. 171531 184975 170942 147935 131576 141818 149707 139962 91620 80078 59077 58423 Export 1764 1514 7370 2870 11790 11200 12322 15114 6235 6105 4043 2554

Total Use 169767 183461 163572 145065 119786 130618 137385 124848 85385 73973 55034 55869

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Import 137436 194094 108190 111566 68205 72025 89800 87609 66432 42000 11774 12335

Production 6982 7438 8185 10050 9921 9763 8599 7369 6113 5031 6113 6045

Germany Prod+Imp. 144418 201532 116375 121616 78126 81788 98399 94978 72545 47031 17887 18380

Export 14107 22322 16836 12157 8739 3559 3984 16453 4516 3236 6021 3059

Total Use 130311 179210 99539 109459 69387 78229 94415 78525 68029 43795 11866 15321

100

2000 2001 2002 2003 2004 2005 2006 2007 2008

Import 234822 246064 183531 199956 199526 214464 188803 231301 200465

Production 85717 69057 64509 55596 39455 33428 42340 46917 39608

Norway Prod+Imp. 320539 315121 248040 255552 238981 247892 231143 278218 240073

Export 62761 43452 38361 40235 28711 25090 39796 57075 64481

Total Use 257778 271669 209679 215317 210270 222802 191347 221143 175592

2000 2001 2002 2003 2004 2005 2006 2007 2008

Import 29644 30772 27266 47829 65508 94557 128197 158388 103812

Production 102301 123648 102576 117784 100027 82303 107102 119858 88990

Denmark Prod+Imp. 131945 154420 129842 165613 165535 176860 235299 278246 192802

Export 113716 98077 81809 102481 112726 104550 119845 127584 120279

Total Use 18229 56343 48033 63132 52809 72310 115454 150662 72523

2000 2001 2002 2003 2004 2005 2006 2007 2008

Import 94625 66613 32315 91739 87626 62586 75232 91596 80896

Production 180199 141050 128453 130222 195263 168923 180214 180096 193339

Chile Prod+Imp. 274824 207663 160768 221961 282889 231509 255446 271692 274235

Export 16146 6302 23624 18591 28149 42193 61843 71490 80492

Total Use 258678 201361 137144 203370 254740 189316 193603 200202 193743

2000 2001 2002 2003 2004 2005 2006 2007 2008

Import 25826 3862 3918 9542 16740 15472 30258 30805 38798

Production 15790 18434 23454 18873 23102 30000 50000 72500 92345

China Prod+Imp. 41616 22296 27372 28415 39842 45472 80258 103305 131143

Export 411 431 341 208 306 984 3521 4034 5335

Total Use 41205 21865 27031 28207 39536 44488 76737 99271 125808

2000 2001 2002 2003 2004 2005 2006 2007 2008

Import 45964 60448 35896 48124 56492 31175 19507 22681 27046

Production 10400 10100 10600 11100 11600 12100 12200 12500 12900 United Kingdom Prod+Imp. 56364 70548 46496 59224 68092 43275 31707 35181 39946

Export 1787 1696 2007 1208 3250 2236 3189 3180 2955

Total Use 54577 68852 44489 58016 64842 41039 28518 32001 36991

2000 2001 2002 2003 2004 2005 2006 2007 2008

Import 14312 13239 13757 10316 8127 6711 6520 6724 7900

Production 5355 6156 5521 5894 6526 5800 9790 11041 12182

Germany Prod+Imp. 19667 19395 19278 16210 14653 12511 16310 17765 20082

Export 1750 6152 6820 7465 9299 4755 7762 8767 9684

Total Use 17917 13243 12458 8745 5354 7756 8548 8998 10398

Source:FAO/FIGIS(2011)

101

APPENDIX 12 - MAIN LOCATION OF KRILL CATCH IN THE SCOTIA SEA (1972-2004)

Locationoftotalkrillcatch(19722004)intheScotiaSea.Theredareasinthefigurexshowthemain locationofSSMU’Swherethekrillfisheryhasbeenoperatedsince1972.Source:Basedondatafrom CCAMLRreportsandKawaguchiandcolleagues(2006)

102

APPENDIX 13 - RELATED ECOSYSTEMS TO THE SCOTIA SEA; FUNCTION AND MAJOR CHANGES (1970-2010)

Related Function to the Scotia Major changes since Productivity Possible causes References ecosystems Sea 1970s Schnack-Schiel Benthic Nutrient and iron upflow, and Isla ecosystem of migration of zooplankton High N/D N/D (2005),Murphy the Scotia Sea species and pelagic fishes et al (2007) Murphy et al Bellingshausen Inflow of water with , specie Sea ice extension period Air tempertatur (2007), and Amundsen High interactions shorter increse Stammerjohn Seas et al (2008) Coastal development, Migration area for pinguins, Antropogenical pressures, Pauly et al Patagonian industrial activities, seals and other seabirds as High nonindigenous marine (1998), Ciancio shelf (and sea) turism, pollution and well as whales during winter species et al (2008) increased fishing and demand El Niño -South ern Regime and phase shifts of Oscillation (ENSO), Chilenian shelf sardine and peruvian Migration area for pinguins, High (& coastal (and sea) & achovies fisheries, Alheit and seals and other seabirds as periodically development, Humboldt antropogenical Niquen (2004) well as whales during winter low) industrial activities, current system pressures,nonindigenous turism andincreased marine species fishing and demand

Regime shifts (e.g. collapse Coastal South African van der Migration area for pinguins, High (& of sardines and horse development, shelf & Lingen et al seals and other seabirds as periodically mackerel fishery), industrial activities, Benguela (2006), Barnes well as whales during winter low) increasing antropogenical turism and increased current system (2007) pressures fish demand

Coastal Increased antropogenic Vasconcellos & Brazilian development, Migration area for whales pressures, and increased Gasalla (2001), shelves (and Middle industrial activities, during winter nonindigenous marine Freire & Pauly sea) turism and increased species (2010) fishing and demand

RelatedecosystemstotheScotiaSea,thefunctionalrelationshipandidentifiedchangesinthesesince1970s. Basedondifferentsources

103