Die Milchkrautwanze

Total Page:16

File Type:pdf, Size:1020Kb

Die Milchkrautwanze Schmuckstück, Supermodel, Leckerbissen: die Milchkrautwanze Literatur IBLER, B. & U. WILCZEK (2009): The care of the Large Milkweek Bug. – ANDERSEN, F. (2007): Die Milchkrautwanze Oncopeltus fasciatus. Ein International Zoo News 55 (4): 223–228. „neues“ Futter- und Terrarientier. – amphibia 6/2: 4–8 KOERPER, K. P., & C. D. JORGENSEN (1984): Mass-rearing method for BALDWIN, D. J. & H. DINGLE (1986): Geographic variation in the ef- the large milkweed bug, Oncopeltus fasciatus (Hemiptera, Lygaei- fects of temperature on life history traits in the large milkweed dae). – Entomol News, 95: 65–69. bug Oncopeltus fasciatus – Oecologia, 69 (1): 64–71. KUTCHER, S. R. (1971): Two Types of Aggregation Grouping in the BECK, S. D., C. A. EDWARDS & J. T. MEDLER (1958): Feeding and nutri- Large Milkweed Bug, Oncopeltus fasciatus (Hemiptera: Lygaei- tion of the milkweed bug, Oncopeltus fasciatus (DALLAS). – Ann. dae). – Bulletin of the Southern California Academy of Sciences, ent. Soc. Am. 51: 283–288. 70 (2): 87–90. BERENBAUM, M. R. & E. MILICZKY (1984): Mantids and Milkweed Bugs: LIU, P. & T. C. KAUFMAN (2009): Morphology and Husbandry of the Efficacy of Aposematic Coloration Against Invertebrate Predators. Large Milkweed Bug, Oncopeltus fasciatus. – Cold Spring Harb – The American Midland Naturalist, 111 (1): 64–68. Protoc; doi: 10.1101/pdb.emo127 BONGERS, J. (1968): Subsozialphänomene bei Oncopeltus fascia- NEWCOMBE, D., J. D. BLOUNT, C. MITCHELL & A. J. MOORE (2013): Chemical tus Dall. (Heteroptera, Lygaeidae). – Insectes soc., 15: 309–317. egg defence in the large milkweed bug, Oncopeltus fasciatus, – (1969a): Zur Frage der Wirtsspezifität bei Oncopeltus fasciatus derives from maternal but not paternal diet. – Entomol. Exp. (Heteroptera: Lygaeidae). – Ent. exp. & appl., 12, 147–156. Appl.,149: 197–205. – (1969b): Saugverhalten und Nahrungsaufnahme von Oncopel- NISWANDER, R. E. (1951): Life History and Respiration of the Milkweed tus fasciatus DALLAS (Heteroptera: Lygaeidae). – Oecologia, 3, Bug Oncopeltus fasciatus (DALLAS). – The Ohio Journal of Science, 374–389. 51 (1): 27–33. – (1969c): Über Vorzugstemperatur und Wasserhaushalt von Onco- PALMER, J. O., & H. DINGLE (1986): Direct and correlated responses to peltus fasciatus DALL. (Heteroptera: Lygaeidae). – Oecologia 2 (2): selection among life-history traits in milkweed bugs (Oncopeltus 223–231. fasciatus). – Evolution 40 (4): 767–777. BONGERS, J. & W. EGGERMANN (1971): Der Einfluss des Subsozialver- PANFILIO, K. & A. CHIPMAN: Oncopeltus fasciatus. Overview. https://i5k. haltens der spezialisierten Samensauger Oncopeltus fasciatus DALL. nal.usda.gov/Oncopeltus_fasciatus. Download am 10.05.2020 und Dysdercus fasciatus SIGN, auf ihre Ernährung. – Oecologia. RALPH, C. P. (1976): Natural food requirements of the large milk- Beri., 6: 293–302. weed bug, Oncopeltus fasciatus (Hemiptera Lygaeidae), and their CAPINERA, J. L. (Hrsg.) (2008): Encyclopedia of Entomology. – Sprin- relation to gregariousness and host plant morphology. – Oecolo- ger, Heidelberg gia, Beri. 26: 157–175. DINGLE, H. (1968): Life History and Population Consequences of RODRÍGUEZ-CLARK, K. M. (2004): Effect of captivity on genetic variance Density, Photo-Period, and Temperature in a Migrant Insect, the for five traits in the large milkweed bug (Oncopeltus fasciatus). – Milkweed Bug Oncopeltus. – The American Naturalist, 102 (924): Heredity, 93: 51–61. 149–163. SAUER, D. & D. FEIR (1973): Studies on natural populations of Onco- DINGLE, H., B. M. ALDEN, N. R. BLAKLEY, D. KOPEC & E. R. MILLER (1980): peltus fasciatus (DALLAS), the large milkweed bug. – Am Midl Nat, Variation in photoperiodic response within and among species of 90: 13–37. milkweed bugs (Oncepeltus). – Evolution, 34 (2): 356–370. SLANSKY, F. Jr (1980): Effect of food limitation on food consump- FEIR, D. (1963): Effects of rearing alone and in groups on the tion and reproductive allocation by adult milkweed bugs, Onco- growth of the milkweed bug, Oncopeltus fasciatus (Hemiptera:Ly- peltus fasciatus. – J. Insect Physiol. 26: 79–84. gaeidae). – Ann. ent. Soc Am., 56: 406–407. UNIVERSITÄT LEIPZIG (2012): Transfer in der Antibiotikaentwicklung wird – & S. D. BECK (1963): Feeding behaviour of the large milkweed intensiviert. – Pressemitteilung 2012/093. Online unter https:// bug, Oncopeltus fasciatus. – Ann. em. Soc Am., 56, 224–229. bio-city-leipzig.de/news-de/transfer-in-der-antibiotikaentwick- GORDON, H. T. (1974): Cohort Rearing and Prolonged Cold-Storage lung-wird-intensiviert (Download: 4.4.2019). of the Sunflower Strain of Oncopeltus fasciatus. – Ann Entomol WOODRING, J., K. H. HOFFMANN & M. W. LORENZ (2007): Feeding, nu- Soc Am, 67 (6): 976–980. trient flow, and digestive enzyme release in the giant milkweed bug. – Physiological Entomology, 32 (4): 328–335. REPTILIA 1 Terraristik.
Recommended publications
  • Estados Inmaduros De Lygaeinae (Hemiptera: Heteroptera
    Disponible en www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 86 (2015) 34-40 www.ib.unam.mx/revista/ Taxonomía y sistemática Estados inmaduros de Lygaeinae (Hemiptera: Heteroptera: Lygaeidae) de Baja California, México Immature instars of Lygaeinae (Hemiptera: Heteroptera: Lygaeidae) from Baja California, Mexico Luis Cervantes-Peredoa,* y Jezabel Báez-Santacruzb a Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351, 91070 Xalapa, Veracruz, México b Laboratorio de Entomología, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Sócrates Cisneros Paz, 58040 Morelia, Michoacán, México Recibido el 26 de mayo de 2014; aceptado el 17 de septiembre de 2014 Resumen Se describen los estados inmaduros de 3 especies de chinches Lygaeinae provenientes de la península de Baja California, México. Se ilustran y describen en detalle todos los estadios de Melacoryphus nigrinervis (Stål) y de Oncopeltus (Oncopeltus) sanguinolentus Van Duzee. Para Lygaeus kalmii kalmii Stål se ilustran y describen los estadios cuarto y quinto. Se incluyen también notas acerca de la biología y distribución de las especies estudiadas. Derechos Reservados © 2015 Universidad Nacional Autónoma de México, Instituto de Biología. Este es un artículo de acceso abierto distribuido bajo los términos de la Licencia Creative Commons CC BY-NC-ND 4.0. Palabras clave: Asclepias; Asteraceae; Plantas huéspedes; Diversidad de insectos; Chinches Abstract Immature stages of 3 species of Lygaeinae from the Peninsula of Baja California, Mexico are described. Illustrations and detailed descriptions of all instars of Oncopeltus (Oncopeltus) sanguinolentus Van Duzee and Melacoryphus nigrinervis (Stål); for Lygaeus kalmii kalmii Stål fourth and fifth instars are described and illustrated.
    [Show full text]
  • Feeding on Milkweeds (Asclepias Species) in Central California
    ASPECTS OF THE CHEMICAL ECOLOGY OF LYGAEID BUGS (ONCOPELTUS FASCIATUS AND LYGAEUS KALMII KALMII) FEEDING ON MILKWEEDS (ASCLEPIAS SPECIES) IN CENTRAL CALIFORNIA by MURRAY BRUCE ISMAN B.Sc, University of British Columbia, 1975 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE, in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH'COLUMBIA April, 1977 (c) Murray Bruce Isman, 1977 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of ZOOLOGY The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1WS Frontispiece. Adult Oncopeltus fasciatus and Lygaeus kalmii kalmii (center) on a dehiscent pod of Asclepias fascicularis in Napa County, California. (iii) (iv) ABSTRACT A plant-insect allomonal system was investigated, involving seed bugs (Lygaeidae) on milkweeds (Asclepias spp.). The ability of the insects to sequester secondary compounds from host plants was studied in detail in central California. A colorimetric assay was used to quanitify the amount of cardenolides (cardiac glycosides) in the lygaeid bugs Oncopeltus fasciatus and Lygaeus kalmii kalmii and nine species of milkweed host plants.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Physical Mapping of 18S Rdna and Heterochromatin in Species of Family Lygaeidae (Hemiptera: Heteroptera)
    Physical mapping of 18S rDNA and heterochromatin in species of family Lygaeidae (Hemiptera: Heteroptera) V.B. Bardella1,2, T.R. Sampaio1, N.B. Venturelli1, A.L. Dias1, L. Giuliano-Caetano1, J.A.M. Fernandes3 and R. da Rosa1 1Laboratório de Citogenética Animal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil 2Instituto de Biociências, Letras e Ciências Exatas, Departamento de Biologia, Universidade Estadual Paulista, São José do Rio Preto, SP, Brasil 3Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil Corresponding author: R. da Rosa E-mail: [email protected] Genet. Mol. Res. 13 (1): 2186-2199 (2014) Received June 17, 2013 Accepted December 5, 2013 Published March 26, 2014 DOI http://dx.doi.org/10.4238/2014.March.26.7 ABSTRACT. Analyses conducted using repetitive DNAs have contributed to better understanding the chromosome structure and evolution of several species of insects. There are few data on the organization, localization, and evolutionary behavior of repetitive DNA in the family Lygaeidae, especially in Brazilian species. To elucidate the physical mapping and evolutionary events that involve these sequences, we cytogenetically analyzed three species of Lygaeidae and found 2n (♂) = 18 (16 + XY) for Oncopeltus femoralis; 2n (♂) = 14 (12 + XY) for Ochrimnus sagax; and 2n (♂) = 12 (10 + XY) for Lygaeus peruvianus. Each species showed different quantities of heterochromatin, which also showed variation in their molecular composition by fluorochrome Genetics and Molecular Research 13 (1): 2186-2199 (2014) ©FUNPEC-RP www.funpecrp.com.br Physical mapping in Lygaeidae 2187 staining. Amplification of the 18S rDNA generated a fragment of approximately 787 bp.
    [Show full text]
  • Butterflies and Caterpillars
    Butterflies and Caterpillars Butterflies and Caterpillars - Cherrytree Books, 2007 - 1842344404, 9781842344408 - Anita Ganeri - 2007 Younger readers can follow the transformation from egg to beautiful butterfly in this book, one in a series of books which track the life cycles of familiar animals, both wild and domestic. Download Pdf http://contentin.org/.AYzXV.pdf Dingle, H.: Migration and diapause in tropical, temperate, and island milkweed bugs. In: Evolution of insect migration and diapause (H. Dingle, ed.), pp. 254â“276. Berlin-Heidelberg-New York: Springer 1978 1968, 1973). Here we report on the exclusion of seed-feeding milkweed bugs from the island of Barbados by monarch butterflies whose caterpillars feed on the leaves and fruits of the same host plants. Milkweed bugs (Oncopeltus. The complex life-cycles of Maculinea butterflies and their interactions with Myrmica ants have been studied extensively both in the field (eg Chapman, 1916a, b; Frohawk, 1916, 1924; Thomas, 1980, 1995; Elmes et al., 1991a) and, to a lesser extent, in the laboratory. And molting). As in many other groups of butterflies, riodinid caterpillars typically feed on young leaves or shoots. Unless specified otherwise the abbreviation lvs in Table 1 refers to young leaves and flrs refers to flowers. Under. Ralph, C.P.: Natural food requirements of the large milkweed bug, Oncopeltus fasciatus (Hemiptera: Lygaeidae), and their relation to gregariousness and host plant morphology. Oecologia (Berl.) 26, 157â“175 (1976) Abstract: Written for scientists and general enthusiasts, this book provides descriptions and information on distribution, habitat, life history, nectar sources and larval host plants of Papilionidae, Pieridae, Lycaenidae, Riodinidae, Nymphalidae and Hesperiidae in West.
    [Show full text]
  • Anti-Hormone”) Dorothy Feir Biology Department Saint Louis University St
    Chapter 6 Inhibition of Gland Development in Insects by a Naturally Occurring Antiallatotropin (“ Anti-Hormone”) Dorothy Feir Biology Department Saint Louis University St. Louis, MO 63103 I received my BS from the University of Michigan-Ann Arbor in 1950, my MS from the University of Wyoming-Laramie in 1956 and my doctorate from the University of Wisconsin at Madison in 1960. After finishing my doctoral work I was an Instructor in the Biology Department of the University of Buffalo for one year before returning to my native city in 1961 to be an Assistant Professor in the Department of Biology at Saint Louis University. In 1964 I be- came an Associate Professor and in 1967 a Professor in that De- partment. Some of my professional activities in the last few years include Chairman of the Biochemistry and Physiology Section of the XV International Congress of Entomology, Editor of Environ- mental Entomology, Chairman of the Physiology and Toxicology Section of the Entomological Society of America, President of Saint Louis University Chapter of Sigma Xi, and member of the National Institutes of Health Tropical Medicine and Parasitology Study Sec- tion. My current interests include a rather broad spectrum of insect physiology studies. My graduate students and I are investigating the mechanism of action of juvenile hormone in the milkweed bug and the use of maggots in determining time of death for forensic pathologists. My other interests include invertebrate “immunolog- ical” reactions and the biology and physiology of the large milk- weed bug, Oncopeltus fasciatus. 101 101 101 102 Antiallatotropin Action Introduction For many years hormone action has been studied by surgically removing the gland that produces the hormone and seeing what physiological or bio- chemical changes occur.
    [Show full text]
  • Book Reviews, New Publica- Tions, Metamorphosis, Announcements
    ________________________________________________________________________________________ Volume 57, Number 4 Winter 2015 www.lepsoc.org ________________________________________________________________________________________ Inside: Butterflies of Bolivia Are there caterpillars on butterfly wings? A citizen science call for action Ghost moths of the world website A conservation concern from the 1870’s Fruit-feeding Nymphali- dae in a west Mexican neotropical garden Fender’s Blue Butterfly conservation and re- covery Membership Updates, Marketplace, Book Reviews, New Publica- tions, Metamorphosis, Announcements ... ... and more! ________________________________________________________________________________________ ________________________________________________________ Contents ________________________________________________________www.lepsoc.org Species diversity and temporal distribution in a community of fruit- ____________________________________ feeding Nymphalidae in a west Mexican neotropical garden Volume 57, Number 4 Gerald E. Einem and William Adkins. ............................................... 163 Winter 2015 Windows for butterfly nets The Lepidopterists’ Society is a non-profit ed- J. Alan Wagar. ................................................................................... 173 ucational and scientific organization. The ob- Announcements: .......................................................................................... 174 ject of the Society, which was formed in May Zone Coordinator Needed; Season Summary
    [Show full text]
  • Milkweeds a Conservation Practitioner’S Guide
    Milkweeds A Conservation Practitioner’s Guide Plant Ecology, Seed Production Methods, and Habitat Restoration Opportunities Brianna Borders and Eric Lee-Mäder The Xerces Society FOR INVERTEBRATE CONSERVATION The Xerces Society for Invertebrate Conservation 1 MILKWEEDS A Conservation Practitioner's Guide Brianna Borders Eric Lee-Mäder The Xerces Society for Invertebrate Conservation Oregon • California • Minnesota • Nebraska North Carolina • New Jersey • Texas www.xerces.org Protecting the Life that Sustains Us The Xerces Society for Invertebrate Conservation is a nonprofit organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection, harnessing the knowledge of scientists and the enthusiasm of citizens to implement conservation programs worldwide. The Society uses advocacy, education, and applied research to promote invertebrate conservation. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional offices in California, Minnesota, Nebraska, New Jersey, North Carolina, and Texas. The Xerces Society is an equal opportunity employer and provider. © 2014 by The Xerces Society for Invertebrate Conservation Acknowledgements Funding for this report was provided by a national USDA-NRCS Conservation Innovation Grant, The Monarch Joint Venture, The Hind Foundation, SeaWorld & Busch Gardens Conservation Fund, Disney Worldwide Conservation Fund, The Elizabeth Ordway Dunn Foundation, The William H. and Mattie Wat- tis Harris Foundation, The CERES Foundation, Turner Foundation Inc., The McCune Charitable Founda- tion, and Xerces Society members. Thank you. For a full list of acknowledgements, including project partners and document reviewers, please see the Acknowledgements section on page 113.
    [Show full text]
  • ECOLOGICAL FACTORS AFFECTING the ESTABLISHMENT of the BIOLOGICAL CONTROL AGENT Gargaphia Decoris DRAKE (HEMIPTERA: TINGIDAE)
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. ECOLOGICAL FACTORS AFFECTING THE ESTABLISHMENT OF THE BIOLOGICAL CONTROL AGENT Gargaphia decoris DRAKE (HEMIPTERA: TINGIDAE) A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University, Manawatu, New Zealand Cecilia María Falla 2017 ABSTRACT The Brazilian lace bug (Gargaphia decoris Drake (Hemiptera:Tingidae)) was released in New Zealand in 2010 for the biological control of the invasive weed woolly nightshade (Solanum mauritianum Scopoli (Solanaceae)). Currently there is scarce information about the potential effect of ecological factors on the establishment of this biological control agent. This study investigated: 1) the effect of maternal care and aggregation on nymphal survival and development; 2) the effect of temperature, photoperiod and humidity on G. decoris performance; and 3) the effect of light intensity on S. mauritianum and G. decoris performance. Maternal care and aggregation are characteristic behaviours of G. decoris. These behaviours have an adaptive significance for the offspring and are key determinants for the survival of the species under natural conditions. Maternal care is reported to increase the survival and development of offspring under field conditions, and higher aggregations to increase the survival of the offspring. However, in this study, maternal care negatively affected the survival and development of the offspring, and higher aggregations had no significant impact on offspring survival.
    [Show full text]
  • Some Aspects of the Sequestration of Cardenolides in the Large Milkweed Bug, Oncopeltus Fasciatus (Dallas) (Hemiptera: Lygaeidae)
    SOME ASPECTS OF THE SEQUESTRATION OF CARDENOLIDES IN THE LARGE MILKWEED BUG, ONCOPELTUS FASCIATUS (DALLAS) (HEMIPTERA: LYGAEIDAE) by LYNN MARIE VASINGTON MOORE B.Sc. (Magna Cum Laude) UNIVERSITY OF CONNECTICUT, 1975 M.Sc. UNIVERSITY OF MASSACHUSETTS, 1978 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF ZOOLOGY We accept this thesis as conforming to the-f5e.auired standard April, 1985 (c) Lynn Marie Vasington Moore, 1985 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 OE-6 (3/81) ii ABSTRACT Specific aspects of the selective sequestration, excretion and tolerance of cardenolides in the large milkweed bug, Oncopeltus fasciatus have been studied using spectrophotometry assays, thin-layer chromatography, tracer studies, in vivo tolerance assays, and enzyme inhibition techniques. The cardenolide content of the dorsolateral space, gut, wings and fat body of Oncopeltus fasciatus was examined. The results indicate that the majority of cardenolides sequestered in the insect are concentrated in the dorsolateral space, which confirms the basic pattern of quantitative distribution of cardenolides in fJ.
    [Show full text]
  • Hemiptera- Heteroptera: Lygaeoidea: Lygaeidae)
    Revista Mexicana de Biodiversidad 78: 339- 350, 2007 Estados de desarrollo y biología de tres especies de Lygaeinae (Hemiptera- Heteroptera: Lygaeoidea: Lygaeidae) Life stages and biology of three species of Lygaeinae (Hemiptera-Heteroptera: Lygaeoidea: Lygaeidae) Luis Cervantes-Peredo* y Erika Elizalde-Amelco Instituto de Ecología, A.C. Km. 2.5 Antigua Carretera a Coatepec 351, Congregación El Haya, Xalapa, Veracruz, 91070 México. *Correspondencia: [email protected] Resumen. Se describen los estados de desarrollo (huevo, ninfas y adulto) de 3 especies de Lygaeinae (Hemiptera- Heteroptera: Lygaeoidea: Lygaeidae), Anochrostomus formosus (Blanchard) principalmente asociada con especies de Asteraceae y Convolvulaceae, y Lygaeus reclivatus reclivatus(Say) y Oncopeltus (Oncopeltus) sexmaculatus (Stål) asociadas con Asclepiadaceae. Las descripciones están basadas en ejemplares colectados en los estados de Oaxaca y Guerrero (México) y criados en el laboratorio. Se ilustra cada uno de los estadios y se incluyen notas acerca de su biología y plantas huéspedes. Palabras clave: chinches, México, Asclepiadaceae, Convolvulaceae, Asteraceae. Abstract. The life stages (egg, nymphs, and adult) of 3 species of Lygaeinae (Hemiptera-Heteroptera: Lygaeoidea: Lygaeidae) are described. Anochrostomus formosus (Blanchard) is mainly associated with species of Asteraceae and Convolvulaceae, whereas Lygaeus reclivatus reclivatus (Say) and Oncopeltus (Oncopeltus) sexmaculatus (Stål) are associated with Asclepiadaceae. Descriptions are based on individuals collected in the states of Oaxaca and Guerrero (Mexico), and reared in laboratory. Illustrations of each instar are also included, as well as notes about their biology and host plants. Key words: bugs, Mexico, Asclepiadaceae, Convolvulaceae, Asteraceae. Introducción su migración y diapausa (Solbreck, 1979), además de la acción de los machos para alejar a otros insectos de su Los Lygaeinae son un grupo de chinches exclusivamente planta huésped (McLain y Shure, 1987).
    [Show full text]
  • Hemiptera: Lygaeidae: Oncopeltus Fasciatus) by Jumping Spiders (Araneae: Salticidae: Dendryphantina: Phidippus)
    Peckhamia 143.1 Learned avoidance of Oncopeltus by Phidippus 1 PECKHAMIA 143.1, 12 June 2016, 1―25 ISSN 2161―8526 (print) ISSN 1944―8120 (online) Learned avoidance of the Large Milkweed Bug (Hemiptera: Lygaeidae: Oncopeltus fasciatus) by jumping spiders (Araneae: Salticidae: Dendryphantina: Phidippus) David E. Hill 1 1213 Wild Horse Creek Drive, Simpsonville, SC 29680-6513, USA, email [email protected] Abstract: In the laboratory, Phidippus jumping spiders often attacked, but seldom fed upon nymphs and adult milkweed bugs (Oncopeltus fasciatus) when these were reared on milkweed (Asclepias) seeds. Spiders readily attacked and fed upon Oncopeltus reared on sunflower (Helianthus) seeds. Phidippus were shown to reject flies treated with either hemolymph, or with fluid from the lateral thoracic compartment, of Oncopeltus. They also rejected flies treated with β-Ecdysone, but accepted flies treated with lethal doses of the cardenolides g- Strophanthin (Ouabain) and Digitoxin. Single encounters with Oncopeltus significantly reduced the probability of attack in a subsequent encounter for less than two hours. Repeated encounters with Oncopeltus led to greater avoidance than did a single encounter. In the absence of repeated experience with these bugs, however, Phidippus recovered their tendency to attack over a period of several days. More satiated spiders were more discriminating in their choice of prey. Negative experience with Oncopeltus did not necessarily impact their predation on other insects, including flies (Diptera). Impact of measurement techniques on results in prey avoidance and acceptance studies are discussed. A preliminary model for selective avoidance and attraction to potential prey, the defenses of Oncopeltus fasciatus, and salticid contact chemoreception in general, are also reviewed.
    [Show full text]