Research Article Development of Duplex PCR Assay for the Detection of Mycoplasma Gallisepticum and Mycoplasma Synoviae Prevalence in Pakistan

Total Page:16

File Type:pdf, Size:1020Kb

Research Article Development of Duplex PCR Assay for the Detection of Mycoplasma Gallisepticum and Mycoplasma Synoviae Prevalence in Pakistan International Journal of Animal and Veterinary Advances 5(3): 114-119, 2013 DOI:10.19026/ijava.5.5586 ISSN: 2041-2894; e-ISSN: 2041-2908 © 2013 Maxwell Scientific Publication Corp. Submitted: February 11, 2013 Accepted: March 11, 2013 Published: June 20, 2013 Research Article Development of Duplex PCR Assay for the Detection of Mycoplasma Gallisepticum and Mycoplasma Synoviae Prevalence in Pakistan 1,2Abida Arshad, 3Khaleeq-Uz-Zaman, 3Ijaz Ali, 4Muhammad Arshad, 4Muhammad Saad Ahmed, 5Mukhtar Alam, 6Ahmad ur Rehman Saljoqi, 7Aqeel Javed, 8 Naeemud Din Ahmadand 3Zahoor Ahmad Swati 1School of Life Sciences, Beijing Institute of Technology, Beijing, China 2Department of Zoology, PMAS-Arid Agriculture University, Rawalpindi, 3Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 4Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan 5Department of Biochemistry, Abdul Wali Khan University, Mardan 6Department of Plant Protection, The University of Agriculture, Peshawar, 7Faculty of Veterinary and Animal Sciences, University of Veterinary and Animal Sciences Lahore, 8Department of Zoology, Islamia College University Peshawar, Pakistan Abstract: Mycoplasma infections are of great concern in avian medicine, because they cause economic losses in commercial poultry production of Pakistan. Timely and efficient diagnosis of the mycoplasma is needed in order to practice prevention and control strategies. A duplex Polymerase Chain Reaction (PCR) was optimized for simultaneous detection of two pathogenic species of avian mycoplasmas. Two sets of oligonucleotide primers specific for Mycoplasma gallisepticum and Mycoplasma synoviae, were used in the test. The developed assay exhibited high sensitivity and 100% specificity for the simultaneous detection of mycoplasma species prevalence in Pakistan. Keywords: Mycoplasma, Pakistan, pathogenic species, poultry INTRODUCTION (Hnatow et al., 1998). M. gallisepticum infection leads to decreased egg production, growth and hatchability In Pakistan, the production of poultry has made rates thus causing huge damage to the economy awesome development in recent years. Due to increased (Ferguson et al., 2004; Liu et al., 2001; Marois et al., demand and growing supply of poultry meat, it has 2001). M. gallisepticumis the primary causative agent become one of the most important growth industries in of Chronic Respiratory Disease (CRD) and cause avian the commercial scenario of the country. Although mycoplasmosis specifically under conditions of poultry industry of Pakistan is well established and well management stresses and/or other avian respiratory structured, still it is confronted to many acute and fatal pathogens (Papazisi et al., 2002). The pathological diseases. Among these, most mycoplasmal diseases are condition observed during M. gallisepticum infection of key importance, such as chronic respiratory disease. including chronic air sac infection. In some birds M. There are more than a hundred species in the genus gallisepticum causing upper respiratory tract infections Mycoplasma, with a G+C (Guanine Cytosine) content (Hong et al., 2005; Liu et al., 2001; Marois et al., of 23-40% (Kleven, 2003). 2001). Mycoplasma gallisepticum is the member of the The first reports of Mycoplasma synoviae infection division Firmicutes, class Mollicutes, order with arthritic involvement was declared in the decades Mycoplasma tales and the family Mycoplasmataceae of 50 and 60 in broiler flocks, but later in the decade of (Ley, 2003). M. gallisepticum, an avian pathogen, 70´s that the respiratory disease caused by M.synoviae among the pathogens belongs to this group M. was revealed (Rosales, 1991). M. synoviae is the gallisepticum is considered the most pathogenic of all member of class Mollicutes, order Mycoplasma tales avian Mycoplasma pathogens (Kleven, 2003). The most and family Mycoplasmataceae. M. gallisepticum and M. remarkable characteristics of the members of the genus synoviae are regarded to be the most important of the are their lack of cell wall and utilization of UGA pathogenic mycoplasms and both are prevalent Corresponding Author: Muhammad Arshad, Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 114 Int. J. Anim. Veter. Adv., 5(3): 114-119, 2013 worldwide. M. synoviae belong to group of wall-less mycoplasmas prevalent in Pakistan. Due to limitations Gram-positive bacteria, genomes size is from 1358 kb of the Multiplex approach for the efficient diagnosis of to as little as 580 kb (Calderon-copete et al., 2009). M. the bacterial genotypes prevalent in Pakistan, we synoviae infection in the meat producing birds leads to conducted this study in order to develop an efficient, decrease growth rate and disapproval at processing. In less time consuming and cost effective duplex PCR turkey, M. synoviae infection may causes sinusitis, air assay for the detection of pathogenic mycoplasma sacculitis, synovitis and meningitis (Ghazi khanian species in poultry birds which is capable to detect the et al., 1973; Rhoadesr, 1977; Chin et al., 1991). M. prevalent viral types in Pakistan. Moreover, we also synoviae caused Infectious synovitis (Kleven et al., investigated broiler, breeders and Layer birds from 1991; Kleven, 1997). In chickens, turkeys and other various poultry farms of the country for the presence of birds, a less severe form of some of these signs and M. gallisepticum or M. synoviae infection. symptoms can be observed in M. synoviae infections, along with lameness, pale comb and head, swollen MATERIALS AND METHODS hocks and footpad. Extremely affected birds may show green faeces, but respiratory infection caused by M. Field samples and experimental birds: The current synoviae is often without any symptoms. Similarly, study was carried out at Grand Parents Laboratory (GP most of the symptoms of M. synoviae infection are less Lab) Lahore after having approved by the Board of severe and less visible and are characterized by study of the Institute of Biotechnology and Genetic impaired hatchability and embryo pepping, high Engineering, Peshawar. The study was conducted in embryo mortality, poor weight gain and mostly the accordance with internationally accepted guidelines. same symptoms are studied in chickens affected by M. Experimental birds and field samples were provided by synoviae (Charlton et al., 1996). M. synoviae is one of various poultry farms from across the country. Chicks the most important causes of the disease that may be were artificially infected with various strains of M. presented as joint and/or respiratory condition (Lockaby gallisepticum and M. synoviae and slaughtered after the et al., 1998; Yoder, 1991). In poultry birds and turkey, M. synoviae usually causing respiratory diseases in signs and symptoms of the disease appeared. Tracheas, birds and thus leads to enormous loses of the valuable air sacs, ovary, joints and lungs were collected from the economy across the globe (Kleven, 1997). In addition infected birds for the isolation of M. gallisepticum and to these M. synoviae infected symptomatic poultry M. synoviae DNA, at GP Lab Lahore, where chickens show respiratory problems, cough, wheezing, and other birds are brought for the diagnosis of various aerosaculitis, impaired growth, sinusitis and synovitis, diseases from different commercial farms from all over chronic and asymptomatic infections are both more the country. Apparently healthy and effected Broiler, common and more important, because of the damage Layer and breeder stocks in various poultry farms and destruction they cause (Mohammad et al., 1987; across the country were also investigated for the Lockaby et al., 1998). presence of AAV and CAV infections by appearance of Both M. gallisepticum and M. synoviae have been the clinical signs and symptoms of the diseases or post implicated to cause serious economic losses to the mortem examination. The morbidity and mortality rates poultry industry of Pakistan (Rehma et al., 2011). in the case of AAV and CAV were also recorded. Diagnosis of both the M. gallisepticum and M. synoviae Determination of any co-infection was carried out are relaying on epidemiological data, clinical signs and microbiologically using standard procedures. symptoms of the disease, analyzing the macro- and microscopic lesions, mycoplasma serology and/or DNA extraction: Tracheas, air sacs, ovary, joints and isolation and identification. The causing agent may be lungs were collected from the infected birds for the detected in fragments of infected organs (trachea, air isolation of M. gallisepticum and M. synoviae DNA. sacs and lungs), as well as it can also be identified in DNA was isolated from the samples using QIAampR the infraorbital and ocular sinus and synovial exudates. Immunological detection methods can also be used to DNA Mini Kit (Qiagen GmbH, D-40724, Hilden, identify mycoplasmal isolates. These include the Direct Germany) according to the manufacturer’s instruction. immunofluorescence, Indirect Fluorescent Antibody The DNA was then stored at -20 °C until used. (IFA) test, Immunoperoxidase (IP) tests, Growth inhibition (GI) test, Metabolism inhibition (MI) tests, IP Oligonucleotide primers: Two sets of primers for M. (OIE), Hem agglutination inhibition (HI) test, Enzyme- gallisepticum and for M. synoviae were synthesized
Recommended publications
  • Bacterial Communities of the Upper Respiratory Tract of Turkeys
    www.nature.com/scientificreports OPEN Bacterial communities of the upper respiratory tract of turkeys Olimpia Kursa1*, Grzegorz Tomczyk1, Anna Sawicka‑Durkalec1, Aleksandra Giza2 & Magdalena Słomiany‑Szwarc2 The respiratory tracts of turkeys play important roles in the overall health and performance of the birds. Understanding the bacterial communities present in the respiratory tracts of turkeys can be helpful to better understand the interactions between commensal or symbiotic microorganisms and other pathogenic bacteria or viral infections. The aim of this study was the characterization of the bacterial communities of upper respiratory tracks in commercial turkeys using NGS sequencing by the amplifcation of 16S rRNA gene with primers designed for hypervariable regions V3 and V4 (MiSeq, Illumina). From 10 phyla identifed in upper respiratory tract in turkeys, the most dominated phyla were Firmicutes and Proteobacteria. Diferences in composition of bacterial diversity were found at the family and genus level. At the genus level, the turkey sequences present in respiratory tract represent 144 established bacteria. Several respiratory pathogens that contribute to the development of infections in the respiratory system of birds were identifed, including the presence of Ornithobacterium and Mycoplasma OTUs. These results obtained in this study supply information about bacterial composition and diversity of the turkey upper respiratory tract. Knowledge about bacteria present in the respiratory tract and the roles they can play in infections can be useful in controlling, diagnosing and treating commercial turkey focks. Next-generation sequencing has resulted in a marked increase in culture-independent studies characterizing the microbiome of humans and animals1–6. Much of these works have been focused on the gut microbiome of humans and other production animals 7–11.
    [Show full text]
  • MIB–MIP Is a Mycoplasma System That Captures and Cleaves Immunoglobulin G
    MIB–MIP is a mycoplasma system that captures and cleaves immunoglobulin G Yonathan Arfia,b,1, Laetitia Minderc,d, Carmelo Di Primoe,f,g, Aline Le Royh,i,j, Christine Ebelh,i,j, Laurent Coquetk, Stephane Claveroll, Sanjay Vasheem, Joerg Joresn,o, Alain Blancharda,b, and Pascal Sirand-Pugneta,b aINRA (Institut National de la Recherche Agronomique), UMR 1332 Biologie du Fruit et Pathologie, F-33882 Villenave d’Ornon, France; bUniversity of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33882 Villenave d’Ornon, France; cInstitut Européen de Chimie et Biologie, UMS 3033, University of Bordeaux, 33607 Pessac, France; dInstitut Bergonié, SIRIC BRIO, 33076 Bordeaux, France; eINSERM U1212, ARN Regulation Naturelle et Artificielle, 33607 Pessac, France; fCNRS UMR 5320, ARN Regulation Naturelle et Artificielle, 33607 Pessac, France; gInstitut Européen de Chimie et Biologie, University of Bordeaux, 33607 Pessac, France; hInstitut de Biologie Structurale, University of Grenoble Alpes, F-38044 Grenoble, France; iCNRS, Institut de Biologie Structurale, F-38044 Grenoble, France; jCEA, Institut de Biologie Structurale, F-38044 Grenoble, France; kCNRS UMR 6270, Plateforme PISSARO, Institute for Research and Innovation in Biomedicine - Normandie Rouen, Normandie Université, F-76821 Mont-Saint-Aignan, France; lProteome Platform, Functional Genomic Center of Bordeaux, University of Bordeaux, F-33076 Bordeaux Cedex, France; mJ. Craig Venter Institute, Rockville, MD 20850; nInternational Livestock Research Institute, 00100 Nairobi, Kenya; and oInstitute of Veterinary Bacteriology, University of Bern, CH-3001 Bern, Switzerland Edited by Roy Curtiss III, University of Florida, Gainesville, FL, and approved March 30, 2016 (received for review January 12, 2016) Mycoplasmas are “minimal” bacteria able to infect humans, wildlife, introduced into naive herds (8).
    [Show full text]
  • Genomic Islands in Mycoplasmas
    G C A T T A C G G C A T genes Review Genomic Islands in Mycoplasmas Christine Citti * , Eric Baranowski * , Emilie Dordet-Frisoni, Marion Faucher and Laurent-Xavier Nouvel Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; [email protected] (E.D.-F.); [email protected] (M.F.); [email protected] (L.-X.N.) * Correspondence: [email protected] (C.C.); [email protected] (E.B.) Received: 30 June 2020; Accepted: 20 July 2020; Published: 22 July 2020 Abstract: Bacteria of the Mycoplasma genus are characterized by the lack of a cell-wall, the use of UGA as tryptophan codon instead of a universal stop, and their simplified metabolic pathways. Most of these features are due to the small-size and limited-content of their genomes (580–1840 Kbp; 482–2050 CDS). Yet, the Mycoplasma genus encompasses over 200 species living in close contact with a wide range of animal hosts and man. These include pathogens, pathobionts, or commensals that have retained the full capacity to synthesize DNA, RNA, and all proteins required to sustain a parasitic life-style, with most being able to grow under laboratory conditions without host cells. Over the last 10 years, comparative genome analyses of multiple species and strains unveiled some of the dynamics of mycoplasma genomes. This review summarizes our current knowledge of genomic islands (GIs) found in mycoplasmas, with a focus on pathogenicity islands, integrative and conjugative elements (ICEs), and prophages. Here, we discuss how GIs contribute to the dynamics of mycoplasma genomes and how they participate in the evolution of these minimal organisms.
    [Show full text]
  • (Mycoplasma Synoviae) in Laying Hens Compared to Tea Tree Essential Oil on Table Egg Quality and Antibiotic Residues
    foods Article Influence of Different Tetracycline Antimicrobial Therapy of Mycoplasma (Mycoplasma synoviae) in Laying Hens Compared to Tea Tree Essential Oil on Table Egg Quality and Antibiotic Residues Nikola Puvaˇca 1,* , Erinda Lika 2, Vincenzo Tufarelli 3 , Vojislava Bursi´c 4,*, Dragana Ljubojevi´cPeli´c 5,* , Nedeljka Nikolova 6, Aleksandra Petrovi´c 4 , Radivoj Prodanovi´c 1 , Gorica Vukovi´c 7, Jovanka Levi´c 8 and Ilias Giannenas 9,* 1 Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cve´carska2, 21000 Novi Sad, Serbia; rprodanovic@fimek.edu.rs 2 Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodor Kamez, 1000 Tirana, Albania; [email protected] 3 Department of DETO, Section of Veterinary Science and Animal Production, University of Bari “Aldo Moro”, 70010 Valenzano, Italy; [email protected] 4 Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovi´ca8, 21000 Novi Sad, Serbia; [email protected] 5 Scientific Veterinary Institute Novi Sad, Rumenaˇckiput 20, 21000 Novi Sad, Serbia 6 Institute of Animal Science, University “Ss. Cyril and Methodius”, Av. Ilinden 92/a, 1000 Skopje, North Macedonia; [email protected] 7 Institute of Public Health of Belgrade, Bulevar despota Stefana 54a, 11000 Belgrade, Serbia; [email protected] 8 Scientific Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; jovanka.levic@fins.uns.ac.rs
    [Show full text]
  • Characterization and Taxonomic Description of Five Mycoplasma
    INTERNATIONAL JOURNALOF SYSTEMATIC BACTERIOLOGY, Jan. 1982, p. 108-115 Vol. 32, No. 1 0020-771 3/82/010108-08$02 .00/0 Characterization and Taxonomic Description of Five Mycoplasma Serovars (Serotypes) of Avian Origin and Their Elevation to Species Rank and Further Evaluation of the Taxonomic Status of Mycoplasrna synoviae F. T. W. JORDAN’, H. ERN@,’G. S. COTTEW,3 K. H. HINZ,4 AND L. STIPKOVITS’ Aiian Medicine, Liverpool University Veterinary Field Station, “Leahurst,” Neston, Merseyside, United Kingdom’; Food und Agriculture Organization/World Health Organization Col/uhorciting Centre for Animul Mycoplasmus, lnstitute of Medical Microbiology, University of Aurhus, DK 8000, Aurhus C, Denmark’; Commonwealth Scientijk and Industrid Research Organisation, Division of Animal Heulth, Animal Health Research Laboratory, P. 0. Parkville, Victoria, Australia 3052’; Institiit .fur Gejlugelkrankheiten, Der Tierurztlichen Hochschule Hannover, 3 Hannover, Bischojiholer Dumm 15, West Germany4; und Veterinary Medical Research lnstitute, Hungarian Academy c.lf Sciences, Budapest XIV, Hungmriu Korut 21, Hungary’ Characterization of the reference strains of avian mycoplasma serovars (sero- types) C, D, F, I, and L, namely CKK (= ATCC 33553 = NCTC 10187), DD (= ATCC 33550 = NCTC 10183), WR1 (= ATCC 33551 = NCTC 10186), 695 (= ATCC 33552 = NCTC 10185), and 694 (= ATCC 33549 = NCTC 10184), respectively, indicates that the serovars are distinct species, and the following names have been suggested for them: M. pdlorum, M. gallinaceurn, M. gallopa- vonis, M. iowae, and M. columbinasale, respectively. The above-mentioned reference strains are designated as the type strains of their respective species. Further biochemical and serological examination of the properties of Mycoplasma synoviae also confirm this to be a separate species.
    [Show full text]
  • Mycoplasma: How to Deal with a Persistent and Ubiquitous Pathogen Poultry Just Like All Animals Can Get Sick from Various Bacter
    Mycoplasma: How to Deal with a Persistent and Ubiquitous Pathogen Poultry just like all animals can get sick from various bacterial, viral and parasitic pathogens. Fortunately most poultry can recover from an infection and return to normal health via their immune systems and if necessary the judicious use of antibiotics if treating a bacterial infection. Unfortunately, some disease causing organisms persist in these “recovered” poultry and hence the birds can be reservoirs of the pathogenic organisms. Consequently, the remainder of your flock may become infected if exposed to this “recovered” bird. Unfortunately this is often the case when dealing with the pathogenic bacteria Mycoplasma. Understanding these types of subtitles is essential toward keeping a healthy flock and reducing the risk of Mycoplasma infection. Mycoplasma is a very challenging disease for backyard poultry owners and especially people who have breeding flocks because the only way to eliminate it with 100% certainty is via 1. culling or 2. testing and culling of breeding hens. There are other approaches which can also be considered which do not provide 100% certainty but may be appropriate depending on the circumstances. Many responsible breeders and non-breeders get a diagnosis and then are confused on what they “should do.” This article attempts to provide a relevant background of Mycoplasma in poultry and then provides several options that a poultry owner may want to consider when dealing with a positive flock. Know your enemy: What are the clinical signs of a Mycoplasma Infection? In general, infections from Mycoplasma cause significant acute and chronic respiratory disease (i.e.
    [Show full text]
  • Pathogenicity of Variant Field Isolates of Avian Reovirus And
    PATHOGENICITY OF VARIANT FIELD ISOLATES OF AVIAN REOVIRUS AND MOLECULAR CHARACTERIZATION OF BRAZILIAN VARIANTS FROM COMMERCIAL BROILERS by RAFAEL AZAMBUJA BAMPI (Under the Direction of Holly S. Sellers) ABSTRACT Avian reoviruses are the causative agent of arthritis/tenosynovitis in broilers and turkeys. Since 2011, it has been observed an increased incidence of variant reoviruses inducing tenosynovitis in commercial poultry flocks in the U.S and worldwide, raising the question of cross species infection. Two turkey reoviruses isolates from clinical cases of tenosynovitis in commercial turkey breeders, 105057 and 105208, demonstrated to be pathogenic to commercial broilers, causing tenosynovitis with clinical signs of lameness (105057) and also, enteric disease (105208). Additionally, viral shedding was poor, demonstrating limited horizontal transmission. In commercial turkeys these isolates caused clinical disease and were efficiently shed. In addition, a chicken arthritis reovirus was inoculated in turkeys, but did not cause disease. Taken together, turkey arthritis reoviruses 105057 and 105208 represent a threat for the poultry industry. Additionally, it was determined for the first time the molecular characterization of arthritis reovirus variants from lame commercial broilers from Brazil. INDEX WORDS: Avian reovirus, chicken reovirus, turkey reovirus, tenosynovitis, arthritis, myocarditis, broilers, turkeys, FTA® cards PATHOGENICITY OF VARIANT FIELD ISOLATES OF AVIAN REOVIRUS AND MOLECULAR CHARACTERIZATION OF BRAZILIAN VARIANTS FROM
    [Show full text]
  • The Development and Application of Quantitative Reverse
    THE DEVELOPMENT AND APPLICATION OF QUANTITATIVE REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION FOR THE DETECTION OF AVIAN REOVIRUSES Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This dissertation does not include proprietary or classified information. ______________________ Kejun Guo Certificate of Approval: _______________________ _______________________ Sandra J. Ewald Joseph J. Giambrone, Chair Professor Professor Pathobiology and Poultry Science Poultry Science _______________________ _______________________ Vicky van Santen Richard C. Bird Associate Professor Professor Pathobiology Pathobiology ___________________ George T. Flowers Interim Dean Graduate School THE DEVELOPMENT AND APPLICATION OF QUANTITATIVE REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION FOR THE DETECTION OF AVIAN REOVIRUSES Kejun Guo A Dissertation Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 9, 2008 THE DEVELOPMENT AND APPLICATION OF QUANTITATIVE REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION FOR THE DETECTION OF AVIAN REOVIRUSES Kejun Guo Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon request of individuals or institutions and at their expense. The author reserves all publication rights. ______________________ Signature of Author ______________________ Date of Graduation iii VITA Kejun Guo, son of Qing Guo and Xiaoqing Su, was born on September 17th, 1971, in Guiyang, Guizhou province, People’s Republic of China. He graduated from Beijing Agricultural University (BAU) with the degree of Doctor of Veterinary Medicine (D.V.M.) in July, 1993. He went on to earn a Master’s degree in Traditional Chinese Veterinary Medicine from China Agricultural University (the former BAU) in July, 1997.
    [Show full text]
  • Effectors of Mycoplasmal Virulence 1 2 Virulence Effectors of Pathogenic Mycoplasmas 3 4 Meghan A. May1 And
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 September 2018 doi:10.20944/preprints201809.0533.v1 1 Running title: Effectors of mycoplasmal virulence 2 3 Virulence Effectors of Pathogenic Mycoplasmas 4 5 Meghan A. May1 and Daniel R. Brown2 6 7 1Department of Biomedical Sciences, College of Osteopathic Medicine, University of New 8 England, Biddeford ME, USA; 2Department of Infectious Diseases and Immunology, College 9 of Veterinary Medicine, University of Florida, Gainesville FL, USA 10 11 Corresponding author: 12 Daniel R. Brown 13 Department of Infectious Diseases and Immunology, College of Veterinary Medicine, 14 University of Florida, Gainesville FL, USA 15 Tel: +1 352 294 4004 16 Email: [email protected] 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 September 2018 doi:10.20944/preprints201809.0533.v1 17 Abstract 18 Members of the genus Mycoplasma and related organisms impose a substantial burden of 19 infectious diseases on humans and animals, but the last comprehensive review of 20 mycoplasmal pathogenicity was published 20 years ago. Post-genomic analyses have now 21 begun to support the discovery and detailed molecular biological characterization of a 22 number of specific mycoplasmal virulence factors. This review covers three categories of 23 defined mycoplasmal virulence effectors: 1) specific macromolecules including the 24 superantigen MAM, the ADP-ribosylating CARDS toxin, sialidase, cytotoxic nucleases, cell- 25 activating diacylated lipopeptides, and phosphocholine-containing glycoglycerolipids; 2) 26 the small molecule effectors hydrogen peroxide, hydrogen sulfide, and ammonia; and 3) 27 several putative mycoplasmal orthologs of virulence effectors documented in other 28 bacteria.
    [Show full text]
  • Avian Mycoplasmosis (Mycoplasma Gallisepticum)
    Avian Importance Mycoplasma gallisepticum is an economically significant pathogen that can Mycoplasmosis cause significant losses in chickens, turkeys and game birds from chronic respiratory disease, reduced feed efficiency, decreased growth and lower egg (Mycoplasma production. In addition, the carcasses of birds sent to slaughter may be downgraded. Many countries with modern poultry operations have eradicated this organism from gallisepticum) commercial chicken and turkey breeding flocks; however, it can still be an issue in other poultry operations, such as multi-age layer flocks, game bird raising facilities Pleuropneumonia–like Organism and backyard birds. Since 1994, conjunctivitis caused by one lineage of M. (PPLO) Infection, Chronic gallisepticum has become a significant disease in wild birds in North America. Respiratory Disease of Chickens, Although other wild birds can be affected, the major impact has been on house Infectious Sinusitis of Turkeys, finches (Carpodacus mexicanus), which have experienced major population House Finch Conjunctivitis declines in some areas. Etiology Last Updated: November 2018 Mycoplasma gallisepticum, a member of the family Mycoplasmataceae (class Mollicutes, order Mycoplasmatales), is one of the most important agents of mycoplasmosis in terrestrial poultry. There are multiple strains of this organism, which can differ in virulence and may also have different host preferences. The house finch lineage is a distinct lineage that has diverged significantly from poultry strains and has become established
    [Show full text]
  • Preliminary Investigations Into Ostrich Mycoplasmas : Indentification Of
    PRELIMINARY INVESTIGATIONS INTO OSTRICH MYCOPLASMAS: IDENTIFICATION OF VACCINE CANDIDATE GENES AND IMMUNITY ELICITED BY POULTRY MYCOPLASMA VACCINES Elizabeth Frances van der Merwe Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at the University of Stellenbosch. Study leader: Prof D.U. Bellstedt December 2006 Declaration I, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. Signature: Date: i Summary Ostrich farming is of significant economical importance in South Africa. Three ostrich mycoplasmas, Ms01, Ms02 and Ms03 have been identified previously, and were provisionally named ‘Mycoplasma struthiolus’ (Ms) after their host Struthio camelus. Ostrich mycoplasmas are the major causative organisms of respiratory diseases, and they cause stock losses, reduced production and hatchability, and downgrading of carcasses and therefore lead to large economic losses to the industry. In order to be pathogenic to their host, they need to attach through an attachment organelle, the so-called tip structure. This structure has been identified in the poultry mycoplasma, M. gallisepticum, and is made up of the adhesin GapA and adhesin-related CrmA. Currently, no ostrich mycoplasma vaccine is commercially available and for this reason the need to develop one has arisen. Therefore the first part of this study was dedicated to the identification and isolation of vaccine candidate genes in the three ostrich mycoplasmas. Four primer approaches for polymerase chain reactions (PCR’s), cloning and sequencing, were used for the identification of adhesin or adhesin-related genes from Ms01, Ms02 and Ms03.
    [Show full text]
  • AHL Newsletter
    AHL Newsletter Canada Post Publications number - 40064673 Volume 19, Number 4, page 35 December, 2015 ISSN 1481-7179 In this issue: AHL Holiday Hours, 2015/16 Holiday hours Season’s Greetings from Closed Christmas Day, Dec 25. Non-quota flocks Otherwise, open with limited services. Cold weather shipping 35 the staff of the Guelph and Kemptville drop box and/or PCR update 36 refrigerator are available 365/24/7 for specimen DSP/OAHN update 37 drop off. Ruminants Animal Health Laboratory Guelph - Usual Saturday services include: Subclinical Cu toxicity specimen receiving, emergency mammalian Idexx MAP ELISA 38 autopsies, full bacteriology set up, as well as Swine Senecavirus A clinical pathology testing. Statutory holiday Influenza A virus tests 39 services and usual Sunday services include: Avian/fur/exotic specimen receiving, emergency mammalian Wooden breast 40 autopsies, and basic bacteriology set up. Horses AMR 41 For full details, please see our website— Anaplasmosis 43 ahl.uoguelph.ca Companion animals C. perfringens NetF, Plateletcrit, Lipase, Update on the Ontario Non-commercial Poultry Flock Disease LabNotes 41, 42 44 Surveillance Project Marina Brash, Leonardo Susta, Michele Guerin, Csaba Despite the ever-increasing numbers of non-commercial poultry flocks in Ontario, we know very little about the disease prevalence, biosecurity, and husbandry practices of these flocks. In order to understand the management practices and to assess the baseline prevalence of relevant infectious diseases (viruses, bacteria, parasites) in non-commercial flocks in Ontario, OMAFRA and the University of Guelph, through the Animal Health Laboratory (AHL) and the Ontario Animal Health Network, have started a 2-year surveillance study that will run until September 29, 2017.
    [Show full text]