Fundamentals in Nuclear Physics

Total Page:16

File Type:pdf, Size:1020Kb

Fundamentals in Nuclear Physics Fundamentals in Nuclear Physics The Ecole Polytechnique, one of France’s top academic institutions, has a long- standing tradition of producing exceptional scientific textbooks for its students. The original lecture notes, the Cours de l’Ecole Polytechnique, which were written by Cauchy and Jordan in the nineteenth century, are considered to be landmarks in the development of mathematics. The present series of textbooks is remarkable in that the texts incorporate the most recent scientific advances in courses designed to provide undergraduate students with the foundations of a scientific discipline. An outstanding level of quality is achieved in each of the seven scientific fields taught at the Ecole: pure and applied mathematics, mechanics, physics, chemistry, biology, and econom- ics. The uniform level of excellence is the result of the unique selection of aca- demic staff there which includes, in addition to the best researchers in its own renowned laboratories, a large number of world-famous scientists, appointed as part-time professors or associate professors, who work in the most advanced research centers France has in each field. Another distinctive characteristics of these courses is their overall consistency; each course makes appropriate use of relevant concepts introduced in the other textbooks. This is because each student at the Ecole Polytechnique has to acquire basic knowledge in the seven scientific fields taught there, so a substantial link between departments is necessary. The distribution of these courses used to be restricted to the 900 students at the Ecole. Some years ago we were very success- ful in making these courses available to a larger French-reading audience. We now build on this success by making these textbooks also available in English. Jean-Louis Basdevant James Rich Michel Spiro Fundamentals In Nuclear Physics From Nuclear Structure to Cosmology With 184 Figures Prof. Jean-Louis Basdevant Dr. James Rich Ecole Polytechnique Dapnia-SPP De´partement de Physique CEA-Saclay Laboratoire Leprince-Ringuet 91191 Gif-sur-Yvette 91128 Palaiseau France France [email protected] [email protected] Dr. Michel Spiro IN2P3-CNRS 3 Rue Michel-Ange 75794 Paris cedex 16 France [email protected] Cover illustration: Background image—Photograph of Supernova 1987A Rings. Photo credit Chris- topher Burrows (ESA/STScI) and NASA, Hubble Space Telescope, 1994. Smaller images, from top to bottom—Photograph of Supernova Blast. Photo credit Chun Shing Jason Pun (NASA/GSFC), Robert P. Kirshner (Harvard-Smithsonian Center for Astrophysics), and NASA, 1997. Interior of the JET torus. Copyright 1994 EFDA-JET. See figure 7.6 for further description. The combustion chamber at the Nova laser fusion facility (Lawrence Livermore National Laboratory, USA). Inside the combustion chamber at the Nova laser fusion facility (Lawrence Livermore National Labora- tory, USA) The Euratom Joint Research Centres and Associated Centre. Library of Congress Cataloging-in-Publication Data Basdevant, J.-L. (Jean-Louis) Fundamentals in nuclear physics / J.-L. Basdevant, J. Rich, M. Spiro. p. cm. Includes bibliographical references and index. ISBN 0-387-01672-4 (alk. paper) 1. Nuclear physics. I. Rich, James, 1952– II. Spiro, M. (Michel) III. Title. QC173.B277 2004 539.7—dc22 2004056544 ISBN 0-387-01672-4 Printed on acid-free paper. ©2005 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, com- puter software, or by similar or dissimilar methodology now known or hereafter developed is for- bidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. (EB) 987654321 SPIN 10925645 springeronline.com Preface Nuclear physics began one century ago during the “miraculous decade” be- tween 1895 and 1905 when the foundations of practically all modern physics were established. The period started with two unexpected spinoffs of the Crooke’s vacuum tube: Roentgen’s X-rays (1895) and Thomson’s electron (1897), the first elementary particle to be discovered. Lorentz and Zeemann developed the the theory of the electron and the influence of magnetism on radiation. Quantum phenomenology began in December, 1900 with the ap- pearance of Planck’s constant followed by Einstein’s 1905 proposal of what is now called the photon. In 1905, Einstein also published the theories of relativity and of Brownian motion, the ultimate triumph of Boltzman’s sta- tistical theory, a year before his tragic death. For nuclear physics, the critical discovery was that of radioactivity by Becquerel in 1896. By analyzing the history of science, one can be convinced that there is some rationale in the fact that all of these discoveries came nearly simul- taneously, after the scientifically triumphant 19th century. The exception is radioactivity, an unexpected baby whose discovery could have happened sev- eral decades earlier. Talented scientists, the Curies, Rutherford, and many others, took the ob- servation of radioactivity and constructed the ideas that are the subject of this book. Of course, the discovery of radioactivity and nuclear physics is of much broader importance. It lead directly to quantum mechanics via Rutherford’s planetary atomic model and Bohr’s interpretation of the hydrogen spectrum. This in turn led to atomic physics, solid state physics, and material science. Nuclear physics had the important by-product of elementary particle physics and the discovery of quarks, leptons, and their interactions. These two fields are actually impossible to dissociate, both in their conceptual and in their experimental aspects. The same “magic decade” occurred in other sectors of human activity. The second industrial revolution is one aspect, with the development of radio and telecommunications. The automobile industry developed at the same period, with Daimler, Benz, Panhard and Peugeot. The Wright brothers achieved a dream of mankind and opened the path of a revolution in transportation. Medicine and biology made incredible progress with Louis Pasteur and many others. In art, we mention the first demonstration of the “cin´ematographe” VI Preface by Auguste and Louis Lumi`ere on december 28 1895, at the Grand Caf´e, on Boulevard des Capucines in Paris and the impressionnist exhibition in Paris in 1896. Nowadays, is is unthinkable that a scientific curriculum bypass nuclear physics. It remains an active field of fundamental research, as heavy ion accelerators of Berkeley, Caen, Darmstadt and Dubna continue to produce new nuclei whose characteristics challenge models of nuclear structure. It has major technological applications, most notably in medicine and in en- ergy production where a knowledge of some nuclear physics is essential for participation in decisions that concern society’s future. Nuclear physics has transformed astronomy from the study of planetary trajectories into the astrophysical study of stellar interiors. No doubt the most important result of nuclear physics has been an understanding how the ob- served mixture of elements, mostly hydrogen and helium in stars and carbon and oxygen in planets, was produced by nuclear reactions in the primordial universe and in stars. This book emerged from a series of topical courses we delivered since the late 1980’s in the Ecole Polytechnique. Among the subjects studied were the physics of the Sun, which uses practically all fields of physics, cosmology for which the same comment applies, and the study of energy and the environ- ment. This latter subject was suggested to us by many of our students who felt a need for deeper understanding, given the world in which they were going to live. In other words, the aim was to write down the fundamentals of nuclear physics in order to explain a number of applications for which we felt a great demand from our students. Such topics do not require the knowledge of modern nuclear theory that is beautifully described in many books, such as The Nuclear Many Body Problem by P. Ring and P Schuck. Intentionally, we have not gone into such developments. In fact, even if nuclear physics had stopped, say, in 1950 or 1960, practically all of its applications would exist nowadays. These appli- cations result from phenomena which were known at that time, and need only qualitative explanations. Much nuclear phenomenology can be under- stood from simple arguments based on things like the Pauli principle and the Coulomb barrier. That is basically what we will be concerned with in this book. On the other hand, the enormous amount of experimental data now easily accesible on the web has greatly facilitated the illustration of nuclear systematics and we have made ample use of these resources. This book is an introduction to a large variety of scientific and techno- logical fields. It is a first step to pursue further in the study of such or such an aspect. We have taught it at the senior undergraduate level at the Ecole Polytechnique. We believe that it may be useful for graduate students, or more generally scientists, in a variety of fields. In the first three chapters, we present the “scene” , i.e. we give the basic notions which are necessary to develop the rest. Chapter 1 deals with the Preface VII basic concepts in nuclear physics. In chapter 2, we describe the simple nu- clear models, and discuss nuclear stability. Chapter 3 is devoted to nuclear reactions. Chapter 4 goes a step further. It deals with nuclear decays and the fun- damental electro-weak interactions.
Recommended publications
  • Systematical Study of Optical Potential Strengths in Reactions Involving Strongly, Weakly Bound and Exotic Nuclei on 120Sn
    Systematical study of optical potential strengths in reactions involving strongly, weakly bound and exotic nuclei on 120Sn M. A. G. Alvarez, J. P. Fern´andez-Garc´ıa, J. L. Le´on-Garc´ıa Departamento FAMN, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain M. Rodr´ıguez-Gallardo Departamento FAMN, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain and Instituto Carlos I de F´ısica Te´orica y Computacional, Universidad de Sevilla, Spain L. R. Gasques, L. C. Chamon, V. A. B. Zagatto, A. L´epine-Szily, J. R. B. Oliveira Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil V. Scarduelli Instituto de F´ısica, Universidade Federal Fluminense, 24210-340 Niter´oi,Rio de Janeiro, Brazil and Instituto de F´ısica da Universidade de S~aoPaulo, 05508-090, S~aoPaulo, SP, Brazil B. V. Carlson Departamento de F´ısica, Instituto Tecnol´ogico de Aeron´autica, S~aoJos´edos Campos, SP, Brazil J. Casal Dipartimento di Fisica e Astronomia "G. Galilei" and INFN-Sezione di Padova, Via Marzolo, 8, I-35131, Padova, Italy A. Arazi Laboratorio TANDAR, Comisi´onNacional de Energ´ıa At´omica, Av. Gral. Paz 1499, BKNA1650 San Mart´ın, Argentina D. A. Torres, F. Ramirez Departamento de F´ısica, Universidad Nacional de Colombia, Bogot´a,Colombia (Dated: December 20, 2019) We present new experimental angular distributions for the elastic scattering of 6Li + 120Sn at three bombarding energies. We include these data in a wide systematic involving the elastic scattering of 4;6He, 7Li, 9Be, 10B and 16;18O projectiles on the same target at energies around the respective Coulomb barriers.
    [Show full text]
  • Two-Proton Radioactivity 2
    Two-proton radioactivity Bertram Blank ‡ and Marek P loszajczak † ‡ Centre d’Etudes Nucl´eaires de Bordeaux-Gradignan - Universit´eBordeaux I - CNRS/IN2P3, Chemin du Solarium, B.P. 120, 33175 Gradignan Cedex, France † Grand Acc´el´erateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, BP 55027, 14076 Caen Cedex 05, France Abstract. In the first part of this review, experimental results which lead to the discovery of two-proton radioactivity are examined. Beyond two-proton emission from nuclear ground states, we also discuss experimental studies of two-proton emission from excited states populated either by nuclear β decay or by inelastic reactions. In the second part, we review the modern theory of two-proton radioactivity. An outlook to future experimental studies and theoretical developments will conclude this review. PACS numbers: 23.50.+z, 21.10.Tg, 21.60.-n, 24.10.-i Submitted to: Rep. Prog. Phys. Version: 17 December 2013 arXiv:0709.3797v2 [nucl-ex] 23 Apr 2008 Two-proton radioactivity 2 1. Introduction Atomic nuclei are made of two distinct particles, the protons and the neutrons. These nucleons constitute more than 99.95% of the mass of an atom. In order to form a stable atomic nucleus, a subtle equilibrium between the number of protons and neutrons has to be respected. This condition is fulfilled for 259 different combinations of protons and neutrons. These nuclei can be found on Earth. In addition, 26 nuclei form a quasi stable configuration, i.e. they decay with a half-life comparable or longer than the age of the Earth and are therefore still present on Earth.
    [Show full text]
  • Scientific Opportunities with Fast Fragmentation Beams from RIA
    Scientific Opportunities with Fast Fragmentation Beams from RIA National Superconducting Cyclotron Laboratory Michigan State University March 2000 EXECUTIVE SUMMARY................................................................................................... 1 1. INTRODUCTION............................................................................................................. 5 2. EXTENDED REACH WITH FAST BEAMS .................................................................. 9 3. SCIENTIFIC MOTIVATION......................................................................................... 12 3.1. Properties of Nuclei far from Stability ..................................................................... 12 3.2. Nuclear Astrophysics................................................................................................ 15 4. EXPERIMENTAL PROGRAM...................................................................................... 20 4.1. Limits of Nuclear Existence ..................................................................................... 20 4.2. Extended and Unusual Distributions of Neutron Matter .......................................... 33 4.3. Properties of Bulk Nuclear Matter............................................................................ 39 4.4. Collective Oscillations.............................................................................................. 51 4.5. Evolution of Nuclear Properties Towards the Drip Lines ........................................ 56 Appendix A: Rate
    [Show full text]
  • Pair and Single Neutron Transfer with Borromean 8He A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-CEA Pair and single neutron transfer with Borromean 8He A. Lemasson, A. Navin, M. Rejmund, N. Keeley, V. Zelevinsky, S. Bhattacharyya, A. Shrivastava, Dominique Bazin, D. Beaumel, Y. Blumenfeld, et al. To cite this version: A. Lemasson, A. Navin, M. Rejmund, N. Keeley, V. Zelevinsky, et al.. Pair and single neutron transfer with Borromean 8He. Physics Letters B, Elsevier, 2011, 697, pp.454-458. <10.1016/j.physletb.2011.02.038>. <in2p3-00565792> HAL Id: in2p3-00565792 http://hal.in2p3.fr/in2p3-00565792 Submitted on 14 Feb 2011 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Pair and single neutron transfer with Borromean 8He A. Lemassona,1, A. Navina,∗, M. Rejmunda, N. Keeleyb, V. Zelevinskyc, S. Bhattacharyyaa,d, A. Shrivastavaa,e, D. Bazinc, D. Beaumelf, Y. Blumenfeldf, A. Chatterjeee, D. Guptaf,2, G. de Francea, B. Jacquota, M. Labicheg, R. Lemmong, V. Nanalh, J. Nybergi, R. G. Pillayh, R. Raabea,3, K. Ramachandrane, J.A. Scarpacif, C. Schmitta, C. Simenelj, I. Stefana,f,4, C.N.
    [Show full text]
  • PDF) Submittals Are Preferred) and Information Particle and Astroparticle Physics As Well As Accelerator Physics
    CERNNovember/December 2019 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the November/December 2019 issue of CERN Courier. The Extremely Large Telescope, adorning the cover of this issue, is due to EXTREMELY record first light in 2025 and will outperform existing telescopes by orders of magnitude. It is one of several large instruments to look forward to in the decade ahead, which will also see the start of high-luminosity LHC operations. LARGE TELESCOPE As the 2020s gets under way, the Courier will be reviewing the LHC’s 10-year physics programme so far, as well as charting progress in other domains. In the meantime, enjoy news of KATRIN’s first limit on the neutrino mass (p7), a summary of the recently published European strategy briefing book (p8), the genesis of a hadron-therapy centre in Southeast Europe (p9), and dispatches from the most interesting recent conferences (pp19—23). CLIC’s status and future (p41), the abstract world of gauge–gravity duality (p44), France’s particle-physics origins (p37) and CERN’s open days (p32) are other highlights from this last issue of the decade. Enjoy! To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier KATRIN weighs in on neutrinos Maldacena on the gauge–gravity dual FPGAs that speak your language EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING CCNovDec19_Cover_v1.indd 1 29/10/2019 15:41 CERNCOURIER www.
    [Show full text]
  • A Doorway to Borromean Halo Nuclei: the Samba Configuration
    A doorway to Borromean halo nuclei: the Samba configuration M. T. Yamashita Universidade Estadual Paulista, CEP 18409-010 Itapeva, SP, Brasil T. Frederico Departamento de F´ısica, Instituto Tecnol´ogico de Aeron´autica, Centro T´ecnico Aeroespacial, 12228-900 S˜ao Jos´edos Campos, Brasil M. S. Hussein Instituto de F´ısica, Universidade de S˜ao Paulo, C.P. 66318, CEP 05315-970 S˜ao Paulo, Brasil (Dated: October 22, 2018) We exploit the possibility of new configurations in three-body halo nuclei - Samba type - (the neutron-core form a bound system) as a doorway to Borromean systems. The nuclei 12Be, 15B, 23N and 27F are of such nature, in particular 23N with a half-life of 37.7 s and a halo radius of 6.07 fm is an excellent example of Samba-halo configuration. The fusion below the barrier of the Samba halo nuclei with heavy targets could reveal the so far elusive enhancement and a dominance of one-neutron over two-neutron transfers, in contrast to what was found recently for the Borromean halo nucleus 6He + 238U. PACS numbers: 25.70.Jj, 25.70.Mn, 24.10.Eq, 21.60.-n Borromean nuclei, be them halo or not, are quite com- isotope exists in oxygen (see, however, Ref. [1]). mon and their study has been intensive [1, 2, 3, 4]. These As an example we consider the boron isotopes: A = three-body systems have the property that any one of 8, 9, 10, 11, 12, 13, 14, 15, 17, 19. Both 17B and 19B their two-body subsystems is unbound.
    [Show full text]
  • Table of Contents (Online, Part 1)
    PERIODICALS Postmaster send address changes to: PHYSICALREVIEWCTM For editorial and subscription correspondence, PHYSICAL REVIEW C please see inside front cover APS Subscription Services (ISSN: 0556-2813) P.O. Box 41 Annapolis Junction, MD 20701 THIRD SERIES, VOLUME 90, NUMBER 6 CONTENTS DECEMBER 2014 RAPID COMMUNICATIONS Nuclear Structure Stretched states in 12,13B with the (d,α) reaction (5 pages) ................................................ 061301(R) A. H. Wuosmaa, J. P. Schiffer, S. Bedoor, M. Albers, M. Alcorta, S. Almaraz-Calderon, B. B. Back, P. F. Bertone, C. M. Deibel, C. R. Hoffman, J. C. Lighthall, S. T. Marley, R. C. Pardo, K. E. Rehm, and D. V. Shetty Intermediate-energy Coulomb excitation of 104Sn: Moderate E2 strength decrease approaching 100Sn (6 pages) ..................................................................................... 061302(R) P. Doornenbal, S. Takeuchi, N. Aoi, M. Matsushita, A. Obertelli, D. Steppenbeck, H. Wang, L. Audirac, H. Baba, P. Bednarczyk, S. Boissinot, M. Ciemala, A. Corsi, T. Furumoto, T. Isobe, A. Jungclaus, V. Lapoux, J. Lee, K. Matsui, T. Motobayashi, D. Nishimura, S. Ota, E. C. Pollacco, H. Sakurai, C. Santamaria, Y. Shiga, D. Sohler, and R. Taniuchi Probing shape coexistence by α decays to 0+ states (5 pages) ............................................. 061303(R) D. S. Delion, R. J. Liotta, Chong Qi, and R. Wyss Pairing-induced speedup of nuclear spontaneous fission (5 pages) .......................................... 061304(R) Jhilam Sadhukhan, J. Dobaczewski, W. Nazarewicz, J. A. Sheikh, and A. Baran Evidence of halo structure in 37Mg observed via reaction cross sections and intruder orbitals beyond the island of inversion (5 pages) ................................................................................ 061305(R) M. Takechi et al. From the lightest nuclei to the equation of state of asymmetric nuclear matter with realistic nuclear interactions (5 pages) ...............................................................................
    [Show full text]
  • Arxiv:2103.05357V1 [Nucl-Ex] 9 Mar 2021
    Experimental Study of Intruder Components in Light Neutron-rich Nuclei via Single-nucleon Transfer Reaction∗ Liu Wei,1 Lou Jianling,1, y Ye Yanlin,1 and Pang Danyang2 1School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China 2School of Physics, Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China With the development of radioactive beam facilities, study on the shell evolution in unstable nuclei has become a hot topic. The intruder components, especially s-wave intrusion, in the low-lying states of light neutron-rich nuclei near N = 8 are of particular importance for the study of shell evolution. Single-nucleon transfer reaction in inverse kinematics has been a sensitive tool to quantitatively investigate the single-particle- orbital component in the selectively populated states. The spin-parity, the spectroscopic factor (or single-particle strength), as well as the effective single-particle energy can be extracted from this kind of reaction. These ob- servables are often useful to explain the nature of shell evolution, and to constrain, check and test parameters used in nuclear structure models. In this article, we review the experimental studies of the intruder components in neutron-rich He, Li, Be, B, C isotopes by using various single-nucleon transfer reactions. Focus will be laid on the precise determination of the intruder s-wave strength in low-lying states. Keywords: single-nucleon transfer reaction, intruder component, light neutron-rich nuclei I. INTRODUCTION components in low-lying states. Sometimes, these two or- bitals are even inverted, which means the 2s1=2 orbital can Electrons confined by Coulomb potential in atoms possess intrude into 1d5=2, and occasionally even intrude into 1p1=2 a well-known shell structure.
    [Show full text]
  • The 29F Nucleus As a Lighthouse on the Coast of the Island of Inversion ✉ L
    PERSPECTIVE https://doi.org/10.1038/s42005-020-00402-5 OPEN The 29F nucleus as a lighthouse on the coast of the island of inversion ✉ L. Fortunato 1,2 , J. Casal 1,2, W. Horiuchi 3, Jagjit Singh 4 & A. Vitturi1,2 1234567890():,; The exotic, neutron-rich and weakly-bound isotope 29F stands out as a waymarker on the southern shore of the island of inversion, a portion of the nuclear chart where the effects of nuclear forces lead to a reshuffling of the single particle levels and to a reorganization of the nuclear structure far from stability. This nucleus has become very popular, as new measurements allow to refine theoretical models. We review the latest developments and suggest how to further assess the structure by proposing predictions on electromagnetic transitions that new experiments of Relativistic Coulomb Excitation should soon become able to measure. eakly bound nuclear systems severely test our ability to disentangle the mysteries and oddities of the nuclear interactions and how nuclear systems achieve stability. One of W fl the latest conundrums in this respect is the structure of the exotic 29- uorine isotope. With nine protons and 20 neutrons, it is located almost on the edge of the stability valley of the = nuclide chart, very close to the neutron drip-line, i.e., the dividing line (Sn 0, null separation energy) between bound and unbound neutron-rich nuclei. Pioneering researches on this isotope have recently skyrocketed, as more and more theoretical and experimental papers are being published. The main interest lies in understanding if it belongs to the so-called island of inversion, a portion of the nuclear chart where the standard list of single-particle energy levels (that are filled by nucleons, very similarly to the atomic physics counterpart, in a sort of Aufbauprinzip, a.k.a.
    [Show full text]
  • Michel Spiro Date and Place of Birth: 24 February 1946 in Roanne, France
    CURRICULUM VITAE MICHEL SPIRO DATE AND PLACE OF BIRTH: 24 FEBRUARY 1946 IN ROANNE, FRANCE 1966 Degree in engineering from the Ecole Polytechnique 1969 Graduate diploma (DEA) in Physics Theory and begins working at the French Atomic Energy Commission (CEA) 1976 PhD thesis in physical sciences at the CEA Saclay Centre (experiment in bubble chambers on the discovery of K*(1780) at 14 GeV/c) 1977 - 1984 His initial research in particle physics led him to participate in the discovery of intermediary W and Z bosons in the UA1 experiment at CERN -head of construction, operation and calibration of the UA1 electromagnetic calorimeter UA1 (gondolas) -discovery of intermediary W boson using missing energy method -critical analysis of monojet events (unsigned author) -presented discovery of W at the Cornell lepton photon conference (1983) 1983 Joliot-Curie Prize from the French Physical Society (SFP) 1983 - 1999 Professor at the Ecole Polytechnique (quantitative mechanics, then stellar equilibrium and evolution and finally energy and environment) 1984 - 1988 President of the Particle Physics Department of SFP 1985 Thibaud Prize from the Lyon Academy of Sciences 1985 - 1998 Gallium Experiment (GALLEX) for detecting solar neutrinos - responsible for source of neutrinos from radioactive chromium for calibrating GALLEX radiochemicals - significant contribution to analysis leading to measurement of a deficit in the number of solar neutrinos by factor of two 1986 Author of La Matière-Espace-Temps (Space-Time-Matter) with Gilles Cohen- Tannoudji (Editions Fayard) 1988 Prize from the Academy of Moral and Political Sciences for this work Since 1990 “Brown Dwarfs” experiment, now called EROS - This experiment detected the first evidence for gravitational microlensing by dark objects in the halo of our galaxy.
    [Show full text]
  • Nuclear Physics at the Edge of Stability
    Nuclear physics at the edge of stability French participation (staff only): N.L. Achouri1, P. Ascher2, M. Assié3, D. Beaumel3, B. Blank2, Y. Blumenfeld3, B. Borderie3, A. Chbihi4, A. Corsi5, S. Courtin6, F. Delaunay1, J.-P. Ebran7, F. Flavigny1, J. Frankland4, M. Gerbaux2, J. Gibelin1, J. Giovinazzo2, S. Grévy4, D. Gruyer1, F. Gulminelli1, G. Hupin3, E. Khan3, T. Kurtukian-Nieto1, D. Lacroix3, N. Le Neindre1, O. Lopez1, F. M. Marquès1, A. Matta1, F. de Oliveira Santos4, N. Orr1, M. Ploszajczak4, O. Sorlin4, M. Parlog1, I. Stefan3, G. Verde4 and E. Vient1 1LPC, 2CENBG,3IJCLab, 4GANIL, 5CEA/IRFU, 6IPHC, 7CEA/DAM Context The physics at the drip line is a relatively new topic in which French scientists have a very good experimental visibility and expertise, both on the neutron or proton-rich sides of the valley of stability and using different experimental techniques and instruments. The merit of studying the continuum was realized early in nuclear theory however the challenges still remind tremendous. This broad topic offers many potential new discoveries related to shell evolutions, clustering or halo formation and their medium dependence, evolution of pairing and nuclear superfluidity at the drip line, with connections spanning from others open quantum systems and universality of few-body systems to nuclear astrophysics, of which large swathes largely unknown. Introduction The mean field concept, which describes the atomic nucleus in terms of single nucleons moving in an average potential, augmented by two-body or three-body residual interactions, is a very successful tool to describe shell structure and shell evolutions along the chart of nuclei.
    [Show full text]
  • CERN Courier Is Distributed to Member State Governments, Institutes and Laboratories Affiliated with CERN, and to Their Personnel
    1 ..... 1. 1 - «*_ ._„ h' RGY PHYSICS 1 M01510 60 DGCRCE 0001 POTTER TEC-S/EST-LEA 1 Keith COURIER (••HJftTi From Winding to Cryostating: Your partner for magnet engineering Winding of coils by means of a gantry winding machine to prove its competence in the man­ developing magnetic components ufacture of complete dipole mag­ for nuclear fusion experiments, e.g. Since 1990 Noell is develop­ nets. Presently Noell manufactures the Joint European Torus, Wendel- ing, manufacturing and supplying prototypes of the latest design that stein 7X and ITER. This is just one superconducting magnets for the are precursors of series magnets. more reason for you to contact us LHC particle accelerator in Geneva. Parallel to the development of proto­ for a meeting. Give us a call. Several prototypes, with a length of types the production lines for series 10 m, have already been supplied magnets are being prepared. Noell-KRC Energie- und and fulfilled the expectations of the Noell itself is designing and Umwelttechnik GmbH design in tests performed by CERN. manufacturing the tools required for D-97064 Wurzburg Further developments in this production, e.g. a nummerically Germany Telephone: +49-931-903-1825 field include 15m prototypes. At the controlled winding machine. With Telefax: +49-931-903-1062 end of 1997 Noell-KRC Energie- the winding machine shown espe­ E-mail: [email protected] und Umwelttechnik GmbH was able cially trained staff is winding coils Internet: http://www. noell. de for the LHC. In addition to completing dipoles for the LHC, Noell is also & PREUSSAG Contents Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to Member State governments, institutes and laboratories affiliated with CERN, and to their personnel.
    [Show full text]