Thyroid Hormone Receptor Regulates Most Genes Independently of fibroblast Growth Factor 21 in Liver

Total Page:16

File Type:pdf, Size:1020Kb

Thyroid Hormone Receptor Regulates Most Genes Independently of fibroblast Growth Factor 21 in Liver A ZHANG and others Thyroid hormone/FGF21 224:3 289–301 Research interactions Thyroid hormone receptor regulates most genes independently of fibroblast growth factor 21 in liver Aijun Zhang1, Douglas H Sieglaff1, Jean Philippe York1, Ji Ho Suh1, Stephen D Ayers1,*, Glenn E Winnier1, Alexei Kharitonenkov2, Christopher Pin3,4, Pumin Zhang5, Paul Webb1 and Xuefeng Xia1,6 1Houston Methodist Research Institute, Genomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USA 2College of Arts and Sciences, Chemistry Department, Indiana University Bloomington, Bloomington, Indiana, USA, 3Departments of Paediatrics, Oncology, and Physiology and Pharmacology, University of Western Ontario, Correspondence London, Ontario, Canada should be addressed 4Children’s Health Research Institute, London, Ontario, Canada to X Xia or P Webb 5Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA Emails 6The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China [email protected] or *(S D Ayers is now at Personalis Inc., Department of Genomics, Menlo Park, CA, USA) [email protected] Abstract Thyroid hormone (TH) acts through specific receptors (TRs), which are conditional transcription Key Words factors, to induce fibroblast growth factor 21 (FGF21), a peptide hormone that is usually " nuclear receptor induced by fasting and that influences lipid and carbohydrate metabolism via local hepatic and " FGF systemic endocrine effects. While TH and FGF21 display overlapping actions when administered, " gene expression " Journal of Endocrinology including reductions in serum lipids, according to the current models these hormones act metabolism independently in vivo. In this study,we examined mechanisms of regulation of FGF21 expression by TH and tested the possibility that FGF21 is required for induction of hepatic TH-responsive genes. We confirm that active TH (triiodothyronine (T3)) and the TRb-selective thyromimetic GC1 increase FGF21 transcript and peptide levels in mouse liver and that this effect requires TRb. T3 also induces FGF21 in cultured hepatocytes and this effect involves direct actions of TRb1, which binds a TRE within intron 2 of FGF21. Gene expression profiles of WTand Fgf21-knockout mice are very similar, indicating that FGF21 is dispensable for the majority of hepatic T3 gene responses. A small subset of genes displays diminished T3 response in the absence of FGF21. However, most of these are not obviously directly involved in T3-dependent hepatic metabolic processes. Consistent with these results, T3-dependent effects on serum cholesterol are K K maintained in the Fgf21 / background and we observe no effect of the Fgf21-knockout background on serum triglycerides and glucose. Our findings indicate that T3 regulates the genes involved in classical hepatic metabolic responses independently of FGF21. Journal of Endocrinology (2015) 224, 289–301 Introduction Fibroblast growth factor 21 (FGF21) is one of three expressed in the liver, pancreas, and white and brown endocrine FGFs that influence metabolic responses via a adipose tissue (Johnson et al. 2009, Fon Tacer et al. 2010, combination of local and systemic actions. FGF21 is Kliewer & Mangelsdorf 2010). Hepatic Fgf21 expression is http://joe.endocrinology-journals.org Ñ 2015 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JOE-14-0440 Printed in Great Britain Downloaded from Bioscientifica.com at 09/27/2021 06:06:38PM via free access Research A ZHANG and others Thyroid hormone/FGF21 224:3 290 interactions induced by the nuclear hormone receptor peroxisome the expression of selected T3-regulated genes in liver and proliferator-activated receptor a (PPARa) under fasting brown adipose tissue, or overall energy expenditure. conditions, and secreted FGF21 peptide exerts autocrine/ Conversely, FGF21 elicited similar alterations in serum lipids paracrine effects on liver, including regulation of genes and gene expression in hypothyroid and euthyroid mice. involved in lipogenesis, lipolysis, and fatty acid oxidation, In this study, we set out to understand the mechanisms as well as additional endocrine effects on other tissues and downstream effects of TH-dependent changes in hepatic (Badman et al.2007). Administration of FGF21 to over- Fgf21 expression. We find that both T3 and the TRb-selective weight and diabetic mice results in decreases in the levels of thyromimetic GC1 act through TRb to directly induce plasma triglycerides and glucose, and increases in both FGF21 expression and that the Fgf21 locus harbors a insulin sensitivity and thermogenesis associated with functional TRE within intron 2. This finding added another decreased body weight (Coskun et al.2008, Berglund et al. layer of complexity to previous studies of T3 regulation of 2009, Xu et al.2009). Conversely, mice that lack FGF21 FGF21 expression, which indicated that TRb works primarily exhibit late-onset obesity. Thus, there is intense interest in through PPARa bound to the FGF21 promoter (Adams et al. FGF21 as a therapeutic for metabolic disorders, weight loss, 2010). While patterns of hepatic T3 responses are similar in and diabetes. Potentially adverse effects of FGF21 have also WT and Fgf21-knockout mice, similar to previous studies come to light. FGF21 is involved in integration of of a subset of hepatic genes involved in lipid metabolism metabolism and bone turnover, raising the possibility that (Domouzoglou & Maratos-Flier 2011, Domouzoglou et al. FGF21 could promote bone loss, and elevated FGF21 levels 2014), we also find that optimal response of a small subset are associated with abnormal lipid profiles in coronary heart of hepatic TH-target genes requires Fgf21. These genes, disease, raising concerns about cardiovascular events however, are not obviously related to metabolic regulation (Iglesias et al.2012, Wei et al.2012). Moreover, FGF21 levels and we find no changes in serum metabolic parameters become elevated in obesity and nonalcoholic fatty liver in Fgf21-knockout mice. Thus, our data support the idea disease, indicating that serum FGF21 levels do not always that hepatic effects of TH on gene regulation and metab- correlate with an improved metabolic profile. Given these olism are largely independent of Fgf21. concerns, it is important to understand how to manage local production of FGF21 in desired target tissues and the consequences of changes in FGF21 concentrations. Materials and method Thyroid hormones (THs) act as master regulators of Journal of Endocrinology Mice metabolism and there is evidence for interdependency of TH and FGF21 signaling pathways. TH receptors (TRa and All animal experiments were approved by the Animal TRb) are members of the nuclear hormone receptor family Care and Use Committee of Houston Methodist Hospital K K that regulate target genes in response to the main active form Research Institute. Mouse strains C57BL/6, ApoE / , K/K K/K of TH, triiodothyronine (T3). TRs usually work by binding Ldlr , and TRb were purchased from The Jackson DNA-response elements (TREs) in the proximal promoters of Laboratory (Bar Harbor, ME, USA) at 9 weeks of age. K K target genes as heterodimers with retinoid X receptors(RXRs) Fgf21 / mice on a C57/BL6 background (Dutchak et al. but can also regulate target genes via protein–protein 2012) were received from The University of Texas South- interactions with heterologous transcription factors (Baxter western Medical Center (Dallas, TX, USA). For short-term & Webb 2009, Cheng et al. 2010, Lin et al. 2013). T3 induces ligand treatments (1 and 3 days) T3, GC1, or vehicle FGF21 in mouse liver and, in this study, TRb selectively (control) were administered to mice (nZ5) by oral gavage enhances FGF21 expression and promoter activity via at a dose of 1 mg/kg body weight, after which, mice were interactions with PPARa bound to PPARa-response elements, killed and dissected for tissue harvesting. For long-term but does not require PPARa to induce other T3-regulated treatments (2 weeks), GC1 was admixed into diet at a genes (Adams et al.2010). In addition, FGF21 administration dose of 0.8 mg/kg body weight, after which the mice were to mice reduces serum levels of the parental form of TH, killed for collection of blood and tissue samples. thyroxine (T4), and T3, implying mutual regulatory depen- dency of these signaling systems (Domouzoglou et al.2014). Quantitative RT-PCR In spite of these potential relationships, key actions of FGF21 and TH appear largely independent (Domouzoglou et al. Total RNA was isolated from livers or cultured cells using 2014). Recent assessments of administration of TH to Fgf21- the RNAeasy Kit (Qiagen) and reverse transcribed to cDNA knockout mice have revealed no differences in serum lipids, using the ABI Reverse Transcription Kit according to the http://joe.endocrinology-journals.org Ñ 2015 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JOE-14-0440 Printed in Great Britain Downloaded from Bioscientifica.com at 09/27/2021 06:06:38PM via free access Research A ZHANG and others Thyroid hormone/FGF21 224:3 291 interactions manufacturer’s instructions. Gene transcript expression FBS-DMEM media for 24 h before treatment. The cells were was measured by quantitative RT-PCR (qPCR) (Roche pretreated with CHX at 10 mg/ml for 30 min, followed by LightCycler 480 II), in 20 ml reactions that included 10 nM T3 incubation for 6 h, after which RNA was collected cDNA (10 ng of initial RNA input), 900 nM of each primer, using the RNAeasy Kit (Qiagen). For RNA interference assays, PCR-grade water, and 10 mlof2! TaqMan Master Mix HepG2-TRb cells were plated in 10% resin-stripped FBS- (Applied Biosystems). The transcript expression levels DMEM media and grown to 50% confluency. The cells were were normalized to peptidylprolyl isomerase A (PPIA) transfected with PPARa ON-TARGET plus SMART pool or expression levels. Independent samples were prepared negative control siRNA (Dharmacon, Waltham, MA, USA) from five to six different mice per genotype or three at a 50 nM final concentration, and 48 h later treated with separate cell culture seedings and analyzed in technical 10 nM T3 or bezofibrate for 6 h, after which RNA was coll- triplicates.
Recommended publications
  • ABSTRACT ANGSTADT, ANDREA Y. Evaluation of the Genomic
    ABSTRACT ANGSTADT, ANDREA Y. Evaluation of the Genomic Aberrations in Canine Osteosarcoma and Their Resemblance to the Human Counterpart. (Under the direction of Dr. Matthew Breen). In the last decade the domestic dog has emerged as an ideal biomedical model of complex genetic diseases such as cancers. Cancer in the dog occurs spontaneously and several studies have concluded that human and canine cancers have similar characteristics such as presentation of disease, rate of metastases, genetic dysregulation, and survival rates. Furthermore, in the genomic era the dog genome was found more homologous in sequence conservation to humans than mice, making it a valuable model organism for genetic study in addition to pathophysiological analysis. Osteosarcoma (OS), the most commonly diagnosed malignant bone tumor in humans and dogs, is one such cancer that would benefit from comparative genomic analysis. In humans, OS is a rare cancer diagnosed in fewer than 1,000 people per year in the USA, while in the domestic dog population the annual number of new cases is estimated to far exceed 10,000. This high rate of disease occurrence in dogs provides a unique opportunity to study the genomic imbalances in canine OS and their translational value to human OS as a means to identify important alterations involved in disease etiology. OS in humans is characterized by extremely complex karyotypes which contain both structural changes (translocations and/or rearrangements) and DNA copy number changes. Metaphase and array comparative genomic hybridization (aCGH) has assisted in uncovering the genetic imbalances that are associated with human OS phenotype. In dog OS, previous low-resolution (10-20Mb) aCGH analysis identified a wide range of recurrent copy number aberrations (CNAs), indicative of a similar level of genomic instability to human OS.
    [Show full text]
  • Peripheral Nervous System……………………………………………….9
    PhD School in Integrative Biomedical Research Department of Pharmacological and Biomolecular Sciences Curriculum: Neuroscience Molecular basis for the development of innovative therapies for peripheral neuropathies treatment: role and cross-regulation of the GABAergic system and neuroactive steroids SDD BIO/09 - Physiology Luca Franco Castelnovo Badge number R10402 PhD Tutor: Prof. Valerio Magnaghi PhD School Coordinator: Prof. Chiarella Sforza Academic year 2015/2016 INDEX Abstract…………………………………………………………………...page 1 Abbreviations list…………………………………………………………….....5 Introduction………………………………………………………………….....8 Peripheral nervous system……………………………………………….9 General concepts……………...……….……………………………........……..9 Sensory system and nociceptive fibers.………………..………….…………..12 Schwann cells and myelination……….……..………………...………………15 Peripheral neuropathies…….…………………………………………...26 General concepts……………………………………………………...……….26 Neuropathic pain……………………………………...……………………….27 Nerve regeneration…………………………………………………………….28 The GABAergic system………….……………………………………...32 GABA……………….…………………………………………………..……..32 GABA-A receptors…………………………………………………………….33 GABA-B receptors…………………………………………………………….42 GABAergic system in the peripheral nervous system…………………………47 Protein kinase C – type ε……………………….………………………..51 General concepts…………………………………………………….…………51 Cross-talk with allopregnanolone and GABA-A………………………………54 Neuroactive steroids…………......………………………………………57 General concepts…………………………………….…………………………57 Mechanism of action…………………………….……………………………..59 Progesterone derivatives………………………………….……………………60
    [Show full text]
  • Nicotinic Signalling and Neurosteroid Modulation in Principal Neurons of the Hippocampal Formation and Prefrontal Cortex
    Nicotinic Signalling and Neurosteroid Modulation in Principal Neurons of the Hippocampal Formation and Prefrontal Cortex by Beryl Yik Ting Chung A Thesis presented to The University of Guelph In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences and Neuroscience Guelph, Ontario, Canada © Beryl Yik Ting Chung, April, 2018 ABSTRACT NICOTINIC SIGNALLING AND NEUROSTEROID MODULATION IN PRINCIPAL NEURONS OF THE HIPPOCAMPAL FORMATION AND PREFRONTAL CORTEX Beryl Yik Ting Chung Advisor: University of Guelph, 2018 Dr. Craig D.C. Bailey Nicotinic signalling plays an important role in coordinating the response of neuronal networks in many brain regions. During pre- and postnatal circuit formation, neurotransmission mediated by nicotinic acetylcholine receptors (nAChRs) influences neuronal survival and regulates neuronal excitability, synaptic transmission, and synaptic plasticity. Nicotinic signalling is also necessary for the proper function of the hippocampal formation (HF) and prefrontal cortex (PFC), which are anatomically and functionally connected and facilitate higher-order cognitive functions. The decline or dysfunction in nicotinic signalling and nAChR function has been observed in various neurological disorders, and the disruption or alteration of nicotinic signalling in the HF and/or PFC can impair learning and memory. While the location and functional role of the α4β2* nAChR isoform has been well characterized in the medial portion of the PFC, this is not well-established in the HF. What is the role of α4β2* nAChRs in excitatory principal neurons of the HF during early development? Growing evidence suggests that the progesterone metabolite allopregnanolone (ALLO) plays a role in mediating the proper function of the HF and the PFC, and that it may also inhibit nAChR function.
    [Show full text]
  • Anti-FOLR2 Purified Cat
    EXBIO Praha, a.s. • Nad Safinou II 341 • 252 50 Vestec • Czech Republic [email protected][email protected][email protected] • www.exbio.cz Technical Data Sheet Product Anti-FOLR2 Purified Cat. Number/Size 11-696-C025 0.025 mg 11-696-C100 0.1 mg For Research Use Only. Not for use in diagnostic or therapeutic procedures. Antigen FOLR2 Clone EM-35 Format Purified Reactivity Human Negative species Mouse Application FC (QC tested), IP, WB, ICC Application details Western blotting: Non-reducing conditions. Flow cytometry: Recommended dilution: 1-4 µg/ml Isotype Mouse IgG1 Specificity The mouse monoclonal antibody EM-35 recognizes an extracellular epitope on FOLR2, a 30-40 kDa cell surface protein serving as a receptor for folic acid. Other names Folate receptor beta, FBP, FR-P3, FR-BETA, BETA-HFR, FBP/PL-1 Immunogen BW5147alpha,beta- cells Entrez Gene ID 2350 Gene name FOLR2 NCBI Full Gene Name folate receptor beta UniProt ID P14207 Concentration 1 mg/ml Preparation Purified by protein-A affinity chromatography Formulation Phosphate buffered saline (PBS) solution with 15 mM sodium azide Storage and handling Store at 2-8°C. Do not freeze. Do not use after expiration date stamped on the label. Images and References www.exbio.cz The product is intended For Research Use Only. Diagnostic or therapeutic applications are strictly forbidden. Products shall not be used for resale or transfer to third parties either as a stand-alone product or as a manufacture component of another product without written consent of EXBIO Praha, a.s. EXBIO Praha, a.s.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Progesterone Receptor Coregulators As Factors Supporting the Function of the Corpus Luteum in Cows
    G C A T T A C G G C A T genes Article Progesterone Receptor Coregulators as Factors Supporting the Function of the Corpus Luteum in Cows Robert Rekawiecki * , Karolina Dobrzyn, Jan Kotwica and Magdalena K. Kowalik Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10–747 Olsztyn, Poland; [email protected] (K.D.); [email protected] (J.K.); [email protected] (M.K.K.) * Correspondence: [email protected]; Tel.: +48-89-539-31-17 Received: 5 July 2020; Accepted: 7 August 2020; Published: 12 August 2020 Abstract: Progesterone receptor (PGR) for its action required connection of the coregulatory proteins, including coactivators and corepressors. The former group exhibits a histone acetyltransferase (HAT) activity, while the latter cooperates with histone deacetylase (HDAC). Regulations of the coregulators mRNA and protein and HAT and HDAC activity can have an indirect effect on the PGR function and thus progesterone (P4) action on target cells. The highest mRNA expression levels for the coactivators—histone acetyltransferase p300 (P300), cAMP response element-binding protein (CREB), and steroid receptor coactivator-1 (SRC-1)—and nuclear receptor corepressor-2 (NCOR-2) were found in the corpus luteum (CL) on days 6 to 16 of the estrous cycle. The CREB protein level was higher on days 2–10, whereas SRC-1 and NCOR-2 were higher on days 2–5. The activity of HAT and HDAC was higher on days 6–10 of the estrous cycle. All of the coregulators were localized in the nuclei of small and large luteal cells.
    [Show full text]
  • PRODUCT SPECIFICATION Anti-C12orf43
    Anti-C12orf43 Product Datasheet Polyclonal Antibody PRODUCT SPECIFICATION Product Name Anti-C12orf43 Product Number HPA046148 Gene Description chromosome 12 open reading frame 43 Clonality Polyclonal Isotype IgG Host Rabbit Antigen Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: AWGLEQRPHVAGKPRAGAANSQLSTSQPSLRHKVNEHEQDGNELQTTPEF RAHVAKKLGALLDSFITISEAAKEPAKAKVQKVALEDDGFRLFFTSVPGG REKEESPQPR Purification Method Affinity purified using the PrEST antigen as affinity ligand Verified Species Human Reactivity Recommended IHC (Immunohistochemistry) Applications - Antibody dilution: 1:50 - 1:200 - Retrieval method: HIER pH6 WB (Western Blot) - Working concentration: 0.04-0.4 µg/ml ICC-IF (Immunofluorescence) - Fixation/Permeabilization: PFA/Triton X-100 - Working concentration: 0.25-2 µg/ml Characterization Data Available at atlasantibodies.com/products/HPA046148 Buffer 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative. Concentration Lot dependent Storage Store at +4°C for short term storage. Long time storage is recommended at -20°C. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. For protocols, additional product information, such as images and references, see atlasantibodies.com. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions.
    [Show full text]
  • Anti-FOLR2 Antibody (ARG41860)
    Product datasheet [email protected] ARG41860 Package: 100 μl anti-FOLR2 antibody Store at: -20°C Summary Product Description Mouse Monoclonal antibody recognizes FOLR2 Tested Reactivity Hu Tested Application WB Host Mouse Clonality Monoclonal Clone 1905CT501.41.76 Isotype IgG2b, kappa Target Name FOLR2 Antigen Species Human Immunogen Recombiant protein of Human FOLR2. Conjugation Un-conjugated Alternate Names Folate receptor 2; BETA-HFR; FBP; Folate receptor beta; Folate receptor, fetal/placental; FBP/PL-1; FR- beta; FR-P3; Placental folate-binding protein; FR-BETA Application Instructions Application table Application Dilution WB 1:1000 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control Human placenta Calculated Mw 29 kDa Observed Size ~ 33 kDa Properties Form Liquid Purification Purification with Protein G. Buffer PBS and 0.09% (W/V) Sodium azide. Preservative 0.09% (W/V) Sodium azide Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol FOLR2 Gene Full Name folate receptor 2 (fetal) Background The protein encoded by this gene is a member of the folate receptor (FOLR) family, and these genes exist in a cluster on chromosome 11.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification of a Different-Type Homeobox Gene, Barhi, Possibly Causing Bar (B) and Om(Ld) Mutations in Drosophila
    Proc. Nati. Acad. Sci. USA Vol. 88, pp. 4343-4347, May 1991 Genetics Identification of a different-type homeobox gene, BarHI, possibly causing Bar (B) and Om(lD) mutations in Drosophila (compound eye/homeodomain/morphogenesis/malformation/M-repeat) TETSUYA KOJIMA, SATOSHI ISHIMARU, SHIN-ICHI HIGASHUIMA, Eui TAKAYAMA, HIROSHI AKIMARU, MASAKI SONE, YASUFUMI EMORI, AND KAORU SAIGO* Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan Communicated by Melvin M. Green, January 25, 1991 ABSTRACT The Bar mutation B of Drosophila melano- the initial periodicity. A class of mutations including Bar (B) gaster and optic morphology mutation Om(JD) of Drosophila may also be intimately related to early events (9). For ananassae result in suppression of ommatidium differentiation clarification of this point, examination was first made of at the anterior portion of the eye. Examination was made to possible determinant genes for the Bar mutation B of Dro- determine the genes responsible for these mutations. Both loci sophila melanogaster (10) and optic morphology mutation were found to share in common a different type of homeobox Om(JD) of Drosophila ananassae (11), in both of which gene, which we call "BarH1." Polypeptides encoded by D. ommatidium differentiation is suppressed in the anterior melanogaster and D. ananassae BarHl genes consist of543 and portion ofthe eye. Both locit were found to share in common 604 amino acids, respectively, with homeodomains identical in a different type of homeobox gene, called BarH1, which sequence except for one amino acid substitution. A unique encodes a polypeptide of Mr - 60,000.
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • Methylation of the NT5E Gene Is Associated with Poor Prognostic Factors in Breast Cancer
    diagnostics Article Methylation of the NT5E Gene Is Associated with Poor Prognostic Factors in Breast Cancer Young Ju Jeong 1,* , Hoon Kyu Oh 2 , Hye Ryeon Choi 3 and Sung Hwan Park 1 1 Department of Surgery, Catholic University of Daegu School of Medicine, Daegu 42471, Korea; [email protected] 2 Department of Pathology, Catholic University of Daegu School of Medicine, Daegu 42471, Korea; [email protected] 3 Department of Thyroid and Endocrine Surgery, Thyroid Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-53-560-4875 Received: 8 October 2020; Accepted: 11 November 2020; Published: 12 November 2020 Abstract: Cluster of differentiation (CD) 73, which is encoded by the NT5E gene, regulates production of immunosuppressive adenosine and is an emerging checkpoint in cancer immunotherapy. Despite the significance of CD73 in immuno-oncology, the roles of the NT5E gene methylation in breast cancer have not been well-defined yet. Therefore, we aimed to investigate the prognostic significance of the NT5E gene methylation in breast cancer. The DNA methylation status of the NT5E gene was analyzed using pyrosequencing in breast cancer tissues. In addition, the levels of inflammatory markers and lymphocyte infiltration were evaluated. The mean methylation level of the NT5E gene was significantly higher in breast cancer than in normal breast tissues. In the analysis of relevance with clinicopathologic characteristics, the mean methylation levels of the NT5E gene were significantly higher in patients with large tumor size, high histologic grade, negative estrogen receptor expression, negative Bcl-2 expression, and premenopausal women.
    [Show full text]