Laudatio for Michael Aizenman NAW 5/4 Nr

Total Page:16

File Type:pdf, Size:1020Kb

Laudatio for Michael Aizenman NAW 5/4 Nr Aernout van Enter, Frank den Hollander Laudatio for Michael Aizenman NAW 5/4 nr. 2 juni 2003 107 Aernout van Enter Frank den Hollander Instituut voor theoretische natuurkunde Eurandom Rijksuniversiteit Groningen Technische Universiteit Eindhoven Nijenborgh 4, 9747 AG Groningen Postbus 513, 5600 MB Eindhoven [email protected] [email protected] Laudatio Laudatio for Michael Aizenman Eens per drie jaar reikt het Wiskundig Ge- Michael is the author of seventy-five research or ‘down’) or as particles (‘occupied’ or ‘emp- nootschap in opdracht van de Koninklijke Ne- papers in journals of mathematics, physics ty’). Their finite-volume conditional distribu- derlandse Academie van Wetenschappen de and mathematical physics. He has collaborat- tions (i.e., the probabilities of events inside a Brouwermedaille uit aan een internationaal ed with many co-authors on a broad range of finite volume given the state outside) are pre- toonaangevend onderzoeker. Hij wordt uit- topics. Much of his work is inspired by proba- scribed by a nearest-neighbor interaction that genodigd om een voordracht te geven op het bility theory and statistical physics, both clas- tends to ‘align spins’ or ‘glue together parti- Nederlands Mathematisch Congres, waar na sical and quantum. In his papers he typically cles’ and that contains the temperature as a afloop de laureaat de Brouwermedaille wordt ‘rides several horses at the same time’, in the parameter. At low temperature and in two uitgereikt. In 2002 werd de medaille toege- sense that cross-fertilization between differ- or more dimensions, there exists more than kend aan Michael Aizenman voor zijn bijdra- ent areas in physics and mathematics is at one infinite-volume probability measure hav- ge aan de mathematische fysica. Op het Ne- the very heart of most of his work. ing the prescribed finite-volume conditional derlands Mathematisch Congres in Eindho- Among the many honors that Michael has probabilities. These probability measures are ven op 4 april 2002 sprak Frank den Hollan- received we mention only three: in 1990 he interpreted as the different phases of the sys- der de laudatio uit. was awarded the Norbert Wiener Award of the tem. There is a so-called ‘plus-phase’, where American Mathematical Society; since 1997 the majority of spins is up (positive magneti- The 2002 Brouwer Medal, in the field of he is a member of the National Academy of zation) or the density of particles is high (liq- mathematical physics, is awarded to Michael Sciences of the USA; since 2001 he is Editor- uid), and a ‘minus-phase’, where the majority Aizenman of Princeton University. Michael is in-Chief of Communications in Mathematical of spins is down (negative magnetization) or an outstanding mathematical physicist, who Physics, the leading international journal in the density of particles is low (gas). This phe- is admired and loved by his colleagues for his mathematical physics. nomenon is referred to as a phase transition. many beautiful contributions to the field and In his work Michael has solved a number of The temperature separating the more-phase for his warm personality. In this laudatio, we very hard open problems central to statistical region from the one-phase region is the ‘criti- give a brief overview of his career and of his mechanics and field theory. He has repeat- cal temperature’. Aizenman’s result can be in- scientific contributions. edly introduced new, powerful and elegant terpreted as the statement that below the crit- Michael studied at Hebrew University in ideas, concepts and techniques that paved ical temperature two-dimensional ‘crystals’ of Jerusalem. In 1975 he obtained his PhD at the way for others. Most of his papers are one phase inside the other phase have no Yeshiva University in New York, under the su- true eye-openers, and contain a high density facets. Various other researchers had ob- pervision of Joel Lebowitz. From 1975 to 1977 of truly new ideas. As a mathematical physi- tained partial results before him. Aizenman he was a postdoc at Princeton University, with cist pur sang he often opens up new panora- proved the definitive result. R. Dobrushin had Elliott Lieb. Both Lebowitz and Lieb are stars mas by combining ideas and techniques from earlier shown that in three or more dimen- of mathematical physics, so Michael could different parts of physics and mathematics. sions such facets do exist. hardly have done better in the choice of his teachers! From 1977 to 1982 Michael was The two-dimensional Ising model has no in- Destructive field theory in high dimensions assistant professor at Princeton University, terfaces (1980) (1981–1982) from 1982 to 1987 associate and full professor The Ising model is the paradigmatic model in Simple models of quantum field theory can be at Rutgers University in New Brunswick, and statistical physics for the study of phase tran- constructed as mathematically well-defined from 1987 to 1990 full professor at Courant In- sitions. It describes a system of two-valued objects by analytic continuation in imaginary stitute in New York. Since 1990 he is profes- random variables, living on a lattice of a cer- time of statistical-physics-like models, at or sor of Mathematics and Physics at Princeton tain dimension. These random variables can near their critical temperature and subject to University. be interpreted either as magnetic spins (‘up’ a scaling limit procedure. Aizenman proved 108 NAW 5/4 nr. 2 juni 2003 Laudatio for Michael Aizenman Aernout van Enter, Frank den Hollander that, in dimension at least four, for a class of set of eigenvalues of the random Schrodinger¨ scalar field theories, this construction cannot operator, describing the energy levels of the describe systems with interacting particles. system. Localization is modelled by the ex- Namely, the limiting quantum field theory is istence of a complete set of eigenfunctions trivial in the sense that it is Gaussian, describ- that decay exponentially fast in space. Lo- ing only non-interacting particles. Again, al- calization is expected to occur for all energies though there were partial results before, the in the case of sufficiently strong disorder, and deciding step was provided by Aizenman. for a restricted range of energies in the case of weak disorder (in three or more dimensions). Uniqueness of critical points for Ising and The work of Frohlich¨ and Spencer confirmed percolation models (with D. Barsky and R. Fer- part of this picture. Aizenman and Molchanov nández, 1985–1987) gave a different, very elegant and much sim- In percolation models, each site (or bond) plified proof of localization, based on estimat- in a lattice network is empty or occupied in ing the expectation of fractional moments of some random manner, governed by a param- resolvents of random operators with a dense eter that controls the densities of occupied point spectrum. sites (or bonds). One considers the question whether far apart sites (or bonds) are con- Conformal invariance in percolation, exis- nected by an occupied cluster and what the tence and properties of scaling limits (1995– geometry of such clusters is. Again, there is 1998) a ‘critical density’ separating a region where If one takes the scaling limit of a lattice the- clusters are finite from a region where there Photo: Pryde Brown ory in which the lattice distance approaches is an infinite cluster running through the net- zero, then one obtains a theory that lives in work. The uniqueness result showed that var- long-range Ising, Potts and percolation mod- the continuum. For many two-dimensional ious a priori different notions of critical den- els. Since this revival, a plethora of applica- statistical-physics-like models ‘at criticali- sity coincide. This work widely extended the tions has come up, including applications in ty’, the limit is predicted to be non-trivial famous result for two-dimensional indepen- numerical simulations. and to be invariant under conformal trans- dent bond percolation due to H. Kesten (1981 formations. The existence of such limits Brouwer Medal in the field of probability the- The two-dimensional random field Ising mod- and their properties are mathematically puz- ory) and solved a problem that for many years el has no phase transition (with J. Wehr, zling. Aizenman has provided various impor- was open. A similar result was proved for the 1990–1991) tant ideas, which have developed further in Ising model and various a priori different no- If one considers the Ising model in a weak the hands of other researchers, in particu- tions of critical temperature. symmetric random external magnetic field, lar, G. Lawler, O. Schramm, S. Smirnov and then the minimum dimension in which coexis- W. Werner, leading to great leaps forward in Uniqueness of infinite percolation clusters tence of different phases can occur becomes our understanding of critical phenomena in (with H. Kesten and C. Newman, 1987) three instead of two. This result was predicted two dimensions. For these developments we This result, which applies to independent in the physics literature on the basis of a non- refer to Aizenman’s Brouwer Lecture. percolation on regular lattices with a certain rigorous argument due to Y. Imry and S.-k. Ma, growth restriction, states that no two infinite but it took many years to be mathematically The above summary gives an impression (not percolation clusters can coexist, i.e., above confirmed. a full one) of the wide scope and broad in- the critical density there is one and only one terests of Aizenman’s research. His work has infinite cluster. The proof was afterwards Fractional moment estimates for the estab- been influential both among mathematicians beautifully extended and simplified by R. Bur- lishment of localization in disordered quan- and among physicists, which makes him a ton and M. Keane.
Recommended publications
  • SENATE—Wednesday, July 26, 2000
    July 26, 2000 CONGRESSIONAL RECORD—SENATE 16283 SENATE—Wednesday, July 26, 2000 The Senate met at 9:31 a.m. and was Again, if cloture is invoked on the mo- to be offered, the time for the debate, called to order by the President pro tion, postcloture debate will begin im- and some tangential but very impor- tempore [Mr. THURMOND]. mediately. tant issues such as the consideration of As a reminder, on Thursday the appointments of Federal district court PRAYER morning hour has been set aside for judges across America to fill vacancies. The Chaplain, Dr. Lloyd John those Senators who wish to make their These judgeships have been a source of Ogilvie, offered the following prayer: final statements in remembrance of great controversy in recent times be- Almighty God, take charge of the the life of our former friend and col- cause there is a clear difference of control centers of our brains. Think league, Senator Paul Coverdell. At the opinion between Democrats and Repub- Your thoughts through us and send to expiration of that time, a vote on the licans about how many judges should our nervous systems the pure signals of motion to proceed to the energy and be appointed this year. Your peace, power, and patience. Give water appropriations bill will occur. Of course, the Republicans in control us minds responsive to Your guidance. I thank my colleagues for their at- of the Senate are hopeful that their Take charge of our tongues so that tention. I yield the floor. I suggest the candidate for President will prevail in we may speak truth with clarity, with- absence of a quorum.
    [Show full text]
  • Contemporary Mathematics 327
    CONTEMPORARY MATHEMATICS 327 Advances in Differential Equations and Mathematical Physics UAB International Conference Differential Equations and Mathematical Physics March 26-30, 2002 University of Alabama, Birmingham Yulia Karpeshina Gunter Stolz Rudi Weikard Yanni Zeng Editors http://dx.doi.org/10.1090/conm/327 CoNTEMPORARY MATHEMATICS 327 Advances in Differential Equations and Mathematical Physics UAB International Conference Differential Equations and Mathematical Physics March 26-30, 2002 University of Alabama, Birmingham Yulia Karpeshina Gunter Stolz Rudi Weikard Yanni Zeng Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeTurck, managing editor Andreas Blass Andy R. Magid Michael Vogelius This volume contains the proceedings of a UAB 2002 International Conference on Differential Equations and Mathematical Physics, held at the University of Alabama, Birmingham, from March 26-30, 2002. 2000 Mathematics Subject Classification. Primary 34-06, 35-06, 76-06, 81-06, 82-06. Library of Congress Cataloging-in-Publication Data International Conference on Differential Equations and Mathematical Physics (9th: 2002 : Uni- versity of Alabama, Birmingham). Advances in differential equations and mathematical physics : UAB international conference, differential equations and mathematical physics, March 26-30, 2002, University of Alabama, Birm- ingham/ Yulia Karpeshina... [et a!.], editors. p. cm.-(Contemporary mathematics, ISSN 0271-4132; 327) Includes bibliographical references. ISBN 0-8218-3296-4 (alk. paper)
    [Show full text]
  • Bibliography Physics and Human Rights Michele Irwin and Juan C Gallardo August 18, 2017
    Bibliography Physics and Human Rights Michele Irwin and Juan C Gallardo August 18, 2017 Physicists have been actively involved in the defense of Human Rights of colleague physicists, and scientists in general, around the world for a long time. What follows is a list of talks, articles and informed remembrances on Physics and Human Rights by physicist-activists that are available online. The selection is not exhaustive, on the contrary it just reflects our personal knowledge of recent publications; nevertheless, they are in our view representative of the indefatigable work of a large number of scientists affirming Human Rights and in defense of persecuted, in prison or at risk colleagues throughout the world. • “Ideas and Opinions” Albert Einstein Crown Publishers, 1954, 1982 The most definitive collection of Albert Einstein's writings, gathered under the supervision of Einstein himself. The selections range from his earliest days as a theoretical physicist to his death in 1955; from such subjects as relativity, nuclear war or peace, and religion and science, to human rights, economics, and government. • “Physics and Human Rights: Reflections on the past and the present” Joel L. Lebowitz Physikalische Blatter, Vol 56, issue 7-8, pages 51-54, July/August 2000 http://onlinelibrary.wiley.com/doi/10.1002/phbl.20000560712/pdf Based loosely on the Max von Laue lecture given at the German Physical Society's annual meeting in Dresden, 03/2000. This article focus on the moral and social responsibilities of scientists then -Nazi period in Germany- and now. Max von Laue's principled moral response at the time, distinguished him from many of his contemporary scientists.
    [Show full text]
  • George Stell (1933–2014)
    Home Search Collections Journals About Contact us My IOPscience George Stell (1933–2014) This content has been downloaded from IOPscience. Please scroll down to see the full text. 2016 J. Phys.: Condens. Matter 28 410401 (http://iopscience.iop.org/0953-8984/28/41/410401) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 129.49.50.164 This content was downloaded on 28/03/2017 at 21:49 Please note that terms and conditions apply. You may also be interested in: Fifty years of liquid state physics Alina Ciach, Carol K Hall, Gerhard Kahl et al. Uniform quantized electron gas Johan S Høye and Enrique Lomba A thermodynamic self-consistent theory of asymmetric hard-core Yukawa mixtures Giuseppe Pellicane and Carlo Caccamo Exact solution of the mean spherical approximation for a model liquid metal potential. I. Method of solution P T Cummings Phase separation in ionic fluids George Stell Criticality of ionic fields: The Ginzburg criterion for the restricted primitive model R J F Leote de Carvalho and R Evans The role of the pair potential in determining the structure factor of liquid rubidium R T Arlinghaus and P T Cummings Liquid–vapor asymmetry in mean-field theories of simple, polar and ionic fluids Volker C Weiss and Wolffram Schröer Spectral discontinuities in constrained dynamical models Sudipta Das and Subir Ghosh Journal of Physics: Condensed Matter IOP Journal of Physics: Condensed Matter J. Phys.: Condens. Matter J. Phys.: Condens. Matter 28 (2016) 410401 (3pp) doi:10.1088/0953-8984/28/41/410401 28 Obituary 2016 George Stell (1933–2014) © 2016 IOP Publishing Ltd Born in 1933 in the coastal village of Sea Cliff on Long Islands’ North Shore, George Stell played a central role in the development of the statistical mechanics of classical and quantum JCOMEL fluids and strongly influenced the careers of many researchers and academicians who had the good fortune to collaborate with him or have him as a mentor.
    [Show full text]
  • Spring 2019 Fine Letters
    Spring 2019 • Issue 8 Department of MATHEMATICS Princeton University From the Chair Professor Allan Sly Receives MacArthur Fellowship Congratulations to Sly works on an area of probability retical computer science, where a key the Class of 2019 theory with applications from the goal often is to understand whether and all the finishing physics of magnetic materials to it is likely or unlikely that a large set graduate students. computer science and information of randomly imposed constraints on a Congratulations theory. His work investigates thresh- system can be satisfied. Sly has shown to the members of olds at which complex networks mathematically how such systems of- class of 2018 and suddenly change from having one ten reach a threshold at which solving new Ph. D.s who set of properties to another. Such a particular problem shifts from likely are reading Fine Letters for the first questions originally arose in phys- or unlikely. Sly has used a party invi- time as alumni. As we all know, the ics, where scientists observed such tation list as an analogy for the work: Math major is a great foundation for shifts in the magnetism of certain As you add interpersonal conflicts a diverse range of endeavors. This metal alloys. Sly provided a rigorous among a group of potential guests, it is exemplified by seventeen '18's who mathematical proof of the shift and can suddenly become effectively im- have gone to industry and seventeen a framework for identifying when possible to create a workable party. to grad school; ten to advanced study such shifts occur.
    [Show full text]
  • A Life in Statistical Mechanics Part 1: from Chedar in Taceva to Yeshiva University in New York
    Eur. Phys. J. H 42, 1–21 (2017) DOI: 10.1140/epjh/e2017-80006-9 THE EUROPEAN PHYSICAL JOURNAL H Oral history interview A life in statistical mechanics Part 1: From Chedar in Taceva to Yeshiva University in New York Joel L. Lebowitz1,a and Luisa Bonolis2,b 1 Departments of Mathematics and Physics, Rutgers, The State University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA 2 Max Planck Institute for the History of Science, Boltzmannstrasse 22, 14195 Berlin, Germany Received 10 February 2017 / Accepted 10 February 2017 Published online 4 April 2017 c The Author(s) 2017. This article is published with open access at Springerlink.com Abstract. This is the first part of an oral history interview on the life- long involvement of Joel Lebowitz in the development of statistical mechanics. Here the covered topics include the formative years, which overlapped the tragic period of Nazi power and World War II in Eu- rope, the emigration to the United States in 1946 and the schooling there. It also includes the beginnings and early scientific works with Peter Bergmann, Oliver Penrose and many others. The second part will appear in a forthcoming issue of Eur. Phys. J. H. 1 From war ravaged Europe to New York L. B. Let’s start from the very beginning. Where were you born? J. L. I was born in Taceva, a small town in the Carpathian mountains, in an area which was at that time part of Czechoslovakia, on the border of Romania and about a hundred kilometers from Poland. That was in 1930, and the town then had a population of about ten thousand people, a small town, but fairly advanced.
    [Show full text]
  • 09W5055 Statistical Mechanics on Random Structures
    09w5055 Statistical Mechanics on Random Structures Anton Bovier (Rheinische Friedrich-Wilhelms-Universitat¨ Bonn), Pierluigi Contucci (University of Bologna), Frank den Hollander (University of Leiden and EURANDOM), Cristian Giardina` (TU Eindhoven and EURANDOM). 15 November - 20 November 2009 1 Overview of the Field The theme of the workshop has been equilibrium and non-equilibrium statistical mechanics in a random spatial setting. Put differently, the question was what happens when the world of interacting particle systems is put together with the world of disordered media. This area of research is lively and thriving, with a constant flow of new ideas and exciting developments, in the best of the tradition of mathematical physics. Spin glasses were at the core of the program, but in a broad sense. Spin glass theory has found ap- plications in a wide range of areas, including information theory, coding theory, algorithmics, complexity, random networks, population genetics, epidemiology and finance. This opens up many new challenges to mathematics. 2 Recent Developments and Open Problems The workshop brought together researchers whose interest lies at the intersection of disordered statistical mechanics and random graph theory, with a clear emphasis on applications. The multidisciplinary nature of the proposed topics has attracted research groups with different backgrounds and thus provided exchange of ideas with cross-fertilisation. As an example, we mention two problems on which we focused during the workshop. The first problem has its origin in the many fundamental issues that are still open in the theory of spin glasses. Even tough today we have a rigorous proof, in the context of mean-field models, of the solution for the free energy first proposed by G.
    [Show full text]
  • A Mathematical Physicist's Perspective on Statistical Mechanics
    A mathematical physicist’s perspective on Statistical Mechanics Michael Aizenman Princeton University André Aisenstadt Lecture (I) CRM, Montreal Sept. 24, 2018 1 /14 Statistical mechanics explains and quantifies the process by which structure emerges from chaos. Its genesis is in Boltzmann’s explanation of thermodynamical behavior and in particular of the concept of entropy. The statistic mechanical perspective was instrumental for Planck’s theory of the light quantization and Einstein’s calculation of the Avogadro number. More recent developments include links between the physics of critical phenomena and the mathematics of conformally invariant random structures, stochastic integrability, and representation theory. The talk will focus on examples of observations and conjectures which turned out to point in fruitful directions. 2 /14 Statistical Mechanics: laws emerging from chaos Laws expressed in equations F = ma, E = mc2, PV = nRT . A bird of a seemingly different feather: ∆S ≥ 0 . Q: what is entropy? L. Boltzmann: Thermodynamics emerges from Statistical Mechanics! Stat-Mech starts with a quantification of chaos: S = kB log W StatMech perspective was embraced and used for further developments by: M. Planck ) quantum theory of light (surmised from the black body radiation) A. Einstein ) Avogadro number from Brownian motion (exp. Perrin) −itH R. Feynman ) path representation of quantum dynamics: Ψt = e Ψ0 J. Wheeler: “There is no law except the law that there is no law.” Paraphrased: all physics laws are emergent features. 3 /14 Statistical Mechanics: laws emerging from chaos Laws expressed in equations F = ma, E = mc2, PV = nRT . A bird of a seemingly different feather: ∆S ≥ 0 . Q: what is entropy? L.
    [Show full text]
  • On Spin Systems with Quenched Randomness: Classical and Quantum
    On Spin Systems with Quenched Randomness: Classical and Quantum Rafael L. Greenblatt(a) ∗ Michael Aizenman(b) y Joel L. Lebowitz(c)∗ (a) Department of Physics and Astronomy Rutgers University, Piscataway NJ 08854-8019, USA (b) Departments of Physics and Mathematics Princeton University, Princeton NJ 08544, USA (a) Departments of Mathematics and Physics Rutgers University, Piscataway NJ 08854-8019, USA December 5, 2009 Dedicated to Nihat Berker on the occasion of his 60th birthday Abstract The rounding of first order phase transitions by quenched randomness is stated in a form which is applicable to both classical and quantum systems: The free energy, as well as the ground state energy, of a spin system on a d-dimensional lattice is continuously differentiable with respect to any parameter in the Hamiltonian to which some randomness has been added when d ≤ 2. This implies absence of jumps in the associated order parameter, e.g., the magnetization in case of a random magnetic field. A similar result applies in cases of continuous symmetry breaking for d ≤ 4. Some questions concerning the behavior of related order parameters in such random systems are discussed. 1 Introduction The effect of quenched randomness on the equilibrium and transport properties of macroscopic systems is a subject of great theoretical and practical interest which is close to Nihat’s heart. He and his collaborators [1, 2, 3] made important contributions to the study of the changes brought about by such randomness in phase transitions occurring in the pure (non-random) system. These effects can be profound in low dimensions. Their understanding evolved in a somewhat interesting way.
    [Show full text]
  • Curriculum Vitae
    Jack Hanson City College of NY [email protected] Dept. of Mathematics 1 (212) 650 - 5174 NAC 6/292 Appointments • Assistant Professor, City College of NY Dept. of Mathematics, 01/2016{present • Visiting Assistant Professor, GA Tech Dept. of Mathematics, 8/2015{01/2016 • Zorn Postdoctoral Fellow, Indiana University Dept. of Mathematics. 8/2013{7/2015 Education • Ph.D., Physics, Princeton University, June 2013. Advisor: Michael Aizenman • M.A., Physics, Princeton University, 2010. • B.S. Summa cum Laude, Physics, Rutgers University, 2008. Double major, Physics and Mathematics. Funding • NSF Grant DMS-1612921, \Correlations and Scaling in Disordered and Critical Stochastic Models", 2016 { 2019. $100,000. • (Funded but declined in favor of NSF) NSA Young Investigator Grant, 2016 { 2018. $40,000. • AMS-Simons travel grant, 2015 { 2016. • NSF Graduate Research Fellow, 2008 - 2013. Talks • Upcoming, untitled { Conference on Random Walks, Random Graphs and Random Media at LMU, Munich, 9 / 2019 • \Universality of the time constant for critical first-passage percolation on the triangular lat- tice" { MIT Probability Seminar, 3/2019 1 { CUNY Probability Seminar, 3/2019 { Ohio State U. Probability Seminar, 4/2019 • \Geodesics in First-Passage Percolation" { Montr´ealsummer workshop on challenges in probability and mathematical physics, 7/2018. • \Half-space critical exponents in high-dimensional percolation." { Conference on Recent Trends in Continuous and Discrete Probability, GA Tech, 6/2018. { U. of Rochester Probability Seminar, 9/2018 { Columbia U. Probability Seminar, 2/2019 { NYU Probability Seminar, 2/2019 • \The boundary in first-passage percolation" { Cornell Probability Seminar, 11/2017 • \Strict inequality for the chemical distance exponent in 2d percolation." { Stockholm University Probability/Statistics seminar, 8/2017 { CUNY Probability seminar, 9/2017 • \Geodesics and Busemann functions in first-passage percolation" { AMS short course, Atlanta, 1/2017.
    [Show full text]
  • Arxiv:1104.3515V3
    Proof of Rounding by Quenched Disorder of First Order Transitions in Low-Dimensional Quantum Systems Michael Aizenman∗ Departments of Physics and Mathematics, Princeton University, Princeton NJ 08544-8019 Rafael L. Greenblatt† Dipartamento di Matematica, Universit`adegli Studi Roma Tre, Largo San Leonardo Murialdo 1, 00146 Roma, Italy Joel L. Lebowitz‡ Departments of Mathematics and Physics, Rutgers University, Piscataway NJ 08854-8019 (Dated: November 23, 2011) Abstract We prove that for quantum lattice systems in d ≤ 2 dimensions the addition of quenched disorder rounds any first order phase transition in the corresponding conjugate order parameter, both at positive temperatures and at T = 0. For systems with continuous symmetry the statement extends up to d ≤ 4 dimensions. This establishes for quantum systems the existence of the Imry-Ma phenomenon which for classical systems was proven by Aizenman and Wehr. The extension of the proof to quantum systems is achieved by carrying out the analysis at the level of thermodynamic quantities rather than equilibrium states. PACS numbers: 75.10.Jm,64.60.De arXiv:1104.3515v3 [cond-mat.stat-mech] 23 Nov 2011 ∗ [email protected][email protected][email protected] 1 I. INTRODUCTION Quenched disorder is known to have a pronounced effect on phase transitions in low dimensional systems. As Imry and Ma pointed out in 1975 [1], disorder can prevent the appearance of discontinuities, and of long range order, associated with first order transitions. Nonetheless, for a number of years there was considerable uncertainty about the mechanisms involved in such a “rounding effect”, and consequently also of the circumstances in which this effect appears [2].
    [Show full text]
  • Issue 93 ISSN 1027-488X
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Interview Yakov Sinai Features Mathematical Billiards and Chaos About ABC Societies The Catalan Photograph taken by Håkon Mosvold Larsen/NTB scanpix Mathematical Society September 2014 Issue 93 ISSN 1027-488X S E European M M Mathematical E S Society American Mathematical Society HILBERT’S FIFTH PROBLEM AND RELATED TOPICS Terence Tao, University of California In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively. Subsequently, this structure theory was used to prove Gromov’s theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner. Graduate Studies in Mathematics, Vol. 153 Aug 2014 338pp 9781470415648 Hardback €63.00 MATHEMATICAL METHODS IN QUANTUM MECHANICS With Applications to Schrödinger Operators, Second Edition Gerald Teschl, University of Vienna Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrödinger operators. Graduate Studies in Mathematics, Vol. 157 Nov 2014 356pp 9781470417048 Hardback €61.00 MATHEMATICAL UNDERSTANDING OF NATURE Essays on Amazing Physical Phenomena and their Understanding by Mathematicians V.
    [Show full text]