<<

And Infinite-Dimensional

Mari´anFabian2 Petr Habala13 Petr H´ajek12 Vicente Montesinos Santaluc´ıa4 Jan Pelant2 V´aclav Zizler12 1 Department of , University of Alberta, Edmonton 2 Mathematical Institute, Czech Academy of Sciences, Prague 3 Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University, Prague 4 Departamento de Matem´aticaAplicada, Universidad Polit´ecnicade Valencia Preface

Preface Banach spaces provide a framework for linear and nonlinear functional analysis, theory, abstract analysis, , optimization and other branches of mathematics. This book is intended as an introduction to linear functional analysis and to some parts of infinite-dimensional Banach theory. The first seven chapters are directed mainly to undergraduate and graduate students. We have strived to make the text easily readable and as self-contained as possible. In particular, we proved many basic facts that are considered “folk- lore”. An important part of the text is a large number of exercises with detailed hints for their solution. They complement the material in the chapters and contain many important results. The last five chapters introduce the reader to selected topics in the theory of Banach spaces related to smoothness and . This part of the book is intended as an introduction to and a complement of existing books on the subject ([BeLi], [DGZ3], [Dis1], [Dis2], [Fab], [JoL3], [LiT2], [Phe2], [Woj]). Some material is presented here for the first time in a monograph form.

The text is based on graduate courses taught at the University of Alberta in Edmonton in the years 1984–1997. These courses were also taken by many senior students in the Honors undergraduate program in Edmonton. As a prerequisite, basic courses in and linear should be enough. For the most part, Royden’s book [Roy] should be sufficient. The chapters are best read consecutively. However: — Chapter 4 as well as the latter part of Chapter 3 (James boundaries) can be omitted in the case of a more elementary functional analysis course. Chapter 4 is used only marginally in Chapters 8–10. — The (Chapter 7) can be approached after the first two chapters and the beginning of Chapter 3 were covered; it is not needed in latter chapters. The book can serve as a textbook for the following types of courses in functional analysis: 1. Graduate two-semester course: Chapters 1–9. 2. Graduate one-semester course: Chapters 1–3, 5, and 6 or 7.

5 3. Graduate one-semester advanced course: Chapters 8–10 or 11, 12. 4. Undergraduate first course in functional analysis: Chapters 1–3 and a part of Chapter 7. 5. Undegraduate second course in functional analysis: Chapters 4–6, Chapter 8 and 10. The first three chapters together with Chapter 7 can be used in service courses for students of probability, physics, or engineering.

The principal part of the text was prepared at the Department of Mathemat- ics, University of Alberta in Edmonton. Each author spent some time at this department. Habala and H´ajekobtained their PhD degrees there and Zizler was a faculty member there. We all thank this department for excellent work- ing conditions. We also thank our present home institutions for enabling us to finalize the book. We are indebted to the grant agencies in Canada, the Czech Republic, Germany, Spain and the U.S. for supporting our research in theory over the years. We are grateful to our colleagues and students for many helpful discussions. Our special thanks go to Jon Borwein, Gilles Godefroy, Jiˇr´ıJel´ınek,Kamil John, L´opez Pellicer, Jos´eOrihuela, Nicole Tomczak-Jaegermann, Jon Vanderwerff, and Dirk Werner. We also thank our colleagues that allowed us to include some of their recent unpublished results. We thank Marion Benedict for her excellent typing of the first version of the manuscript and the staff of Springer-Verlag for their efficient work. Above all, we are deeply indebted to our wives for their support and encour- agement.

We would be glad if this book inspired some young mathematicians to choose Banach spaces as their field of interest, and hope that students and researchers in Banach space theory will find the text useful. We wish the readers a pleasant time spent over this book.

Prague and Valencia Summer 2000 The authors

6 Contents

Preface 5

1 Basic Concepts in Banach Spaces 1 H¨olderand Minkowski inequalities, classical spaces C[0, 1], `p, c0, Lp[0, 1], ...... 2 Operators, quotient spaces, finite-dimensional spaces, Riesz’s lemma, separability ...... 11 Hilbert spaces, orthonormal bases, `2 ...... 17 Exercises ...... 23

2 Hahn-Banach and Banach Open Mapping Theorems 38 Hahn-Banach extension and separation theorems ...... 39 Duals of classical spaces ...... 45 Banach open mapping theorem, theorem, dual operators 51 Exercises ...... 54

3 Weak 66 Weak and weak star topology, Banach-Steinhaus uniform boundedness principle, Alaoglu’s and Goldstine’s theorem, reflexivity . . . . . 67 Extreme points, Krein-Milman theorem, James boundary, Ekeland’s variational principle, Bishop-Phelps theorem ...... 79 Exercises ...... 91

4 Locally Convex Spaces 112 Local bases, bounded sets, metrizability and normability, finite-dimensional spaces, distributions ...... 113 , ...... 122 Representation and compactness: Carath´eodory and Choquet repre- sentation, Banach-Dieudonn´e,Eberlein-Smulian,ˇ Kaplansky the- orems, Banach-Stone theorem ...... 127 Exercises ...... 136

7 5 Structure of Banach Spaces 143 Projections and complementability, Auerbach bases ...... 143 Separable spaces as subspaces of C[0, 1] and quotients of `1, Sobczyk’s theorem, Schur’s property of `1 ...... 147 Exercises ...... 153

6 Schauder Bases 167 Shrinking and boundedly complete bases, reflexivity, Mazur’s basic sequence theorem, small perturbation lemma ...... 171 Bases in classical spaces: block sequences, PeÃlczy´nski’sdecompo- sition method and subspaces of `p, Pitt’s theorem, Khintchine’s inequality and subspaces of Lp ...... 178 Unconditional bases, James’s theorem on containment of `1 and c0, James’s space J, Bessaga-PeÃlczy´nskitheorem ...... 186 Markushevich bases: existence for separable spaces, extension prop- erty, Johnson’s and Plichko’s result on `∞ ...... 194 Exercises ...... 197

7 Compact Operators on Banach Spaces 209 Compact operators and finite rank operators, Fredholm operators Fred- holm alternative ...... 209 Spectral theory: eigenvalues, spectrum, resolvent, eigenspaces . . . . . 216 Self-adjoint operators, spectral theory of compact self-adjoint and com- pact normal operators ...... 223 Fixed points: Banach’s contraction principle, non-expansive mappings, Ryll-Nardzewski theorem, Brouwer’s and Schauder’s theorems, invariant subspaces ...... 234 Exercises ...... 238

8 Differentiability of Norms 249 Smulian’sˇ dual test, Kadec’s Fr´echet-smooth renorming of spaces with separable dual, Fr´echet differentiability of convex functions . . . 251 Extremal structure, Lindenstrauss’ result on strongly exposed points and attaining operators ...... 264 Exercises ...... 272

9 Uniform Convexity 294 Uniform convexity and uniform smoothness, `p spaces ...... 294 Finite representability, local reflexivity, superreflexive spaces and En- flo’s renorming, Kadec’s and Gurarii-Gurarii-James theorems . . 300 Exercises ...... 315

8 10 Smoothness and Structure 323 Variational principles (smooth and compact), subdifferential, Stegall’s variational principle ...... 324 Smooth approximation: partitions of unity ...... 338 Lipschitz homeomorphisms, Aharoni’s embeddings into c0, Heinrich- Mankiewicz results on linearization of Lipschitz maps ...... 341 Homeomorphisms: Mazur’s theorem on `p, Kadec’s theorem ...... 346 Smoothness in `p, Hilbert spaces ...... 350 Countable James boundary and saturation by c0 ...... 353 Exercises ...... 357

11 Weakly Compactly Generated Spaces 368 Projectional resolutions, injections into c0(Γ), Eberlein compacts, em- bedding into a reflexive space, locally uniformly rotund and smooth renormings ...... 369 Weakly compact operators, Davis-Figiel-Johnson-PeÃlczy´nskifactoriza- tion, absolutely summing operators, Pietsch factorization, Dunford- Pettis property ...... 382 Quasicomplements ...... 388 Exercises ...... 390

12 Topics in 398 Eberlein compacts, metrizable subspaces ...... 399 Uniform Eberlein compacts, scattered compacts ...... 405 Weakly Lindel¨ofspaces, property C ...... 414 Corson compacts, weak pseudocompactness in Banach spaces, (BX , w) Polish ...... 420 Exercises ...... 428

9 Bibliography

[AaLu] J. Aarts and D. Lutzer, Completeness properties designed for recog- nizing , Dissertationes Math. 116 (1974).

[AAB] Y.A. Abramovich, C.D. Aliprantis and O. Burkinshaw, The Dau- gavet in uniformly convex Banach spaces, J. Funct. Anal. 97 (1991), 215–230.

[Aha] I. Aharoni, Uniform embeddings of Banach spaces, Israel J. Math. 27 (1977), 174–179. [AhL1] I. Aharoni and J. Lindenstrauss, Uniform equivalence between Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 281–283. [AhL2] I. Aharoni and J. Lindenstrauss, An extension of a result of Ribe, Israel J. Math. 52 (1985), 50–64.

[AlPo] K. Alster and R. Pol, On spaces of compact subspaces of σ-products of the real line, Fund. Math. 107 (1980), 135–143. [Ami] D. Amir, Banach spaces, Lecture Notes (unpublished), Edmonton, Canada, 1975. [AmLi] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35–44. [Arc] A.V. Archangelskij, Topological function spaces, Kluwer Academic Publishers, Mathematics and its Applications 78, 1992. [ArFa] S. Argyros and V. Farmaki, On the structure of weakly compact sub- sets of Hilbert spaces and applications to the geometry of Banach spaces, Trans. Amer. Math. Soc. 289 (1985), 409–427.

[ArMe] S. Argyros and S. Mercourakis, On weakly Lindel¨ofBanach spaces, Rocky Mount. J. Math. 23 (1993), 395–446.

442 [AMN] S. Argyros, S. Mercourakis and S. Negrepontis, Functional analytic properties of Corson compact spaces, Studia Math. 89 (1988), 197– 229.

[ArSm] N. Aronszajn and K.T. Smith, Invariant subspaces of completely con- tinuous operators, Ann. of Math. 60 (1954), 345–350.

[Asp] E. Asplund, Fr´echet differentiability of convex functions, Acta Math. 121 (1968), 31–47.

[AzDe] D. Azagra and R. Deville, Starlike bodies and bump functions in Ba- nach spaces, Pr´epublicationno. 116, Math´ematiquesPures de Bor- deaux, C.N.R.S., 1999. [Bar] J.A. Barroso, Introduction to holomorphy, North Holland Math. Stud- ies 106, 1985.

[Bao] E. Bator, Unconditionally converging and compact operators on c0, Rocky Mount. J. Math. 22 (1992), 417–422.

[Bau] D.P. Baturov, On subspaces of function spaces, Vestnik Moskov. Univ. Ser. Mat. (1987), 66–69. [Bea] B. Beauzamy, Introduction to Banach spaces and their geometry, Mathematics Studies, North Holland 68, 1982. [BHO] S. Bellenot, R. Haydon, and E. Odell, Quasireflexive and tree spaces constructed in the spirit of R.C. James, Cont. Math. 85 (1989), 19– 43.

[BeMo] J. Ben´ıtez and V. Montesinos, A characterization of restricted w- upper semicontinous differentials of convex functions, Bull. Austral. Math. Soc., to appear.

[Ben] Y. Benyamini, The uniform classification of Banach spaces, Longhorn Notes, The University of Texas at Austin, Functional Analysis semi- nar, 1984–1985. [BeLi] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Volume 1, American Math. Soc. Colloquium Publica- tions 48, 2000.

[BRW] Y. Benyamini, M.E. Rudin and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309–324.

[BeSt] Y. Benyamini and T. Starbird, Embedding weakly compact sets into , Israel J. Math. 23 (1976), 137–141.

443 [Bes1] C. Bessaga, A note on universal Banach spaces of finite , Bull. Polish Academy 6 (1958), 97–101.

[Bes2] C. Bessaga, On topological classification of complete linear spaces, Fund. Math. 56 (1965), 251–288.

[Bes3] C. Bessaga, Topological equivalence of nonseparable reflexive Banach spaces, ordinal resolutions of identity and monotone bases, Ann. of Math. Studies 69 (1972), 3–14.

[BeP1] C. Bessaga and A. PeÃlczy´nski, Spaces of continuous functions IV, Studia Math. 19 (1960), 53–62. [BeP2] C. Bessaga and A. PeÃlczy´nski, Selected topics in infinite-dimensional topology, Polish Sci. Publ. Warszawa, 1975. [Bol] B. Bollob´as, Linear analysis, an introductory course, Cambridge Math. Textbooks, 1990.

[BoFr] R. Bonic, J. Frampton, Smooth functions on Banach , J. Math. Mech. 15 (1966), 877–898.

[BoPr] J. Borwein and D. Preiss, A smooth variational principle with appli- cations to subdifferentiability and differentiability of convex functions, Trans. Amer. Math. Soc. 303 (1987), 517–527. [BGK] B. Bossard, G. Godefroy and R. Kaufman, Hurewicz theorem and renormings of Banach spaces, J. Funct. Anal. 140 (1996), 142–150.

[Bou] R. Bourgin, Geometric aspects of convex sets with the Radon-Nikodym property, Lecture Notes in Math. 93, Springer-Verlag, 1983. [CaGo] J.M.F. Castillo and M. Gonz´alez, Three space problems in Banach space theory, Lecture Notes in Math. 1667 Springer-Verlag, 1997. [Cep] M. Cepedello Boiso, Approximation of Lipschitz functions by ∆- convex functions in Banach spaces, Israel J. Math. 106 (1998), 269– 284. [Cho] G. Choquet, Lectures on analysis I, II, III, W.A. Benjamin, New York, 1969.

[CoEd] J. Collier and M. Edelsten, On strongly exposed points and Fr´echet differentiability, Israel J. Math. 17 (1974), 66–68. [Cor] H.H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1–15.

444 [CoLi] H.H. Corson and J. Lindenstrauss, On weakly compact subsets of Ba- nach spaces, Proc. Amer. Math. Soc. 17 (1966), 407–412. [Dan] J. Daneˇs, Equivalence of some geometric and related results of non- linear functional analysis, Comm. Math. Univ. Carolinae 26 (1985), 443–454. [DGK] L. Danzer, B. Gr¨unbaum and V. Klee, Helly’s theorem and its rel- atives, Proc. Sym. Pure Math. VII, Convexity, Amer. Math. Soc. (1963), 101–181. [Dav] K.R. Davidson, Nest , Research Notes in Math., Pitman 191, 1988. [DFJP] W.J. Davis, T. Figiel, W.B. Johnson and A. PeÃlczy´nski, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311–327. [DaLi] W.J. Davis and J. Lindenstrauss, On total non-norming subspaces, Proc. Amer. Math. Soc. 31 (1972), 109–111. [DFH1] R. Deville, V. Fonf and P. H´ajek, Analytic and Ck approximations of norms in separable Banach spaces, Studia Math. 120 (1996), 61–74. [DFH2] R. Deville, V. Fonf and P. H´ajek, Analytic and polyhedral approxima- tion of convex bodies in separable polyhedral Banach spaces, Israel J. Math. 105 (1998), 139–154. [DeGh] R. Deville and N. Ghoussoub, Variational theorems and applications, in Handbook of Banach spaces, Editors W.B. Johnson and J. Linden- strauss, to appear. [DeGo] R. Deville and G. Godefroy, Some applications of projectional resolu- tions of identity, Proc. London Math. Soc. 67 (1993), 183–199. [DGZ1] R. Deville, G. Godefroy and V. Zizler, Un principle variationnel util- isant des functions bosses, C.R. Acad. Sci. Paris 312 Serie I (1991), 281–286. [DGZ2] R. Deville, G. Godefroy and V. Zizler, A smooth variational principle with applications to Hamilton-Jacobi in infinite dimensions, J. Funct. Anal. 111 (1993), 197–212. [DGZ3] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs 64, 1993. [Die] J. Dieudonn´e, Foundations of modern analysis, Academic Press, 1969. [Dis1] J. Diestel, Geometry of Banach spaces. Selected topics, Lecture Notes in Math. 485, Springer-Verlag, 1975.

445 [Dis2] J. Diestel, Sequences and in Banach spaces, Graduate text in Math., Springer-Verlag 92, 1984.

[DiUh] J. Diestel and J. Uhl, Vector measures, Math. surveys 15, Amer. Math. Soc., 1977.

[Dug1] J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367.

[Dug2] J. Dugundji, Topology, Allyn and Bacon Inc., Boston, 1966.

[DuSc] N. Dunford, J.T. Schwartz, Linear operators, Part I, New York, In- terscience, 1958. [Dvo] A. Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Symp. Linear Spaces, Jerusalem, 1961, 123–160. [EdWh] G.A. Edgar and R.F. Wheeler, Topological properties of Banach spaces, Pacific J. Math. 115 (1984), 317–350.

[Enf] P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281–288. [ELP] P. Enflo, J. Lindenstrauss and G. Pisier, On the three space problem, Math. Scand. 36 (1975), 189–210.

[Eng] R. Engelking, Outline of , North Holland, 1968. [Fab] M. Fabian, Differentiability of convex functions and topology–Weak Asplund spaces, John Wiley and Sons, 1997.

[FaGo] M. Fabian and G. Godefroy, The dual of every admits a projectional resolution of identity, Studia Math. 91 (1988), 141–151. [FGZ] M. Fabian, G. Godefroy and V. Zizler, The structure of uniformly Gˆateaux smooth Banach spaces, Israel J. Math., to appear. [FHZ] M. Fabian, P. H´ajekand V. Zizler, Uniformly Eberlein compacta and uniformly Gˆateaux smooth norms, Serdica Math. J. 23 (1977), 1001– 1010.

[FMZ] M. Fabian, V. Montesinos and V. Zizler, Pointwise semicontinuous smooth norms, to appear.

[FWZ] M. Fabian, J.H.M. Whitfield and V. Zizler, Norms with locally Lips- chitzian , Israel J. Math. 44 (1983), 262–276. [FZZ] M. Fabian, L. Zaj´ıˇcekand V. Zizler, On residuality of the set of rotund norms on Banach spaces, Math. Ann. 258 (1981/2), 349–351.

446 [FaZ1] M. Fabian and V. Zizler, A note on bump functions that locally depend on finitely many coordinates, Bull. Austral. Math. Soc. 56 (1997), 447–451.

[FaZ2] M. Fabian and V. Zizler, An elementary approach to some problems in higher order smoothness in Banach spaces, Extracta Math 14 (1999), 295–327.

[Far] V. Farmaki, The structure of Eberlein, uniformly Eberlein and Tala- grand compact spaces in Σ(RΓ), Fund. Math. 128 (1987), 15–28.

[Fed] H. Federer, Geometric theory, Classics in Mathematics, Springer-Verlag, 1996. [FeGa] H. Fetter and B. Gamboa de Buen, The James forest, London Math- ematical Society Lecture Notes Series 236, Cambridge University Press, 1997.

[Fig] T. Figiel, On the moduli of convexity and smoothness, Studia Math. 66 (1976), 121–155. [FLM] T. Figiel, J. Lindenstrauss and V.D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math.˜139 (1977), 53–94. [Flo] K. Floret, Weakly compact sets, Lecture Notes in Math. 801, Springer-Verlag, 1980.

[FoKa] V.P. Fonf and M.I. Kadec, Subspaces of `1 with strictly convex norm, Math. Notes Ukrainsk. Academy of Sciences 33 (1983), 213–215. [FLP] V.P. Fonf, J. Lindenstrauss and R.R. Phelps, Infinite-dimensional convexity, in Handbook of Banach spaces, Editors W.B. Johnson and J. Lindenstrauss, to appear.

[Gil] J.R. Giles, Convex analysis with apllications in differentiation of con- vex functions, Research Notes in Math. 58, Pitman, 1982. [God1] G. Godefroy, Espace de Banach, existence et unicit´e de certains pr´eduaux, Ann. Inst. Fourier (Grenoble) 28 (1978), 87–105. [God2] G. Godefroy, Boundaries of convex sets and interpolation sets, Math. Ann. 277 (1987), 173–184.

[God3] G. Godefroy, Five lectures in Geometry of Banach spaces, Seminar on Functional Analysis, Universidad de Murcia, 1987. [God4] G. Godefroy, Renormings of Banach spaces, in Handbook of Banach spaces, Editors W.B. Johnson and J. Lindenstrauss, to appear.

447 [God5] G. Godefroy, Some applications of Simons inequality, Seminar on Functional Analysis, Universidad de Murcia, to appear.

[GoKa] G. Godefroy and N. Kalton, The ball topology and its applications, Cont. Math. 85 (1989), 195–238.

[GKL1] G. Godefroy, N. Kalton and G. Lancien, Subspaces of c0(N) and Lip- schitz , to appear.

[GKL2] G. Godefroy, N. Kalton and G. Lancien, Szlenk indices and uniform homeomorphisms, to appear.

[GTWZ] G. Godefroy, S. Troyanski, J. Whitfield and V. Zizler, Smoothness in weakly compactly generated Banach spaces, J. Funct. Anal. 52 (1983), 344–352. [Gow1] W.T. Gowers, Recent results in the theory of infinite dimensional Ba- nach spaces, Proc. of the International Congress of Math. Z¨urich, Switzerland, 1994.

[Gow2] Gowers, A solution to Banach’s hyperplane problem, Bull. London Math. Soc. 26 (1994), 523–530.

[Gow3] W.T. Gowers, A space not containing c0, `1 or a reflexive subspace, Trans. Amer. Math. Soc. 344 (1994), 407–420. [Gow4] W.T. Gowers, A solution to the Schroeder-Bernstein problem for Ba- nach spaces, Bull. London Math. Soc. 28 (1996), 297–304.

[GoMa] W.T. Gowers and B. Maurey, The unconditional basic sequence prob- lem, J. Amer. Math. Soc. 6 (1993), 851–874. [Gue] S. Guerre-Delabriere, Classical sequences in Banach spaces, Mono- graphs and textbooks in pure and , Marcel Dekker, Inc., 1992. [Gul1] S.P. Gul’ko, On properties of subsets of Σ-products, Dokl. Akad. Nauk SSSR 237 (1977), 505–507. [Gul2] S.P. Gul’ko, On the properties of some function spaces, Soviet Math. Dokl. 19 (1978), 1420–1424.

[GuGu] V. I. Gurarii and N. I. Gurarii, On bases in uniformly convex and uniformly smooth spaces, Izv. Akad. Nauk. SSSR Ser. Mat. 35 (1971), 210–215.

[GuKa] V.I. Gurarii and M.I Kadec, Minimal systems and quasicomplements, Soviet Math. Dokl. 3 (1962), 966–968.

448 [HHZ] P. Habala, P. H´ajekand V. Zizler, Introduction to Banach spaces I, II, Matfyzpress, Prague, 1996.

[HaSu] J. Hagler and F.E. Sullivan, Smoothness and weak star sequential compactness, Proc. Amer. Math. Soc. 78 (1980), 497–503.

[Haj1] P. H´ajek, Smooth norms that depend locally on finitely many coordi- nates, Proc. Amer. Math. Soc. 123 (1995), 3817–3821.

[Haj2] P. H´ajek, Dual renormings of Banach spaces, Comment. Math. Univ. Carolinae 37 (1996), 241–253.

[Han] R.W. Hansell, Descriptive sets and the topology of nonseparable Ba- nach spaces, preprint, 1989. [HWW] P. Harmand, D. Werner and W. Werner, M-ideals in Banach spaces and Banach algebras, Lecture Notes in Math. 1547, Springer-Verlag, 1993.

[Hay1] R. Haydon, A counterexample to several questions about scattered compact spaces, Bull. London Math. Soc. 22 (1990), 261–268.

[Hay2] R. Haydon, Smooth functions and partitions of unity on certain Ba- nach spaces, Quart. J. Math. 47 (1996), 455–468. [Hay3] R. Haydon, Trees in renorming theory, Proc. London Math. Soc. 78 (1999), 541–584. [HeMa] S. Heinrich and P. Mankiewicz, Applications of ultrapowers to the uni- form and Lipschitz classification of Banach spaces, Studia Math. 73 (1982), 225–251.

[HKO] C.W. Henson, A.S. Kechris and E.W. Odell, Analysis and logic, preprint, Universite de Mons-Hinaut, Mons, Belgium, 1997 [HSZ] P. Holick´y,M. Sm´ıdekandˇ L. Zaj´ıˇcek, Convex functions with non Borel set of Gˆateaux differentiability points, Comment. Math. Univ. Carolinae 39 (1998), 469–482. [Jam1] R.C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518–527.

[Jam2] R.C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101–119. [Jam3] R.C. James, A counterexample for a sup theorem in normed spaces, Israel J. Math. 9 (1971), 511–512.

449 [Jam4] R.C. James, Reflexivity and the sup of linear functionals, Israel J. Math. 13 (1972), 289–300.

[Jam5] R.C. James, Some self-dual properties of normed linear spaces, Symp. on inf. dim. topol., Ed: D. Anderson, Ann. of Math. Studies 69 (1972), p. 159–175.

[Jam6] R.C. James, Superreflexive Banach spaces, Canadian J. Math. 24 (1972), 896–904.

[Jam7] R.C. James, Superreflexive spaces with bases, Pacific J. Math. 41–42 (1972), 409–419. [Jam8] R.C. James, A separable somewhat reflexive Banach space with non- separable dual, Bull. Amer. Math. Soc. 80 (1974), 738–743. [Jan] G.J.O. Jameson, Topology and normed spaces, Chapman and Hall, London, 1974.

[JaRo] J.E. Jayne and C.A. Rogers, Borel selectors for upper semicontinuous set valued maps, Acta Math. 155 (1985), 41–79.

[JiMo] M. Jim´enezSevilla and J.P. Moreno, Renorming Banach spaces with the Mazur intersection property, J. Funct. Analysis 144 (1997), 486– 504. [JTZ] K. John, H. Toru´nczykand V. Zizler, Uniformly smooth partitions of unity on superreflexive Banach spaces, Studia Math. 70 (1981), 129–137.

[JoZ1] K. John and V. Zizler, Smoothness and its equivalents in weakly com- pactly generated Banach spaces, J. Funct. Anal. 15 (1974), 161–166. [JoZ2] K. John and V. Zizler, Topological linear spaces, Lecture Notes, Charles University, Prague, 1978 (in Czech).

[JoZ3] K. John and V. Zizler, A short proof of a version of Asplund averaging theorem, Proc. Amer. Math. Soc. 73 (1979), 277–278. [Joh1] W.B. Johnson, No infinite dimensional P space admits a Markushe- vich basis, Proc. Amer. Math. Soc. 28 (1970), 467–468.

[Joh2] W.B. Johnson, On quasicomplements, Pacific J. Math. 48 (1973), 113–118. [JoL1] W.B. Johnson and J. Lindenstrauss, Some remarks on weakly com- pactly generated Banach spaces, Israel J. Math. 17 (1974), 219–230.

450 [JoL2] W.B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, in Handbook of Banach spaces, Editors W.B. Johnson and J. Lindenstrauss, to appear. [JoL3] W.B. Johnson and J. Lindenstrauss, Editors, Handbook of Banach spaces, to appear. [JLS] W.B. Johnson, J. Lindenstrauss and G. Schechtman, Banach spaces determined by their uniform structures, Geometric and Functional Anal. 6 (1996), 430–470. [JoRo] W.B. Johnson and H.P. Rosenthal, On w∗-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77–92. [JRZ] W.B. Johnson, H.P. Rosenthal and M. Zippin, On bases, finite dimen- sional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488–506. [Jos] B. Josefson, Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Math. 13 (1975), 79– 89. [Kad1] M.I. Kadec, Unconditional convergence of series in uniformly convex spaces, Uspechi Mat. Nauk SSSR 11 (1956), 185–190.

[Kad2] M.I. Kadec, On linear dimension of the spaces Lp, Uspechi Mat. Nauk SSSR 13 (1958), 95–98. [Kad3] M.I. Kadec, Conditions on the differentiability of the norm of a Ba- nach space, Uspechi Mat. Nauk SSSR 20 (1965), 183–187. [Kad4] M.I. Kadec, Proof of topological equivalence of separable infinite- dimensional Banach spaces, Funct. Anal. Appl. 1 (1967), 53–62. [KaTo] M.I. Kadec and E.V. Tokarev, On the dual spaces with countably many extreme points of their balls, Izvestija Vysh. Ucz. Zavedenij 4 (1975), 98–99. [Kal1] O. Kalenda, Valdivia compacta and subspaces of C(K) spaces, Ex- tracta Math. 14 (1999), 355–371. [Kal2] O. Kalenda, An example concerning Valdivia compact spaces, Serdica Math. J., to appear. [Kec] A.S. Kechris, Classical descriptive , Graduate Texts in Mathematics, Springer-Verlag 156, 1994. [Kel] J.L. Kelley, General topology, D. van Nostrand, Princeton 1957.

451 [Kir] W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. [KoFo] A.N. Kolmogorov and S.V. Fomin, Introductory , Dover books on advanced math., New York, 1970. [Kot] G. K¨othe, Topological vector spaces I, Springer Verlag, 1969. [Kur] J. Kurzweil, On approximation in real Banach spaces, Studia Math. 14 (1954), 213–231. [Kwa] S. Kwapie´n, Isomorphic characterization of by orthogonal series with vector valued coefficients, Studia Math. 44 (1972), 583–595. [Lac1] H.E. Lacey, Separable quotients of Banach spaces, An. Acad. Brasil Ci. 44 (1972), 185–189. [Lac2] H.E. Lacey, The isometric theory of classical Banach spaces, Springer- Verlag, 1974. [Lan] G. Lancien, On uniformly convex and uniformly Kadec–Klee renorm- ings, Serdica Math. J. 21 (1995), 1–18. [LeWh] E.B. Leach and J. Whitfield, Differentiable functions and rough norms on Banach spaces, Proc. Amer. Math. Soc. 33 (1972), 120–126. [Lin1] J. Lindenstrauss, On nonlinear projections in Banach spaces, Michi- gan Math. J. 11 (1954), 263–287.

[Lin2] J. Lindenstrauss, On some subspaces of `1 and c0, Bull. Research Council Israel. 10 (1961), 74–80. [Lin3] J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach spaces, Michigan J. Math. 10 (1963), 241–252. [Lin4] J. Lindenstrauss, On operators which attain their norms, Israel J. Math. 3 (1963), 139–148. [Lin5] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964). [Lin6] J. Lindenstrauss, On reflexive spaces having the metric , Israel J. Math. 3 (1965), 199–204. [Lin7] J. Lindenstrauss, Notes on Klee’s paper “Polyhedral sections of convex bodies”, Israel J. Math. 4 (1966), 235–242. [Lin8] J. Lindenstrauss, On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 967–970.

452 [Lin9] J. Lindenstrauss, On a theorem of Murray and Mackey, An. Acad. Brasil. Ci. 39 (1967), 1–6.

[Lin0] J. Lindenstrauss, On subspaces of Banach spaces without quasicom- plements, Israel J. Math. 6 (1968), 36–38.

[LinA] J. Lindenstrauss, Weakly compact sets, their topological properties and spaces they generate, Ann. of Math. Studies 69 (1972).

[LinB] J. Lindenstrauss, Uniform embeddings, homeomorphisms and quotient maps between Banach spaces (A short survey), to appear.

[LiPh] J. Lindenstrauss and R.R. Phelps, properties of convex bodies in reflexive Banach spaces, Israel J. Math. 6 (1968), 39–48.

[LiR1] J. Lindenstrauss and H.P. Rosenthal, Automorphisms in c0, `1 and m, Israel J. Math. 7 (1969), 227–239.

[LiR2] J. Lindenstrauss and H.P. Rosenthal, The Lp spaces, Israel J. Math. 7 (1969), 325–349. [LiSt] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain `1 and whose duals are nonseparable, Studia Math. 54 (1975), 81–105.

[LiT1] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Lecture Notes in Math. 338, Springer-Verlag, 1973. [LiT2] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Sequence spaces, Springer-Verlag, 1977. [LiT3] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Function spaces, Springer-Verlag, 1979. [LjSo] L.A. Ljusternik and B.I. Sobolev, Elements of functional analysis, New Delhi, 1961. [LoPe] M. L´opez-Pellicer and V. Montesinos, Cantor sets in the dual of a separable Banach space. Applications, to appear.

[Mac] G. Mackey, Note on a theorem of Murray, Bull. Amer. Math. Soc. 52 (1946), 322–325.

[Mei1] A. Meir, On the moduli of smoothness of Lp spaces, Rendiconti di Math. 4 (1984), 215–219.

[Mei2] A. Meir, On the uniform convexity of Lp spaces, Illinois J. Math. 28 (1984), 420–424.

453 [Mer] S. Mercourakis, On weakly countably determined Banach spaces, Trans. Amer. Math. Soc 300 (1987), 307–327.

[MeNe] S. Mercourakis and S. Negrepontis, Banach spaces and topology II, Recent Progress in General Topology, Editors M. Huˇsekand J. van Mill, Elsevier Science Publishers B.V., 1992.

[Mes] V.Z. Meshkov, Smoothness properties in Banach spaces, Studia Math. 63 (1978), 111–123.

[MiRu] E. Michael and M.E. Rudin, A note on Eberlein compacts, Pacific J. Math. 72 (1972), 487–495. [Mil] V.D. Milman, Geometric theory of Banach spaces. Part I. Theory of basic and minimal systems, Uspechi Mat. Nauk SSSR 25 (1970), 113–173. [MiSc] V.D. Milman and G. Schechtman, Asymptotic theory of finite- dimensional normed spaces, Lecture Notes in Math. 1200, Springer- Verlag, 1986.

[MMOT] A. Molt´o,V. Montesinos, J. Orihuela and S. Troyanski, Weakly uni- formly rotund Banach spaces, Comment. Math. Univ. Carolinae 39 (1998), 749–753. [MOTV] A. Molt´o,J. Orihuela, S. Troyanski and M. Valdivia, On weakly locally uniformly rotund Banach spaces, J. Funct. Anal. 163 (1999), 252–271.

[Mon1] V. Montesinos, Solution to a problem of S. Rolewicz, Studia Math. 81 (1985), 65–69. [Mon2] V. Montesinos, Drop property equals reflexivity, Studia Math. 87 (1987), 93–100.

[MoTo] V. Montesinos and J.R. Torregrosa, Sobre espacios de Banach lo- calmente uniformemente rotundos, Revista de la Real Academia de Ciencias 86, (1992), 263–277. [Muj] J. Mujica, Separable quotients of Banach spaces, Revista Math. 10 (1997), 299–330. [Mup] G.J. Murphy, C∗-algebras and , Academic Press, 1996.

[Mur] F.J. Murray, Quasi complements and closed projections in reflexive Banach spaces, Trans. Amer. Math. Soc. 58 (1945), 77–95. [Nam1] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515–531.

454 [Nam2] I. Namioka, Fragmentability in Banach spaces; interaction of topolo- gies, Lecture Notes Paseky, 1999.

[NaPh] I. Namioka and R.R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1968), 735–750.

[Nat] I.P. Natanson, Theory of functions of real variable, Moscow, 1950. [Neg] S. Negrepontis, Banach spaces and topology, Handbook of set- theoretic topology, Editors K. Kunen and J.E. Vaughan, Elsevier Science Publishers B.V., 1984.

[NeTs] S. Negrepontis and A. Tsarpalias, A nonlinear version of the Amir- Lindenstrauss method, Israel J. Math. 38 (1981), 82–94. [NeSe] A.M. Nemirovski and S.M. Semenov, On polynomial approximation in function spaces, Mat. Sbornik 21 (1973), 255–277. [Nis] A. Nissenzweig, w∗-sequential convergence, Israel J. Math. 22 (1975), 266–272. [OdRo] E.W. Odell and H.P. Rosenthal, A double dual characterization of separable Banach spaces containing `1, Israel J. Math. 20 (1975), 375–384.

[OdS1] E.W. Odell and T. Schlumprecht, The distortion problem, Acta Math. 173 (1994), 259–281. [OdS2] E.W. Odell and T. Schlumprecht, Distortion and stabilized structure in Banach spaces, New geometric phenomenon for Banach and Hilbert spaces, Proc. of the Intern. Congress of Math. Z¨urich, Switzerland, 1994. [OdS3] E.W. Odell and T. Schlumprecht, On asymptotic properties of Banach spaces under renormings, J. Amer. Math. Soc. 11 (1998), 175–188.

[Oja1] E. Oja, A proof of the Simons inequality, to appear.

[Oja2] E. Oja, A short proof of a characterization of reflexivity of James, Proc. Amer. Math. Soc., to appear. [Ori] J. Orihuela, On weakly Lindel¨ofBanach spaces, Progress in Funct. Anal. K.D. Bierstedt, Editors J. Bonet, J. Horv´athand M. Maestre, Elsevier Science Publ. B.V., 1992.

[OSV] J. Orihuela, W. Schachermayer and M. Valdivia, Every Radon- Nikodym Corson compact is an Eberlein compact, Studia Math. 98 (1991), 157–174.

455 [OrVa] J. Orihuela and M. Valdivia, Projective generators and resolutions of identity in Banach spaces, Rev. Mat. Univ. Complutense, Madrid 2, Suppl. Issue (1990), 179–199.

[Oxt] J.C. Oxtoby, Measure and category, Graduate Texts in Math., Springer-Verlag, 1980.

[PWZ] J. Pechanec, J. Whitfield and V. Zizler, Norms locally dependent on finitely many coordinates, An. Acad. Brasil Ci. 53 (1981), 415–417.

[Pel1] A. PeÃlczy´nski, A property of multilinear operations, Studia Math. 16 (1957), 173–182. [Pel2] A. PeÃlczy´nski, On the of the spaces m and M, Bull. Acad. Polon. VI (1958), 695–696. [Pel3] A. PeÃlczy´nski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209–228.

[Pel4] A. PeÃlczy´nski, On Banach spaces containing L1(µ), Studia Math. 30 (1968), 231–246.

[PeBe] A. PeÃlczy´nskiand C. Bessaga, Some aspects of the present theory of Banach spaces, in: 1979 Edition of S. Banach: Travaux sur L’Analyse Fonctionnelle, Warszaw, 1979. [PeSz] A. PeÃlczy´nskiand W. Szlenk, An example of a nonshrinking basis, Rev. Roumaine Math. Pures et Appl. 10 (1965), 961–966.

[Phe1] R.R. Phelps, Lectures on Choquet’s theorem, Van Nostrand, Prince- ton, 1966. [Phe2] R.R. Phelps, Convex functions, monotone operators and differentia- bility, Lecture Notes in Math. 1364, Springer-Verlag, 1989. [Phi] R.S. Phillips, On linear transformations, Trans. Amer. Math. Soc. 48 (1940), 516–541.

[Pis1] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), 326–350. [Pis2] G. Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS AMS 60, 1985. [Pli1] A.N. Plichko, On projectional resolution of the identity operator and Markushevich bases, Soviet Mat. Dokl. 25 (1982), 386–389. [Pli2] A.N. Plichko, Projectional decompositions, Markushevich bases and equivalent norms, Mat. Zametki 34 (1983), 719–726.

456 [Pli3] A.N. Plichko, Bases and complements in nonseparable Banach spaces, Sibir. Mat. J. 25 (1984), 155–162.

[Pli4] A.N. Plichko, On bounded biorthogonal systems in some function spaces, Studia Math. 84 (1986), 25–37.

[Pol1] R. Pol, Concerning function spaces on separable compact spaces, Bull. de L’Acad. Polon. Serie des sciences math., astronom., et phys. XXV (1977), 993–997.

[Pol2] R. Pol, A C(X) which is weakly Lindel¨ofbut not weakly compactly generated, Studia Math. 64 (1979), 279–285. [Pol3] R. Pol, On a question of H.H. Corson and some related problems, Fund. Math. 109 (1980), 143–154. [Pol4] R. Pol, On pointwise and weak topology in function spaces, Warszaw University preprint 4/84 (1984).

[Pre1] D. Preiss, Almost differentiability of convex functions in Banach spaces and determination of measures by their values on balls, London Math. Soc. Lecture Notes Series 158, Geometry of Banach Spaces, Proceedings of Conference held in Strobl, Austria, Editors P.F.X. M¨ullerand W. Schachermayer, 1989. [Pre2] D. Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990), 312–345.

[PPN] D. Preiss, R.R. Phelps and I. Namioka, Smooth Banach spaces, weak Asplund spaces and monotone or usco mappings, Israel J. Math. 72 (1990), 257–279. [PrSi] D. Preiss and P. Simon, A weakly pseudocompact subspace of a Banach space is weakly compact, Comment. Math. Univ. Carolinae 15 (1974), 603–610.

[Pta] V. Pt´ak, On a theorem of W.F. Eberlein, Studia Math. 14 (1954), 276–287. [Rai1] J. Rainwater, Weak convergence of bounded sequences, Proc. Amer. Math. Soc. 14 (1963), 999.

[Rai2] J. Rainwater, Day’s norm on c0(Γ), Proc. Amer. Math. Soc. 22 (1969), 335–339.

[Raj1] M. Raja, Measurabilit´ede Borel et renormages dans les espaces de Banach, PhD thesis, Universit´ede Bourdeaux 1998.

457 [Raj2] M. Raja, Kadec norms and Borel sets in Banach spaces, Studia Math. 136 (1999), 1–16. [Raj3] M. Raja, On locally uniformly rotund norms, Mathematika, to appear. [Res] G. Restrepo, Differentiable norms in Banach spaces, Bull. Amer. Math. Soc. 70 (1964), 413–414. [Rez] E.A. Rezniczenko, Normality and collectionwise normality of function spaces, Vestnik. Mosk. Univ. Ser. Mat. (1990), 56–58. [Rod] G. Rod´e, Superkonvexitat und schwache Kompaktheit, Arch. Math. 36 (1981), 62–72. [RoJa] C.A. Rogers and J.E. Jayne, K-analytic sets, Academic Press, 1980. [Ros1] H.P. Rosenthal, On quasi complemented subspaces of Banach spaces with an appendix on compactness of operators from Lp(µ) to Lr(µ), J. Funct. Anal. 4 (1969), 176–214. [Ros2] H.P. Rosenthal, On injective Banach spaces and the spaces L∞(µ) for finite measures µ, Acta Math. 124 (1970), 205–247. [Ros3] H.P. Rosenthal, The heredity problem for weakly compactly generated Banach spaces, Comp. Math. 28 (1974), 83–111. [Ros4] H.P. Rosenthal, Pointwise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), 362–378. [Ros5] H.P. Rosenthal, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803–831. [Ros6] H.P. Rosenthal, Weak∗-Polish Banach spaces, J. Funct. Anal. 76 (1988), 267–316. [Roy] H.L. Royden, Real analysis, third edition, Macmillan, 1988. [Rud1] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39–42. [Rud2] W. Rudin, Real and , McGraw Hill, New York, 1966. [Rud3] W. Rudin; Functional analysis, McGraw Hill, 1973. [Sch] W. Schachermayer, Some more remarkable properties of the James tree space, Cont. Math. 85 (1987), 465–496. [Sem1] Z. Semadeni, Banach spaces non-isomorphic to their cartesian squares. II, Bull. Acad. Polon. Ser. Sci. Math. Astron. et Phys. 8 (1960), 81–84.

458 [Sem2] Z. Semadeni, Banach spaces of continuous functions, Polish Scientific Publishers, Warszawa, 1971. [Sha] B.E. Shapirovskii, Special types of embeddings in Tychonoff cubes. Subspaces of Σ-products and cardinal invariants, Collection, Topol- ogy VII, Colloq. Math. Soc. Janos Bolyai 23, North-Holland, 1980, 1055–1086. [ShSt] S. Shelah and J. Steprans, A Banach space on which there are few operators, Proc. Amer. Math. Soc. 104 (1988), 101–105. [Sim] S. Simons, A convergence theorem with boundary, Pacific J. Math. 40 (1972), 703–708. [Sin1] I. Singer, Bases in Banach spaces I, Springer-Verlag, 1970. [Sin2] I. Singer, On the problem of nonsmoothness of nonreflexive second conjugate spaces, Bull. Austral. Math. Soc. 12 (1975), 407–416. [Sin3] I. Singer, Bases in Banach spaces II, Springer-Verlag, 1981. [Smu] V.L. Smulian,ˇ Sur la d´erivabilit´ede la norme dans l’espace de Banach, C. R. Acad. Sci. URSS (Doklady) N. S. 27 (1940), 643–648. [Spa] E.H. Spanier, , McGraw-Hill, New York, 1966. [Ste1] C. Stegall, The Radon-Nikodym property in conjugate spaces, Trans. Amer. Math. Soc. 206 (1975), 213–223. [Ste2] C. Stegall, Optimization of functions on certain subsets of Banach spaces, Math. Ann. 236 (1978), 171–176. [Ste3] C. Stegall, A proof of the principle of local reflexivity, Proc. Amer. Math. Soc. 78 (1980), 154–156. [Ste4] C. Stegall, The Radon-Nikodym property in conjugate Banach spaces II, Trans. Amer. Math. Soc. 264 (1981), 507–519. [Szl] W. Szlenk, The nonexistence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53–61. [Tac] D.G. Tacon, The conjugate of a smooth Banach space, Bull. Austral. Math. Soc. 2 (1970), 415–425. [Tal1] M. Talagrand, Sur la structure borelienne des espaces analytiques, Bull. Sc. Math. 101 (1977), 415–422. [Tal2] M. Talagrand, Comparison des bor´eliensd’un espace de Banach pour topologies faibles et fortes, Indiana Math. J. 27 (1978), 1001–1004

459 [Tal3] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 119 (1979), 407–438.

[Tal4] M. Talagrand, Sur les espaces de Banach contenant `1(τ), Israel J. Math. 40 (1981), 324–330.

[Tal5] M. Talagrand, Pettis and measure theory, Memoirs Amer. Math. Soc. 307, 1984.

[Tal6] M. Talagrand, Renormages de quelques C(K), Israel J. Math. 54 (1986), 327–334.

[Tan] Wee-Kee Tang, Uniformly differentiable bump functions, Arch. Math. 68 (1997), 55–59. [Tod1] S. Todorcevic, Topics in topology, Lecture Notes in Math. 1652, Springer-Verlag, 1997. [Tod2] S. Todorcevic, Compact subsets of the first Baire class, J. Amer. Math. Soc., to appear. [T-J] N. Tomczak-Jaegermann, Banach-Mazur distances and finite- dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics 38, 1989.

[Tor1] H. Torunczyk, Smooth partitions of unity on some nonseparable Ba- nach spaces, Studia Math. 46 (1973), 43–51. [Tor2] H. Torunczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247–262. [Tro1] S. Troyanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37 (1971), 173– 180.

[Tro2] S. Troyanski, On equivalent norms and minimal systems in nonsepa- rable Banach spaces, Studia Math. 43 (1972), 125–138.

[Tro3] S. Troyanski, On nonseparable Banach spaces with a symmetric basis, Studia Math. 53 (1975), 253–263. [Tro4] S. Troyanski, On uniform rotundity and smoothness in every direction in nonseparable Banach spaces with an unconditional basis, Compt. Rend. Acad. Bulgare Sci. 30 (1977), 1243–1246.

[Tro5] S. Troyanski, Locally uniformly convex norms, Compt. Rend. Acad. Bulg. Sci. 32 (1979), 1167–1169.

460 [Tro6] S. Troyanski, Construction of equivalent norms for certain local char- acteristics with rotundity and smoothness by means of martingales, Proc. 14. Spring conference of the Union of Bulgarian mathemati- cians, 129–156, 1985.

[Tro7] S. Troyanski, Gˆateaux differentiable norms in Lp, Math. Ann. 287 (1990), 221–227.

[Tsi] B.S. Tsirelson, Not every Banach space contains an embedding of `p or c0, Funct. Anal. Appl. 8 (1974), 138–141. [Val1] M. Valdivia, On a class of Banach spaces, Studia Math. 60 (1977), 11–30. [Val2] M. Valdivia, Some more results on weak compactness, J. Funct. Anal. 24 (1977), 1–10. [Val3] M. Valdivia, Projective resolutions of identity in C(K) spaces, Arch. Math. 54 (1990), 493–498.

[Val4] M. Valdivia, Simultaneous resolutions of the identity operator in normed spaces, Collect. Math. 42 (1991), 265–284. [Val5] M. Valdivia, On basic sequences in Banach spaces, Note di Matemat- ica 12 (1992), 245–258. [Vae] F.A. Valentine, Convex sets, McGraw Hill, New York, 1964.

[Van1] J. Vanderwerff, Fr´echetdifferentiable norms on spaces of countable dimension, Arch. Math. 58 (1992), 471–476. [Van2] J. Vanderwerff, Smooth approximations in Banach spaces, Proc. Amer. Math. Soc. 115 (1992), 113–120. [Van3] J. Vanderwerff, Second-order Gˆateaux differentiability and an isomor- phic characterization of Hilbert spaces, Quart. J. Math. Oxford 44 (1993), 249–255.

[Van4] J. Vanderwerff, Extensions of Markushevich bases, Math. Z. 219 (1995), 21–30. [VWZ] J. Vanderwerff, J.H.M. Whitfield and V. Zizler, Markushevich bases and Corson compacta in duality, Canad. J. Math. 46 (1994), 200–211. [Vas] L. Vaˇs´ak, On a generalization of weakly compactly generated Banach spaces, Studia Math. 70 (1981), 11–19. [Wer] D. Werner, A proof of the Markov-Kakutani fixed point theorem via the Hahn-Banach theorem, Extracta Math. 8 (1993), 37–38.

461 [WhZy] R.L. Wheeden and A. Zygmund, Measure and integral. An introduc- tion to real analysis, Marcel Dekker, 1977.

[WhZi] J.H.M. Whitfield and V. Zizler, Extremal structure of convex sets in spaces not containing c0, Math. Z. 197 (1988), 219–221. [Wil] S. Willard, General topology, Addison-Wesley, 1968. [Woj] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics 25, 1991.

[Yos1] D. Yost, Asplund spaces for beginners, Acta Univ. Carolinae 34 (1993), 159–177. [Yos2] D. Yost, The Johnson-Lindenstrauss space, Extracta Math. 12 (1997), 185–192. [Zah] Z. Zahorski, Sur l’ensemble des points de non-derivabilite d’une fonc- tion continue, Bull. Soc. Math. France 74 (1946), 147–178.

[Zip] M. Zippin, The separable extention problem, Israel J. Math. 26 (1977), 372–387. [Ziz1] V. Zizler, Smooth extension of norms and complementability of sub- spaces, Arch. Math. 53 (1989), 585–589.

[Ziz2] V. Zizler, Nonseparable Banach spaces, in Handbook of Banach spaces, Editors W.B. Johnson and J. Lindenstrauss, to appear.

462 Index

annihilator yol and Yol, 40, 55, 58, bump. See function 93, 148, 149 (Bx, 1\·11),2,14 (Bx, w), 73, 75, 414, 415 Banach , 62 (Bx, w*), 71-73, 319, 365, 395, basis 409-412 algebraic, 34, 191 Auerbach, 139, 164 cardinality card(A), 23, 403 bimonotone, 191 closure ~.~-M , M ,M, 64 block, 172 compact boundedly complete, 166-168, 182, Corson, 409-412, 427, 428 192 countable, 345, 399, 420 constant, 163, 169, 182 Eberlein, 365, 367, 388, 390-393, equivalent, 169-171 409, 417, 419, 420 Hamel (see basis: algebraic) scattered, 398-401, 419, 420 Markushevich, 188-190, 382, uniform Eberlein, 394, 395, 418, 410-412 )~'It 419 \Ja.\d.(vio.l\i2.~ shrinking, 188, 197, 369, 370 complement, 137, 138, 147-149 weakly compact, 364:1>10) algebraic, 137, 147 weakly LindelOf, 411 orthogonal Fol, 17, 18, 138 monotone, 163, 191, 192 quasieomplement, 377 normalized, 163 constant orthonormal, 18, 20, 222 basis, 163, 169 Schauder, 161, 163, 165, 303, 307 unconditional basis, 182 seminormalized, 303 conv(M), 2,22, 85, 92, 104 shrinking, 166-168, 184, 192, 260 convergence summing, 165, 181 in norm -+, 65 uncondition al, 180, 181, 196, 197 pointwise, 66, 68, 86