Riesz-Fredh¨olmTheory T. Muthukumar
[email protected] Contents 1 Introduction1 2 Integral Operators1 3 Compact Operators7 4 Fredh¨olmAlternative 14 Appendices 18 A Ascoli-Arzel´aResult 18 B Normed Spaces and Bounded Operators 20 1 Introduction The aim of this lecture note is to show the existence and uniqueness of Fredh¨olmintegral operators of second kind, i.e., show the existence of a solution x of x − T x = y for any given y, in appropriate function spaces. 2 Integral Operators Let E be a compact subset of Rn and C(E) denote the space of complex valued continuous functions on E endowed with the uniform norm kfk1 = supx2E jf(x)j. Recall that C(E) is a Banach space with the uniform norm. 1 Definition 2.1. Any continuous function K : E × E ! C is called a con- tinuous kernel. Since K is continuous on a compact set, K is both bounded, i.e., there is a κ such that jK(x; y)j ≤ κ 8x; y 2 E and uniformly continuous. In particular, for each " > 0 there is a δ > 0 such that jK(x1; y) − K(x2; y)j ≤ " 8y 2 E whenever jx1 − x2j < δ. Example 2.1 (Fredh¨olmintegral operator). For any f 2 C(E), we define Z T (f)(x) = K(x; y)f(y) dy E where x 2 E and K : E × E ! R is a continuous function. For each " > 0, Z jT f(x1) − T f(x2)j ≤ jK(x1; y) − K(x2; y)jjf(y)j dy ≤ "kfk1jEj E whenever jx1 − x2j < δ.