A Synoptic Review of the Family Dendronotidae (Mollusca: Nudibranchia): a Multilevel Organismal Diversity Approach

Total Page:16

File Type:pdf, Size:1020Kb

A Synoptic Review of the Family Dendronotidae (Mollusca: Nudibranchia): a Multilevel Organismal Diversity Approach ¾ ¿ÀÁ ( ) - CTOZ A synoptic review of the family Dendronotidae (Mollusca: Nudibranchia): a multilevel organismal diversity approach Tatiana Korshunova Koltzov Institute of Developmental Biology, Vavilova str. 26, 119334 Moscow, Russia Torkild Bakken NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway Viktor V. Grøtan Ørland Froskemannsklubb (Ørland Diveclub), Postboks 197, 7129 Brekstad, Norway Kjetil B. Johnson Ørland Froskemannsklubb (Ørland Diveclub), Postboks 197, 7129 Brekstad, Norway Kennet Lundin Gothenburg Natural History Museum, Box 7283, 40235, Gothenburg, Sweden Gothenburg Global Biodiversity Centre, Box 461, 40530, Gothenburg, Sweden Alexander Martynov Zoological Museum of the Moscow State University, Bolshaya Nikitskaya Str. 6 125009 Moscow, Russia [email protected] Abstract A synoptic review of the family Dendronotidae is presented based on morphological and molecular data. Three genera are recognized: Dendronotus, Pseudobornella, and Cabangus gen. nov. Two new Dendronotus species are described, D. yrjargul sp. nov. and D. nordenskioeldi sp. nov., which reveal º»ne-scale di¼ferences. Dendronotus yrjargul sp. nov. from mid-Norway and the Arctic regions is a sister species to the North Paciº»c D. kalikal. These two species are showing clear morphological and ontogenetic di¼ferences but are close in genetic distance. In contrast, Dendronotus nordenskioeldi sp. nov. from the Laptev Sea is externally similar to the white morphs of D. lacteus or D. frondosus, but according to the molecular data and radular © ., | : ./- This is an open access article distributed under the terms of the 4.0 license. $ # $# !"%% ./- | . morphology it is distinct from any of its congenerics. Comparison of molecular and morphological data of D. niveus from the type locality (White Sea) and material from other localities with those from the American North Atlantic coast (type locality of D. elegans) reveals their substantial similarity. Therefore, D. niveus is considered a junior synonym of D. elegans. The present review of the family Dendronotidae contributes to a general discussion on the species concepts and on a recent proposal of multilevel organismal diversity. Keywords Cabangus – Dendronotus – Pseudobornella – molecular phylogeny – species problem – taxonomy Zoobank: http://urn:lsid:zoobank.org:pub:5E6F2529-E533-4A89-9EE4-5677865C5468 Introduction criterion of reproductive isolation (Mayr, 1969, 1982) is not robust as has been shown The evolutionary process is traditionally con- on numerous occasions (e.g., McDonald and sidered to be continuous (Darwin, 1859) and Koehn, 1988; Mallet, 2005; Kijewski et al., 2006; this concept prevails despite many years of Harrison & Larson, 2014; Jančúchová-Lásková controversial discussions (Eldredge & Gould, et al., 2015; Crossman et al., 2016; Fraïsse et al., 1972; Mayr, 1982; Mallet et al., 2009; Coates et 2016; Potkamp & Fransen, 2019). al., 2018). However, the species itself is sup- With the dawn of the molecular era in posed to be an unavoidably separate unit taxonomy, the problem of hidden diversity according to the nomenclature of current tax- emerged when molecularly divergent groups onomic practice, which in zoology is governed of specimens were discovered within mor- by the ICZN (1999). This is one of the greatest phologically highly similar species as deº»ned contradictions between the evolutionary pro- in the traditional way (Bickford, 2007; cesses and taxonomic classiº»cation, which Korshunova et al., 2017a, 2019a). The discord- has not been solved satisfactorily (Zachos, ant development of morphological structures 2018). In many cases it has been shown that and genetic apparatus per se is also a sign of it is very di¼º»cult to assign a particular spec- evolutionary processes in progress. However, imen to a particular species. Until now there it is still possible to separate such cases by are no unequivocal and universal criteria for using molecular data and if there are exten- species delimitations when the underlying sive genetic di¼ferences, we may assume that evolutionary processes and phylogenies are evolutionary divergence has occurred among taken into consideration (e.g., Zachos et al., such species. Relatively rarerely noticed and 2013; González et al., 2018; Stanton et al., 2019; much more interesting are those cases when Platania et al., 2020), and even for the exist- despite relatively low genetic di¼ferences ence of species at all (Ereshefsky, 1998; Willis, some species exhibit distinct morphological 2017; Reydon & Kunz, 2019). At the conceptual features (Mayer & Helversen, 2001; Wiemers level, more than 26 di¼ferent species concepts & Fiedler, 2007). The current practice of have been suggested (Zachos, 2016) but at a deº»ning potential species by using molecu- practical level even the most widely acclaimed lar markers depending on various distances $ # $# !"%% Ø À Ø Á ÚÛ ÚØ | ./- and factors (e.g., Ratnasingham & Hebert, ontogenetic data in the framework of mul- 2013) referred to as “operational taxonomic tilevel organismal diversity (Korshunova et units” (s) does not consistently corre- al., 2019a). We therefore develop a general spond to taxa at the species level. There is taxonomic framework for phylogeny and an unfortunate discordance in how the tax- taxonomy of the family Dendronotidae, onomic practice currently works because it which for the º»rst time presents a synoptic is based on a classiº»cation system consist- review of all currently known species of the ing of rigid names that does not fully reÐÑect genus Dendronotus. Its also conº»rms the information of the underlying evolutionary validity of the genus Pseudobornella Baba, processes. A solution for the species prob- 1932 and supports the proposal of the new lem using the separation between metap- genus Cabangus (see details in Synopsis). opulation lineages potentially without any distinguishing characters (de Queiroz, 2006, 2007) contradicts available biological evi- Materials and methods dence, e.g., that even clones show minor but detectable morphological and epigenetic Collecting data di¼ferences. Therefore, to avoid an artiº»cial Specimens were collected by Viktor V. contrast between “cryptic” and “non-cryp- Grøtan and Kjetil B. Johnson in the vicin- tic” species in a classiº»cation and to encom- ities of Trondheim, Norway (63°41’8.66”N pass various available data, the concept 9°39’58.79” E), and also in the Arctic waters of the multilevel organismal diversity was during vessel expeditions, and for compara- proposed (Korshunova et al., 2019a). In the tive purposes by scuba diving in NE Atlantic, present study we apply this approach to the NW and NE Paciº»c. Specimens studied are nudibranch family Dendronotidae. deposited in the collections at Zoological Currently there is an accelerating dis- Museum, Moscow State University (×ØØ), covery of º»ne-scale species-level diver- and the Norwegian University of Science sity within the genus Dendronotus. In the and Technology, NTNU University Museum last decade, 10 of 12 new Dendronotus spp. (-Ø) (Bakken et al., 2020). were described by our research group using both morphological and molecular data Morphological analysis (Martynov 2015a, 2020a; Ekimova et al. 2015; External and internal morphology was stud- Lundin et al., 2017; Korshunova et al. 2016a, ied under a stereomicroscope using a Nikon b, 2017b, 2019b). In this study, we present a D-810 digital camera and scanning electron modern taxonomic synopsis of the family microscopes. The buccal mass of each spec- Dendronotidae, which together with molec- imen was extracted and processed in 10% ular phylogenetic analyses demonstrates sodium hypochlorite solution to extract the both lower and higher degrees of evolution- radula and the jaws. The jaws of each spe- ary separations as a reliable example of mul- cies were analysed under a stereomicro- tilevel organismal diversity. For instance, scope and then photographed. The jaws and a newly discovered species from Norway radulae were coated, then examined and (Dendronotus yrjargul sp. nov.) already has photographed using a scanning electron developed deº»nite signs of morphological microscope (CamScan, JSM). The reproduc- and molecular divergence. This highlights tive systems were also examined using a the importance of considering broadly stereomicroscope. $ # $# !"%% ./- | . Molecular analysis (Ronquist et al., 2012). Four Markov chains Eleven specimens were sequenced for the were sampled at intervals of 500 generations. mitochondrial genes cytochrome c oxi- Analysis was started with random starting dase subunit I (Û ) and 16S rRNA, and the trees and 5 × 106 generations. Maximum nuclear genes 28S rRNA (C1-C2 domain). Likelihood-based phylogeny inference was Small pieces of tissue were used for performed using RAxML 7.2.8 (Stamatakis extraction with Diatom™ Prep 100 kit by et al., 2008)) with 1000 bootstrap replicates. Isogene Lab, according to the producer’s pro- Final phylogenetic tree images were rendered tocols. Standard ÚÛ ampliº»cation options, in FigTree 1.4.2. Nodes in the phylogenetic and sequence obtainment were applied (for trees with Bayesian posterior values > 0.96% details, see Korshunova et al., 2016a, 2017a). and bootstrap values >90% were considered Û sequences were translated into amino ‘highly’ supported. Nodes with 0.90–0.95% acids to verify coding regions and avoid and 80–89% accordingly were considered errors. All new sequences were deposited in ‘moderately’
Recommended publications
  • [Oceanography and Marine Biology - an Annual Review] R. N
    OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 7044_C000.fm Page ii Tuesday, April 25, 2006 1:51 PM OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 Editors R.N. Gibson Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] R.J.A. Atkinson University Marine Biology Station Millport University of London Isle of Cumbrae, Scotland [email protected] J.D.M. Gordon Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] Founded by Harold Barnes Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by R.N. Gibson, R.J.A. Atkinson and J.D.M. Gordon CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-7044-2 (Hardcover) International Standard Book Number-13: 978-0-8493-7044-1 (Hardcover) International Standard Serial Number: 0078-3218 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the valid- ity of all materials or for the consequences of their use.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • PL11 Inside Cover Page.Indd
    THE CITY OF SAN DIEGO Annual Receiving Waters Monitoring Report for the Point Loma Ocean Outfall 2011 City of San Diego Ocean Monitoring Program Public Utilities Department Environmental Monitoring and Technical Services Division THE CITY OF SAN DIEGO June 29,2012 Mr. David Gibson, Executive Officer San Diego Regional Water Quality Control Board ·9174 Sky Park Court, Suite 100 San Diego, CA 92123 Attention: POTW Compliance Unit Dear Sir: Enclosed on CD is the 2011 Annual Receiving Waters Monitoring Report for the Point Lorna Ocean Outfall as required per NPDES Permit No. CA0107409, Order No. R9-2009-0001. This report contains data summaries, analyses and interpretations of the various portions ofthe ocean monitoring program, including oceanographic conditions, water quality, sediment characteristics, macrobenthic communities, demersal fishes and megabenthic invertebrates, and bioaccumulation of contaminants in fish tissues. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Sincerely, ~>() d0~ Steve Meyer Deputy Public Utilities Director TDS/akl Enclosure: CD containing PDF file of this report cc: U. S. Environmental Protection Agency, Region 9 Public Utilities Department DIVERSITY 9192 Topaz Way.
    [Show full text]
  • New Records of Two Dendronotid Nudibranchs from Korea
    Anim. Syst. Evol. Divers. Vol. 36, No. 4: 416-419, October 2020 https://doi.org/10.5635/ASED.2020.36.4.042 Short communication New Records of Two Dendronotid Nudibranchs from Korea Jongrak Lee1, Hyun Jong Kil2, Sa Heung Kim1,* 1Institute of the Sea Life Diversity (IN THE SEA), Seogwipo 63573, Korea 2National Institute of Biological Resources, Incheon 22689, Korea ABSTRACT Two cold water species of dendronotid nudibranchs are described for the first time in Korea: Dendronotus frondosus (Ascanius, 1774) and Dendronotus robilliardi Korshunova, Sanamyan, Zimina, Fletcher & Martynov, 2016. Dendronotus frondosus is characterized by the color pattern of deep dark-brown with white specks and mottles on the dorsum. Dendronotus robilliardi is distinguished by the body of translucent white with milky stripes and orange- brown markings in papillae, and D. robilliardi from Korean water is commonly examined with white dots on the anterior dorsum. Images of external morphology and brief re-descriptions of two species were provided. Further, we confirmed the opinion of Korshunova et al. that the KoreanD. albus image by Koh would be D. robilliardi. Keywords: ‌Nudibranchia, Dendronotidae, taxonomy, Dendronotus frondosus, Dendronotus robilliardi, Korea INTRODUCTION tographs were taken underwater and in an acrylic tray using a TG-5 camera (Olympus, Tokyo, Japan) equipped with a ring The family Dendronotidae Allman, 1845 is characterized by light. Samples were frozen in dry ice and then fixed in 10% the presence of an elongated body with numerous branching neutral-buffered formalin (Sigma, St. Louis, MO, USA) or appendages on the dorsal sides and a diverse color pattern. 95% ethanol (Samchun, Seoul, Korea).
    [Show full text]
  • Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
    Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims.
    [Show full text]
  • Nudibranchia: Flabellinidae) from the Red and Arabian Seas
    Ruthenica, 2020, vol. 30, No. 4: 183-194. © Ruthenica, 2020 Published online October 1, 2020. http: ruthenica.net Molecular data and updated morphological description of Flabellina rubrolineata (Nudibranchia: Flabellinidae) from the Red and Arabian seas Irina A. EKIMOVA1,5, Tatiana I. ANTOKHINA2, Dimitry M. SCHEPETOV1,3,4 1Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, RUSSIA; 2A.N. Severtsov Institute of Ecology and Evolution, Leninskiy prosp. 33, 119071 Moscow, RUSSIA; 3N.K. Koltzov Institute of Developmental Biology RAS, Vavilov str. 26, 119334 Moscow, RUSSIA; 4Moscow Power Engineering Institute (MPEI, National Research University), 111250 Krasnokazarmennaya 14, Moscow, RUSSIA. 5Corresponding author; E-mail: [email protected] ABSTRACT. Flabellina rubrolineata was believed to have a wide distribution range, being reported from the Mediterranean Sea (non-native), the Red Sea, the Indian Ocean and adjacent seas, and the Indo-West Pacific and from Australia to Hawaii. In the present paper, we provide a redescription of Flabellina rubrolineata, based on specimens collected near the type locality of this species in the Red Sea. The morphology of this species was studied using anatomical dissections and scanning electron microscopy. To place this species in the phylogenetic framework and test the identity of other specimens of F. rubrolineata from the Indo-West Pacific we sequenced COI, H3, 16S and 28S gene fragments and obtained phylogenetic trees based on Bayesian and Maximum likelihood inferences. Our morphological and molecular results show a clear separation of F. rubrolineata from the Red Sea from its relatives in the Indo-West Pacific. We suggest that F. rubrolineata is restricted to only the Red Sea, the Arabian Sea and the Mediterranean Sea and to West Indian Ocean, while specimens from other regions belong to a complex of pseudocryptic species.
    [Show full text]
  • Nudibranch Molluscs of the Genus Dendronotus Alder Et Hancock, 1845 (Heterobranchia: Dendronotina) from Northwestern Sea of Japan with Description of a New Species
    Invertebrate Zoology, 2016, 13(1): 15–42 © INVERTEBRATE ZOOLOGY, 2016 Nudibranch molluscs of the genus Dendronotus Alder et Hancock, 1845 (Heterobranchia: Dendronotina) from Northwestern Sea of Japan with description of a new species I.A. Ekimova1,2, D.M. Schepetov3,4,5, O.V. Chichvarkhina6, A.Yu. Chichvarkhin2,6 1 Biological Faculty, Moscow State University, Leninskiye Gory 1-12, 119234 Moscow, Russia. E-mail: [email protected] 2 Far Eastern Federal University, Sukhanova Str. 8, 690950 Vladivostok, Russia. 3 Koltzov Institute of Developmental Biology RAS, Vavilov Str. 26, 119334 Moscow, Russia. 4 Russian Federal Research Institute of Fisheries and Oceanography, V. Krasnoselskaya Str. 17, 107140 Moscow, Russia. 5 National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia. 6 A.V. Zhirmunsky Institute of Marine Biology, Russian Academy of Sciences, Palchevskogo Str. 17, 690041 Vladivostok, Russia. ABSTRACT: Species of the genus Dendronotus are among the most common nudibranchs in the northern Hemisphere. However, their distribution and composition in the North-west Pacific remain poorly explored. In the present study, we observed Dendronotus composi- tion in northwestern part of the Sea of Japan, using an integrative approach, included morphological and molecular phylogenetic analyses and molecular species delimitation methods. These multiple methods revealed high cryptic diversity within the genus. Two specimens of Dendronotus frondosus were found in Amursky Bay and therefore its amphiboreal status was confirmed. In three locations of the Sea of Japan we found specimens, which are very close externally to D. frondosus, but show significant distance according to molecular analysis. We show that these specimens belong to a new species Dendronotus dudkai sp.n.
    [Show full text]
  • The Extraordinary Genus Myja Is Not a Tergipedid, but Related to the Facelinidae S
    A peer-reviewed open-access journal ZooKeys 818: 89–116 (2019)The extraordinary genusMyja is not a tergipedid, but related to... 89 doi: 10.3897/zookeys.818.30477 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The extraordinary genus Myja is not a tergipedid, but related to the Facelinidae s. str. with the addition of two new species from Japan (Mollusca, Nudibranchia) Alexander Martynov1, Rahul Mehrotra2,3, Suchana Chavanich2,4, Rie Nakano5, Sho Kashio6, Kennet Lundin7,8, Bernard Picton9,10, Tatiana Korshunova1,11 1 Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia 2 Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 3 New Heaven Reef Conservation Program, 48 Moo 3, Koh Tao, Suratthani 84360, Thailand 4 Center for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn Univer- sity, Bangkok 10330, Thailand5 Kuroshio Biological Research Foundation, 560-I, Nishidomari, Otsuki, Hata- Gun, Kochi, 788-0333, Japan 6 Natural History Museum, Kishiwada City, 6-5 Sakaimachi, Kishiwada, Osaka Prefecture 596-0072, Japan 7 Gothenburg Natural History Museum, Box 7283, S-40235, Gothenburg, Sweden 8 Gothenburg Global Biodiversity Centre, Box 461, S-40530, Gothenburg, Sweden 9 National Mu- seums Northern Ireland, Holywood, Northern Ireland, UK 10 Queen’s University, Belfast, Northern Ireland, UK 11 Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334 Moscow, Russia Corresponding author: Alexander Martynov ([email protected]) Academic editor: Nathalie Yonow | Received 10 October 2018 | Accepted 3 January 2019 | Published 23 January 2019 http://zoobank.org/85650B90-B4DD-4FE0-8C16-FD34BA805C07 Citation: Martynov A, Mehrotra R, Chavanich S, Nakano R, Kashio S, Lundin K, Picton B, Korshunova T (2019) The extraordinary genus Myja is not a tergipedid, but related to the Facelinidae s.
    [Show full text]
  • Prey Preference Follows Phylogeny: Evolutionary Dietary Patterns Within the Marine Gastropod Group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia) Jessica A
    Goodheart et al. BMC Evolutionary Biology (2017) 17:221 DOI 10.1186/s12862-017-1066-0 RESEARCHARTICLE Open Access Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia) Jessica A. Goodheart1,2* , Adam L. Bazinet1,3, Ángel Valdés4, Allen G. Collins2 and Michael P. Cummings1 Abstract Background: The impact of predator-prey interactions on the evolution of many marine invertebrates is poorly understood. Since barriers to genetic exchange are less obvious in the marine realm than in terrestrial or freshwater systems, non-allopatric divergence may play a fundamental role in the generation of biodiversity. In this context, shifts between major prey types could constitute important factors explaining the biodiversity of marine taxa, particularly in groups with highly specialized diets. However, the scarcity of marine specialized consumers for which reliable phylogenies exist hampers attempts to test the role of trophic specialization in evolution. In this study, RNA- Seq data is used to produce a phylogeny of Cladobranchia, a group of marine invertebrates that feed on a diverse array of prey taxa but mostly specialize on cnidarians. The broad range of prey type preferences allegedly present in two major groups within Cladobranchia suggest that prey type shifts are relatively common over evolutionary timescales. Results: In the present study, we generated a well-supported phylogeny of the major lineages within Cladobranchia using RNA-Seq data, and used ancestral state reconstruction analyses to better understand the evolution of prey preference. These analyses answered several fundamental questions regarding the evolutionary relationships within Cladobranchia, including support for a clade of species from Arminidae as sister to Tritoniidae (which both preferentially prey on Octocorallia).
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • 1-00 Agenda and Supporting Materials PWSRCAC Board Of
    1-0 Prince William Sound Regional Citizens’ Advisory Council Board of Directors Meeting September 17-18, 2020 Teleconference: 1-888-788-0099 Meeting ID:977 6459 5779 Web streaming for meeting audio and presentations https://pwsrcac.zoom.us/j/97764595779 Final Agenda Thursday, September 17, 2020 8:30 A Call to Order & Roll Call & Introduction of Zoom • Welcome – President Robert Archibald • Introductions/Director reports on activities since the last meeting 8:45 B 1-0 Approve Agenda 8:50 C 1-1 Approve Minutes of March 30, 2020 1-2 Approve Minutes of May 7-8, 2020 1-3 Approve Minutes of May 21 & 27, 2020 8:55 D Public Comment Period, limit five minutes per person 9:10 E Internal Opening Comments (Please limit to general information not contained in Agenda) • Technical Committee Updates (OSPR, SAC, POVTS, TOEM & IEC) • PWSRCAC Board Sub Committee Updates (Legislative, Finance & Governance) 9:40 BREAK 9:50 F External Opening Comments (Please limit to general information not contained in Agenda) • PWSRCAC Ex-Officio Members • Trans Alaska Pipeline System Shippers, Owner Companies, and Pilots 10:50 BREAK 11:00 G Alyeska / SERVS Activity Report 12:00 BREAK 1:00 H Consent Agenda 3-1 Rescue Tugboat Best Available Technology Assessment Contract Approval Delegation 3-2 Marine Winter Bird Survey Contract Approval 1:1 0 I 4 -4 Report Acceptance: 2019 Drill Monitoring Annual Report – Roy Robertson 1:30 J Presentation by Hilcorp/Harvest Alaska on its Spill Response Organization 2:30 BREAK 2:40 K 4-3 Report Acceptance: Metagenetic Analysis of PWS Plankton
    [Show full text]
  • 655 Appendix G
    APPENDIX G: GLOSSARY Appendix G-1. Demersal Fish Species Alphabetized by Species Name. ....................................... G1-1 Appendix G-2. Demersal Fish Species Alphabetized by Common Name.. .................................... G2-1 Appendix G-3. Invertebrate Species Alphabetized by Species Name.. .......................................... G3-1 Appendix G-4. Invertebrate Species Alphabetized by Common Name.. ........................................ G4-1 G-1 Appendix G-1. Demersal Fish Species Alphabetized by Species Name. Demersal fish species collected at depths of 2-484 m on the southern California shelf and upper slope, July-October 2008. Species Common Name Agonopsis sterletus southern spearnose poacher Anchoa compressa deepbody anchovy Anchoa delicatissima slough anchovy Anoplopoma fimbria sablefish Argyropelecus affinis slender hatchetfish Argyropelecus lychnus silver hachetfish Argyropelecus sladeni lowcrest hatchetfish Artedius notospilotus bonyhead sculpin Bathyagonus pentacanthus bigeye poacher Bathyraja interrupta sandpaper skate Careproctus melanurus blacktail snailfish Ceratoscopelus townsendi dogtooth lampfish Cheilotrema saturnum black croaker Chilara taylori spotted cusk-eel Chitonotus pugetensis roughback sculpin Citharichthys fragilis Gulf sanddab Citharichthys sordidus Pacific sanddab Citharichthys stigmaeus speckled sanddab Citharichthys xanthostigma longfin sanddab Cymatogaster aggregata shiner perch Embiotoca jacksoni black perch Engraulis mordax northern anchovy Enophrys taurina bull sculpin Eopsetta jordani
    [Show full text]