Atomic Clocks

Total Page:16

File Type:pdf, Size:1020Kb

Atomic Clocks Atomic Clocks A literature study Artwork credit: Brad Baxley and Ye Labs, JILA Cathelijne Glaser, BSc [email protected] supervised by Dr. Jeroen Koelemeij summer 2015 Abstract In atomic clocks, the frequency of the oscillator is determined by the energy difference between two quantum mechanical states in atoms, ions or molecules. This transition energy depends only on fundamental constants and thus provides a stable frequency reference. Disturbances of the system that may shift the frequency are discussed, as well as broadening of the peak due to dephasing and the uncertainty principle. This literature study gives an overview of the different types of both microwave and optical atomic clocks, as well as the different atom species that are suitable as clock atoms. A qualitative way to determine clock performance is given in terms of the fractional frequency uncertainty, and the Allan variance to determine the stability and characterise the noise of the clock. Various methods and procedures to decrease the uncertainties are discussed. An outlook on possible future developments is presented, including clocks based on nuclear transitions and techniques to increase the accuracy and stability beyond the curent state of the art. Front page: artist's view of an optical lattice clock. [1] 1 Table of contents Abstract 1 1 Introduction 3 2 Atomic transitions 4 2.1 Frequency shifts 4 2.2 Line broadening 5 3 The basic clock system 9 3.1 Active clocks 9 3.2 Passive clocks 10 3.3 Measuring and feedback 10 4 Characterizing the performance of clocks 12 4.1 Accuracy and reproducibility 12 4.2 Stability 12 4.3 Comparison and synchronisation 16 5 Active clocks 19 6 Passive clocks 25 6.1 Microwave regime 25 6.2 Optical regime 32 7 Future prospects 36 7.1 (Fundamental) limits 36 7.2 Suggested further research 38 8 Conclusion 39 References 40 2 1 Introduction Humans have, as far as known, kept track of time, or cyclic events, since the beginning of development. To measure time, a reference oscillator is needed. It is impossible to measure time itself. It is only possible to measure a frequency or duration. In time measurement, it is assumed that two identical phenomena acquire the same time to be produced, the so- called reproducibility postulate. [2] The rhythm of day and night and the four seasons is always present. But descriptions of more subtle recurring events, like solar eclipses and other astronomical phenomena, have been found dated at least 4000 years ago. The sundial was the earliest form of a clock that divides time into smaller segments than a day. The most sophisticated versions had an error of 24 seconds for each 0.1 degree of angle measurement. Other historical clocks were based on water or mechanical devices, such as the pendulum clock or the spring-balance- wheel clock. The quartz clock is based on the piezoelectric effect, in which vibrations are excited by applying an alternating voltage to a crystal. This was the first clock based on material properties instead of astronomical observations or mechanical movement. However, it still suffers from ageing and is very sensitive to environmental conditions. [3] In atomic clocks, the electromagnetic transition between two quantum mechanical states of an atom, ion or molecule determines the frequency of the oscillator. Frequency dividers provide pulses at a desired rate, for example with a frequency of 1 Hz. The development of these types of clock boosted the abilities of time measurement. They are so sensitive that relativistic effects can be measured. Precise time measurements are for example applied in metrology, fundamental constant research, the foundations of quantum mechanics, gravity, and geodetics. But it also finds applications in navigation and communication networks. It makes a precise measurement of position or length possible, especially since the meter has been defined in terms of the speed of light. [2] This literature study dives into the principle of atomic clocks, and what makes them intrinsically suitable to measure time. After defining a quantitative manner to measure the performance of a clock, several factors that determine the performance of an atomic clock are described. Although it is impossible to mention every atomic clock ever built, an overview of the different types is given, in both the microwave domain and the optical domain. These are mutually compared and their performance, advantages and disadvantages are discussed, as well as the different improvements that came with each new design. The currently best optical lattice clock is described, evoking a look into the future. What is there to be expected of future atomic clocks, and is there a limit to the potential performance of clocks? 3 2 Atomic transitions According to quantum mechanics, the energy of an atom, molecule, or ion consists of discrete values. Transitions between these levels occurs by emitting or absorbing electromagnetic radiation of a specific frequency. This resonance frequency ν0 depends only on fundamental physical constants and is the same for all atoms of a particular element, which makes it a reproducible standard. Two other aspects make atomic transitions particularly suitable for timekeeping. The properties of the atoms do not, as far as known, change over time. Additionally, atoms do not wear out, as mechanical clocks all do. [2][4] 2.1 Frequency shifts The resonance frequency is an intrinsic property of the unperturbed atom, but several factors may cause the actual frequency to be shifted. It is important to accurately characterize the shifts that occur in the clock, to be able to state the correct output frequency. Frequency shifts can either be diminished by reducing the environmental perturbations acting on the clock system, or corrected for when accurate data about the shifts are available. Inhomogeneities and fluctuations in the perturbing fields should also be taken into account. Additionally, a shift in some level may influence the energy of a nearby level. [5] Depending on the respective design, each type of atomic clock will encounter these and other, minor disturbances, in varying degrees. This is described in more detail in the corresponding paragraphs in chapter 5 and 6. External magnetic fields Magnetic moments are associated with the various angular momenta of atoms: orbital, spin and nuclear angular momenta. These magnetic moments interact with an external magnetic field. The energy of atomic levels with different magnetic moments depend on their orientation with respect to the field. The external magnetic field therefore lifts the degeneracy of these levels. This is called the Zeeman effect. The energy shifts can be calculated using perturbation theory. The nature of the shifts depends on the strength of the external magnetic field relative to the internal magnetic field of the atom, generated by the moving charges. The latter causes spin-orbit coupling, which can also be considered a perturbation The shift in frequency for a certain transition due to an external magnetic field can be written as a Taylor expansion. For small magnetic fields, only the first two terms need to be considered. [5] Only constant magnetic fields contribute to the Zeeman effect as long as the energy shift is linear, because the time average of an oscillating (AC) field is zero. However, in the intermediate field regime, the quadratic Zeeman effect cause AC fields to play a role as well. [5][6] 4 External electric fields The electrical analogue to the Zeeman effect is the Stark effect. For a static electric field Ɛ in the direction of the z-axis, the perturbation operator for N electrons is given by: N = =− H ' e ∑ Ɛ zi Ɛ Dz (2.1) i=1 with e the electron charge, zi the spatial coordinate of electron i, and Dz the z-component of the electric dipole moment of the atom. Since this is an odd operator regarding parity, the first order perturbation energy is zero for wavefunctions of definite parity. Otherwise stated, atoms do not have a permanent dipole moment in non-degenerate states. The linear Stark effect exists only for hydrogen-like orbitals with n>1. The degeneracy is only partly removed. For weak fields, the Stark splittings are negligible compared to the fine structure effects. Intermediate field effects can be calculated using full perturbation theory. [7] The quadratic Stark shift is generally very small. According to perturbation calculations, the shifting of the levels depends on the neighbouring levels of opposite parity and the corresponding parity. [7] The quadratic Stark shift depends on the polarizibility of the atom, which is in turn dependent on the electron configuration. Note that both DC and AC electric fields may give rise to a quadratic Stark shift. [8] A gradient in the present electric field interacts with the electric quadrupole moment of the atom. The resulting energy shift is usually very small and even zero for many energy levels. [8] Gravitational red shift According to relativity, when two clocks experience different gravitational potentials, their clock rates differ. The frequency shift depends on the mutual height difference and the local value of the gravitational acceleration. [5] 2.2 Line broadening Atoms will absorb or emit not only electromagnetic radiation with exactly the resonance frequency, but over a small frequency range surrounding ν0. This range is called the resonance width or linewidth Δν. The ratio of resonance frequency to linewidth is called the quality factor Q: ν 0 Q= Δν (2.2) All other parameters equal, the stability of the atomic oscillator is proportional to Q. An important route to increased stability is thus to narrow the linewidth. [4] A perfect oscillator displays a pure sine wave. In the frequency domain, this is represented 5 by a Dirac delta function. Line broadening can originate from either homogeneous or inhomogeneous processes.
Recommended publications
  • The Iberoamerican Contribution To
    RevMexAA (Serie de Conferencias), 25, 21{23 (2006) THE IBEROAMERICAN CONTRIBUTION TO INTERNATIONAL TIME KEEPING E. F. Arias1,2 RESUMEN Las escalas internacionales de tiempo, Tiempo At´omico Internacional (TAI) y Tiempo Universal Coordinado (UTC), son elaboradas en el Bureau Internacional des Poids et Mesures (BIPM), gracias a la contribuci´on de 57 laboratorios de tiempo nacionales que mantienen controles locales de UTC. La contribuci´on iberoamericana al c´alculo de TAI ha aumentado en los ultimos´ anos.~ Diez laboratorios en las Am´ericas y uno en Espana~ contribuyen a la estabilidad de TAI con el aporte de datos de relojes at´omicos industriales; una fuente de cesio mantenida en uno de ellos contribuye a mejorar la exactitud de TAI. Este art´ıculo resume las caracter´ısticas de las escalas de tiempo de referencia y describe la contribuci´on de los laboratorios iberoamericanos. ABSTRACT The international time scales, International Atomic Time (TAI) and Coordinated Universal Time (UTC), are elaborated at the Bureau International des Poids et Mesures (BIPM), thanks to the contribution of 57 national time laboratories that maintain local realizations of UTC. The Iberoamerican contribution to TAI has increased in the last years. Ten laboratories in America and one in Spain participate to the calculation of TAI , increasing its stability with the data of industrial atomic clocks and improving its accuracy with frequency measurements of a caesium source developed and maintained at one laboratory. This paper summarizes the characteristics of the reference time scales and describes the contributions of the Iberoamerican time laboratories to them. Key Words: TIME | REFERENCE SYSTEMS 1.
    [Show full text]
  • IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology—Random Instabilities
    IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology—Random Instabilities IEEE Standards Coordinating Committee 27 Sponsored by the IEEE Standards Coordinating Committee 27 on Time and Frequency TM IEEE 1139 3 Park Avenue IEEE Std 1139™-2008 New York, NY 10016-5997, USA (Revision of IEEE Std 1139-1999) 27 February 2009 Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 07,2019 at 15:29:34 UTC from IEEE Xplore. Restrictions apply. Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 07,2019 at 15:29:34 UTC from IEEE Xplore. Restrictions apply. IEEE Std 1139™-2008 (Revision of IEEE Std 1139-1999) IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology—Random Instabilities Sponsor IEEE Standards Coordinating Committee 27 on Time and Frequency Approved 26 September 2008 IEEE-SA Standards Board Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 07,2019 at 15:29:34 UTC from IEEE Xplore. Restrictions apply. Abstract: Methods of describing random instabilities of importance to frequency and time metrology are covered. Quantities covered include frequency, amplitude, and phase instabilities; spectral densities of frequency, amplitude, and phase fluctuations; and time-domain deviations of frequency fluctuations. In addition, recommendations are made for the reporting of measurements of frequency, amplitude, and phase instabilities, especially in regard to the recording of experimental parameters, experimental conditions, and calculation techniques. Keywords: AM noise, amplitude instability, FM noise, frequency domain, frequency instability, frequency metrology, frequency modulation, noise, phase instability, phase modulation, phase noise, PM noise, time domain, time metrology • The Institute of Electrical and Electronics Engineers, Inc.
    [Show full text]
  • Mutual Benefits of Timekeeping and Positioning
    Tavella and Petit Satell Navig (2020) 1:10 https://doi.org/10.1186/s43020-020-00012-0 Satellite Navigation https://satellite-navigation.springeropen.com/ REVIEW Open Access Precise time scales and navigation systems: mutual benefts of timekeeping and positioning Patrizia Tavella* and Gérard Petit Abstract The relationship and the mutual benefts of timekeeping and Global Navigation Satellite Systems (GNSS) are reviewed, showing how each feld has been enriched and will continue to progress, based on the progress of the other feld. The role of GNSSs in the calculation of Coordinated Universal Time (UTC), as well as the capacity of GNSSs to provide UTC time dissemination services are described, leading now to a time transfer accuracy of the order of 1–2 ns. In addi- tion, the fundamental role of atomic clocks in the GNSS positioning is illustrated. The paper presents a review of the current use of GNSS in the international timekeeping system, as well as illustrating the role of GNSS in disseminating time, and use the time and frequency metrology as fundamentals in the navigation service. Keywords: Atomic clock, Time scale, Time measurement, Navigation, Timekeeping, UTC Introduction information. Tis is accomplished by a precise connec- Navigation and timekeeping have always been strongly tion between the GNSS control centre and some of the related. Te current GNSSs are based on a strict time- national laboratories that participate to UTC and realize keeping system and the core measure, the pseudo-range, their real-time local approximation of UTC. is actually a time measurement. To this aim, very good Tese features are reviewed in this paper ofering an clocks are installed on board GNSS satellites, as well as in overview of the mutual advantages between navigation the ground stations and control centres.
    [Show full text]
  • Time Metrology in Galileo.Pdf
    Time Metrology in the Galileo Navigation System The Experience of the Italian National Metrology Institute I.Sesia, G.Signorile, G.Cerretto, E.Cantoni, P.Tavella A.Cernigliaro, A.Samperi Optics Division, INRiM, Turin, Italy DASS Division, aizoOn, Turin, Italy [email protected] [email protected], [email protected] Abstract—Timekeeping is crucial in Global Navigation system, the research on new clock technologies, calibrations, Satellite Systems (GNSS), being the positioning accuracy directly evaluation of uncertainty, and dissemination of accurate time. related to a time measurement. As a consequence, the typical expertise of time metrology laboratories is necessary in many This paper presents the experience of the Italian National different aspects of a navigation system. This paper presents the Institute of Metrological Research (INRiM) time laboratory in experience of INRIM in the development of the Galileo the Galileo experimental and validation phases. navigation system from the earlier studies till the very recent In Orbit Validation phase showing how the time metrology practice II. THE GALILEO EXPERIENCE has been useful in the understanding of time aspects of INRiM has been involved in the Galileo system since 1999 navigation and showing as well how the navigation service and participated to different phases of the project. perspective has stimulated new ideas and better understanding of time measures. The first experimental phase was the Galileo System Test Bed Version 1 (GSTB V1) in 2002 in which INRiM participated, Keywords—time metrology; atomic clocks; steering; time together with the British NPL and the German PTB scales; GNSS timing; timekeeping; space clocks; system noise laboratories, to generate the experimental Galileo System Time, the reference time scale of the system, obtained from the I.
    [Show full text]
  • Chapter I. Solar and Lunar Eclipses 6 1.1
    1 ANCIENT RIDDLES OF SOLAR ECLIPSES. Asymmetric Astronomy Second Edition By IGOR N. TAGANOV and VILLE-V.E. SAARI Russian Academy of Sciences Saint Petersburg 2016 2 Taganov, Igor N., Saari, Ville-V.E. Ancient Riddles of Solar Eclipses. Asymmetric Astronomy. Second Edition – Saint Petersburg: TIN, 2016. – 110 p., 53 ill. Electronic Edition ISBN 978-5-902632-28-3 © Taganov, Igor N.; Saari, Ville-V.E. 2016 The book examines some of the mysteries of ancient astronomical treatises, for example, known since the Middle Ages the “Wednesday paradox”, and the history of the emergence and spread in the East of the belief that the eclipses of the Sun and the Moon, as well as all the Universe geometry are defined by a single sacred number 108. The calendar cycles of solar eclipses, considered in the book, confirming the old assumption of Indian and Chinese astronomers in 6-8 centuries, show that the probability of a total solar eclipse is larger in the spring and summer months, and the probability of annular eclipse, on the contrary, is larger in the autumn and winter months. Analysis of ancient chronicles of solar and lunar eclipses discovers evidence of gradual deceleration of time, which is confirmed by modern astronomical observations of the orbital movement of the Earth, the Moon, Mercury and Venus. The cosmological deceleration of time is a consequence of the irreversibility of “physical” time, which leads to the fact that all the characteristic time intervals are shorter in the past than in the future. In theoretical cosmology, the use of the concept of decelerating physical time allows to represent the key cosmological parameters of the observable Universe in the form of simple functions of the fundamental physical constants.
    [Show full text]
  • IAU) and Time
    The relationships between The International Astronomical Union (IAU) and time Nicole Capitaine IAU Representative in the CCU Time and astronomy: a few historical aspects Measurements of time before the adoption of atomic time - The time based on the Earth’s rotation was considered as being uniform until 1935. - Up to the middle of the 20th century it was determined by astronomical observations (sidereal time converted to mean solar time, then to Universal time). When polar motion within the Earth and irregularities of Earth’s rotation have been known (secular and seasonal variations), the astronomers: 1) defined and realized several forms of UT to correct the observed UT0, for polar motion (UT1) and for seasonal variations (UT2); 2) adopted a new time scale, the Ephemeris time, ET, based on the orbital motion of the Earth around the Sun instead of on Earth’s rotation, for celestial dynamics, 3) proposed, in 1952, the second defined as a fraction of the tropical year of 1900. Definition of the second based on astronomy (before the 13th CGPM 1967-1968) definition - Before 1960: 1st definition of the second The unit of time, the second, was defined as the fraction 1/86 400 of the mean solar day. The exact definition of "mean solar day" was left to astronomers (cf. SI Brochure). - 1960-1967: 2d definition of the second The 11th CGPM (1960) adopted the definition given by the IAU based on the tropical year 1900: The second is the fraction 1/31 556 925.9747 of the tropical year for 1900 January 0 at 12 hours ephemeris time.
    [Show full text]
  • Metrology with Trapped Atoms on a Chip Using Non-Degenerate and Degenerate Quantum Gases Vincent Dugrain
    Metrology with trapped atoms on a chip using non-degenerate and degenerate quantum gases Vincent Dugrain To cite this version: Vincent Dugrain. Metrology with trapped atoms on a chip using non-degenerate and degenerate quantum gases. Quantum Gases [cond-mat.quant-gas]. Université Pierre & Marie Curie - Paris 6, 2012. English. tel-02074807 HAL Id: tel-02074807 https://hal.archives-ouvertes.fr/tel-02074807 Submitted on 20 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LABORATOIRE KASTLER BROSSEL LABORATOIRE DES SYSTEMES` DE REF´ ERENCE´ TEMPS{ESPACE THESE` DE DOCTORAT DE L'UNIVERSITE´ PIERRE ET MARIE CURIE Sp´ecialit´e: Physique Quantique Ecole´ doctorale de Physique de la R´egionParisienne - ED 107 Pr´esent´eepar Vincent Dugrain Pour obtenir le grade de DOCTEUR de l'UNIVERSITE´ PIERRE ET MARIE CURIE Sujet : Metrology with Trapped Atoms on a Chip using Non-degenerate and Degenerate Quantum Gases Soutenue le 21 D´ecembre 2012 devant le jury compos´ede: M. Djamel ALLAL Examinateur M. Denis BOIRON Rapporteur M. Fr´ed´eric CHEVY Pr´esident du jury M. Jozsef FORTAGH Rapporteur M. Jakob REICHEL Membre invit´e M Peter ROSENBUSCH Examinateur Remerciements Mes premiers remerciements s'adressent `ames deux encadrants de th`ese,Jakob Reichel et Peter Rosenbusch.
    [Show full text]
  • Standard Terminology for Fundamental Frequency and Time Metrology
    42nd Annual Frequency Control Symposium - 1988 STANDARD TERXINOLJXY FOR * FUNDAMENTAL FREQUEXY AND TINE NEnloucY David Allan, National Bureau of Standards, Boulder, CO80303 Helmut Hellwig. National Bureau of Standards, Caithersburg. KD 20899 Peter Kartaschoff, Swiss PTT, RAD, CH 3000 Barn 29, Switzerland Jacques Vanier. National Research Council, Ottave. Canada KIA OR6 John Vig. U.S. Army Electronics Technology and Devices Laboratory. Fort Konmouth. NJ 07703 Cernot U.R. Uinkler, U.S. Naval Obsewatoty, Washington. DC 20390 Nicholas F. Yannoni, Rome Air Development Center, Hanrcom AFB. Bedford, HA 01731 1. InCroducCLon S,(f) of y(t) S,(f) of 4(t) Tachniques to characterize and to measure the frequency and phase fnstabilities in frequency and tine devices s;(f) of I(t) and in recelvrd radio signals are of fundamental impor- S,(f) of x(t). tance to a11 manufacturers and users of frequency and time technology. These spectral densicias are related by the In 1964, a subcommittee on frequency stability was form- equations: ed vithin the Institute of Electrical and Elcccronics 2 Engineers (IEEE) Standards Committee IA and. later (in SyW = + S,(f) 1966). in the Technical Committee on Frequency and Time vithin the Society of Instrumentation and Measurement "0 (SIX). to prepare an IEEE standard on frequency scabili- ty. In 1969. this subcommittee completed a document S)(f) = (21f)2 Sb(f) proposing dcfinltions for measures on frequency and phase stabilities (Barnes, et al.. 1971). These rccom- mended measures of instabilttics in frequency generarors have gained general acceptance among frequency and time Sx(f) = --+ S&(f) . ) users throughout the vorld.
    [Show full text]
  • Cctf/2006-20
    CONTRIBUTION TO THE 17th CCTF, September 2006 LNE-SYRTE Observatoire de Paris, CNRS UMR8630 61 avenue de l’Observatoire 75014 PARIS, FRANCE On 1 January 2005 the name of the laboratory changed from BNM-SYRTE to LNE-SYRTE, as a consequence of the reorganisation of French metrology which saw the Laboratoire National de Métrologie et d’Essais (LNE) become the new National Metrology Institute for France, in replacement of the Bureau National de Métrologie (BNM). This report describes the activities pursued since the last meeting of the CCTF, in 2004. 1. PRIMARY CLOCKS Optically pumped Cs beam LNE-SYRTE operates an optically pumped cesium beam clock (JPO) which presents an accuracy of 6.6×10 -15 and contributes regularly to TAI. Fountain clocks By the end of 2004 the cesium fountain FO1 had resumed operation for a few months, before its vacuum chamber was opened for installation of the micro-wave cavity of the PHARAO space clock for testing. During this period FO1 reached an accuracy of 7.5 ×10 -16 , while the double fountain FO2 was at 6.6 ×10 -16 (for cesium). The Allan variance of a comparison between these two clocks carried out at that time is shown in Figure 1; the relative stability is 5×10 -14 τ -1/2 , reaching 2×10 -16 after 50000s. This measurement includes all type B corrections, particularly the cold collisions frequency shift and Zeeman shift, measured continuously during the comparison. The frequency difference observed between the clocks was 4×10 -16 , well within their combined uncertainty. Recently FO1 has been reopened and a new cold atom source, using a 2D MOT to load the molasses, has been mounted.
    [Show full text]
  • Abstract Booklet
    Table of Contents Invitation Letter 4 3 Invitation Letter Dear Colleagues, - - • • • • - Rhythm of life, rhythm of light Intelligent lighting City at night 4 Invitation Letter - Ann Webb 5 6 Yoshi Ohno (Chair, US) 7 Conference Presidency: Ann Webb Members (in alphabetical order): 8 (in alphabetical order): Jean Bastie Alain Azaïs 9 10 Conference Information 11 CONGRESS LANGUAGE CERtifiCAtE Of AttENdANCE: AbStRACt SUbmiSSiON/REGiStRAtiON/ACCOmmOdAtiON: - CONfERENCE ORGANiZER & Sponsoring 12 CONfERENCE VENUE GENERAL mAp 13 CONfERENCE ANd mONdAy EVENiNG SitE – mONdAy ANd tUESdAy 14 SympOSiUm SitE – thURSdAy & fRidAy tEChNiCAL mEEtiNG ANd wORkShOp SitE – wEdNESdAy tiLL fRidAy 15 CENtENARy CELEbRAtiON pARty – tUESdAy NiGht RAtp – thURSdAy NiGht 16 CiE-fRANCE - thE fRENCh LiGhtiNG ASSOCiAtiON (ASSOCiAtiON fRANçAiSE dE L’ÉCLAiRAGE - AfE) - thE NAtiONAL CONSERVAtORy Of ARtS ANd tRAdES (LE CONSERVAtOiRE NAtiONAL dES ARtS Et mÉtiERS - CNAm) - 17 - - CERtU, thE miNiStRy Of ECOLOGy, SUStAiNAbLE dEVELOpmENt ANd ENERGy (mEddE) ANd thE miNiStRy Of EqUALity Of tERRitORiES ANd hOUSiNG (mEtL) - - - thE fRENCh NAtURAL hiStORy mUSEUm (mNhN) 18 Programme Overview 19 Monday, April 15 Tuesday, April 16 20 Y DAY PARALLEL SESSION / TOPIC
    [Show full text]
  • Agilent an 1289 the Science of Timekeeping Application Note
    Agilent AN 1289 The Science of Timekeeping Application Note • UTC: Official World Time • GPS: A Time Distribution Utility • Time: An Historical and Future Perspective • From Laboratory to Practical Use • Broad Applications Across Society Table of Contents 8 Introduction to the Science of Timekeeping 10 Precise Timing Applications Pervade Our Society 14 Clocks and Timekeeping 19 The Definition of the Second and Its General Importance 19 Historical Perspective 22 An Illustrative Timekeeping Example 26 UTC, Official Time for the World 30 GPS Time and UTC 31 Accuracy and Stability of UTC 36 Einstein’s Relativity and Precise Timekeeping 39 How to Access UTC 44 Future Timing Techniques 47 Global Navigation Satellite System Developments 52 UTC and the Future 53 Conclusions 54 Acknowledgments 56 Appendix A: Time and Frequency Measures Accuracy, Error, Precision, Predictability, Stability, and Uncertainty 66 Appendix B: Stability Analysis of Harrison-like Chronometers 72 Appendix C: Time and Frequency Transfer, Distribution and Dissemination Systems 82 Glossary and Definitions 85 Bibliography Agilent Technologies is grateful to the three authors of this applica- tion note for sharing their expertise. Their combined knowledge offers a resource which will undoubtedly be considered a classic reference on the science of timekeeping for decades to come. David W. Allan David W. Allan was born in Mapleton, Utah on September 25,1936. He received the B.S. and M.S. degrees in physics from Brigham Young University, Provo, Utah and from the University of Colorado, respec- tively. From 1960 until 1992 he worked at the U.S. National Institute of Standards and Technology (NIST), formerly the National Bureau of Standards (NBS).
    [Show full text]
  • Time, the SI and the Metre Convention
    Home Search Collections Journals About Contact us My IOPscience Time, the SI and the Metre Convention This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2011 Metrologia 48 S121 (http://iopscience.iop.org/0026-1394/48/4/S01) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 193.2.92.136 The article was downloaded on 30/09/2011 at 13:28 Please note that terms and conditions apply. IOP PUBLISHING METROLOGIA Metrologia 48 (2011) S121–S124 doi:10.1088/0026-1394/48/4/S01 Time, the SI and the Metre Convention Terry Quinn Emeritus Director, BIPM, 92 rue Brancas, 92310 Sevres,` France Received 1 June 2011, in final form 9 June 2011 Published 20 July 2011 Online at stacks.iop.org/Met/48/S121 Abstract Since 1954 when the definition of the second first came under the authority of the intergovernmental organization of the Metre Convention, the range and complexity of time metrology have increased far beyond anything envisaged in those days. Today, the essential international coordination of this domain of metrology is through the organs of the Convention with the exception of the definition of Coordinated Universal Time, UTC. In this short article I suggest that this also should now come under the authority of the Metre Convention. In the year 2010 we celebrated the fiftieth anniversary of the comparison, very permanent, are not so by physical formal adoption of the International System of Units (SI) necessity. The earth might contract by cooling, or it by the 11th General Conference on Weights and Measures might be enlarged by a layer of meteorites falling on (CGPM) in 1960.
    [Show full text]