Satellite Time and Frequency Dissemination

Total Page:16

File Type:pdf, Size:1020Kb

Satellite Time and Frequency Dissemination HANDBOOK SATELLITE TIME AND FREQUENCY TRANSFER AND DISSEMINATION SATELLITE TIME AND FREQUENCY TRANSFER AND DISSEMINATION SATELLITE OOK ANDB H Printed in Switzerland Geneva, 2010 Edition 2010 Photo credits : www.itu.int Radiocommunication Bureau HANDBOOK SATELLITE TIME AND FREQUENCY TRANSFER AND DISSEMINATION Edition 2010 Radiocommunication Bureau THE RADIOCOMMUNICATION SECTOR OF ITU The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Inquiries about radiocommunication matters Please contact: ITU Radiocommunication Bureau Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 5800 Fax: +41 22 730 5785 E-mail: [email protected] Web: www.itu.int/itu-r Placing orders for ITU publications Please note that orders cannot be taken over the telephone. They should be sent by fax or e-mail. ITU Sales and Marketing Division Place des Nations CH -1211 Geneva 20 Switzerland Fax: +41 22 730 5194 E-mail: [email protected] The Electronic Bookshop of ITU: www.itu.int/publications ITU 2010 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. Satellite Time and Frequency Transfer and Dissemination iii PREFACE Technological development in general, and that of information-communication technologies and applications in particular, requires the increasingly precise timing and synchronization of different electronic devices. The International Telecommunication Union carries out studies and establishes international standards on the relevant timing scales and their use by telecommunication and computer networks, electronic navigation systems, and so forth. In 1974, the International Radio Consultative Committee (CCIR – Comité Consultatif International des Radiocommunications), in cooperation with the General Conference of Weights and Measures and the Bureau International de l’Heure, developed Coordinated Universal Time (UTC). In 1978, CCIR approved the use of UTC “to designate the time in all international telecommunication activities and in all official documents of the International Telecommunication Union”. CCIR also stated that UTC should be employed “as the ultimate reference for standard-frequency emissions”. The ITU World Administrative Radio Conference 1979 (WARC-79) included UTC in the international treaty status Radio Regulations, and since then UTC has been used as the main time-scale for telecommunication networks (wired and wireless) and for other time-related applications. Modern satellite systems providing time and frequency signal dissemination through a clear, un-obstructed path with an easily modelled delay are the main source of precise time and frequency so essential to maritime and aviation services, navigation and positioning systems and for the proper functioning of telecommunication and computer networks. This is the first ITU Handbook to provide detailed information on the applied methods, technologies, algorithms, data structure and practical use of frequency and timing signals provided by satellite systems. Special attention is focused on the Global Navigation Satellite Systems (GNSSs) belonging to the radionavigation-satellite service. GNSS are providing time-frequency signals to any place on the Earth and currently represent the de-facto primary source of precise timing signals for governmental, commercial, transportation and scientific applications. Dr. Valery TIMOFEEV Director Radiocommunication Bureau Satellite Time and Frequency Transfer and Dissemination v TABLE OF CONTENTS Page PREFACE ............................................................................................................................................ iii FOREWORD ........................................................................................................................................ vii ACKNOWLEDGEMENTS ................................................................................................................. ix INTRODUCTION ................................................................................................................................ xi CHAPTER 1 – SATELLITES AND TIME AND FREQUENCY TRANSFER AND DISSEMINATION .................................................................................................................. 1 CHAPTER 2 – GLOBAL POSITIONING SYSTEM .......................................................................... 7 CHAPTER 3 – SATELLITE BASED AUGMENTATION SYSTEM TO GPS ................................. 21 CHAPTER 4 – GPS SYSTEM TIME .................................................................................................. 45 CHAPTER 5 – GLONASS NAVIGATION SATELLITE SYSTEM ................................................. 51 CHAPTER 6 – COMMUNICATION SATELLITE SYSTEMS ......................................................... 67 CHAPTER 7 – TIME SCALES ........................................................................................................... 73 CHAPTER 8 – NATIONAL TIMING CENTRES .............................................................................. 89 CHAPTER 9 – RELATIVISTIC EFFECTS IN SATELLITE TIME AND FREQUENCY TRANSFER AND DISSEMINATION ................................................................................... 95 CHAPTER 10 – EARTH ORIENTATION AND GEODETIC SYSTEM .......................................... 121 CHAPTER 11 – PROPAGATION AND ENVIRONMENTAL FACTORS ....................................... 131 CHAPTER 12 – GLOBAL NAVIGATIONAL SATELLITE SYSTEMS – AS A PRIMARY TOOL FOR TIME TRANSFER .............................................................................................. 141 CHAPTER 13 – GEODETIC TECHNIQUES USING GPS PHASE AND CODE MEASUREMENTS ................................................................................................................. 157 CHAPTER 14 – TWO WAY SATELLITE TIME AND FREQUENCY TRANSFER (TWSTFT) ... 185 CHAPTER 15 – SUMMARY TIME AND FREQUENCY DISSEMINATION ................................. 197 Satellite Time and Frequency Transfer and Dissemination vii FOREWORD The Radiocommunication Study Group 7 for the Science Services (SG 7) was created through a structural reorganization in 1990 at the Düsseldorf CCIR Plenary Assembly. At that time, the Space Research and Radio Astronomy Study Group (SG 2) was consolidated with the Time and Frequency Standards SG 7 to form the new SG 7 on Science Services. Many of the activities in the Science Services Study Group are associated with advancing the state of the art in the use of the radio spectrum to achieve scientific objectives. In this regard, the time and frequency standards community has long been associated with the International Telecommunication Union (ITU) with the express purpose of developing Recommendations for the use of the radio spectrum to facilitate the dissemination of precise time references and for standardizing the methods for this dissemination. An essential corollary is the specification of precise frequency standards and the techniques for their implementation. The Radiocommunications Sector SG 7 (Science Services) comprises 4 Radiocommunication Working Parties (WPs) that addresses technical issues related to specific disciplines under the umbrella of science services. Working Party 7A, (Time Signals and Frequency Standards Emissions) is concerned with the generation and dissemination of Time and Frequency Signals by terrestrial and space radiocommunication services. In the past 15 to 20 years the precise time and frequency services provided by satellite systems, predominately navigation satellites, have become the primary means of dissemination and the capabilities of those services has increased dramatically. The resulting increase in capability and development of these satellite systems has made it difficult to keep pace with their development, their impact on the Time and Frequency Community and the Radio and Telecommunication communities in general. This Handbook provides comprehensive technical and operational information on current satellite systems employed for dissemination of precise time and frequency signals. As Chairman of SG 7, it is my great pleasure to present this Handbook to the above-mentioned communities of users, who will, I am sure, find it an important reference tool in their own work. This Handbook is the result of several years of preparation and work to attempt to capture the development in satellite technologies and the growing capability they have produced. The Handbook could not have been completed without the contributions from many administrations participating in SG 7 and its WP 7A. Special thanks should be given to the Chairmen of WP 7A Mr. Ronald BEARD, for his leadership of this project. Our special gratitude is also due to Mr. A. VASSILIEV of the Radiocommunication Bureau who has played an important role in the preparation, editing and publication of the Handbook. Satellite Time and Frequency Transfer and Dissemination ix ACKNOWLEDGEMENTS The work of the Rapporteurs for the various sections of the Handbook was outstanding and we would like to express
Recommended publications
  • Mike Zornek • March 2020
    Working with Time Zones Inside a Phoenix App Mike Zornek • March 2020 Terminology Layers of Wall Time International Atomic Time (ITA) Layers of Wall Time Universal Coordinated Time (UTC) International Atomic Time (ITA) Layers of Wall Time Universal Coordinated Time (UTC) Leap Seconds International Atomic Time (ITA) Layers of Wall Time Standard Time Universal Coordinated Time (UTC) Leap Seconds International Atomic Time (ITA) Layers of Wall Time Standard Time Time Zone UTC Offset Universal Coordinated Time (UTC) Leap Seconds International Atomic Time (ITA) Layers of Wall Time Wall Time Standard Time Time Zone UTC Offset Universal Coordinated Time (UTC) Leap Seconds International Atomic Time (ITA) Layers of Wall Time Wall Time Standard Offset Standard Time Time Zone UTC Offset Universal Coordinated Time (UTC) Leap Seconds International Atomic Time (ITA) Things Change Wall Time Standard Offset Politics Standard Time Time Zone UTC Offset Politics Universal Coordinated Time (UTC) Leap Seconds Celestial Mechanics International Atomic Time (ITA) Things Change Wall Time Standard Offset changes ~ 2 / year Standard Time Time Zone UTC Offset changes ~ 10 / year Universal Coordinated Time (UTC) 27 changes so far Leap Seconds last was in Dec 2016 ~ 37 seconds International Atomic Time (ITA) "Time Zone" How Elixir Represents Time Date Time year hour month minute day second nanosecond NaiveDateTime Date Time year hour month minute day second nanosecond DateTime time_zone NaiveDateTime utc_offset std_offset zone_abbr Date Time year hour month minute day second
    [Show full text]
  • 2017 Procedure-Specific Measure Updates and Specifications Report Hospital-Level Risk-Standardized Complication Measure
    2017 Procedure-Specific Measure Updates and Specifications Report Hospital-Level Risk-Standardized Complication Measure Elective Primary Total Hip Arthroplasty (THA) and/or Total Knee Arthroplasty (TKA) – Version 6.0 Submitted By: Yale New Haven Health Services Corporation/Center for Outcomes Research & Evaluation (YNHHSC/CORE) Prepared For: Centers for Medicare & Medicaid Services (CMS) March 2017 Table of Contents LIST OF TABLES ..................................................................................................................................3 LIST OF FIGURES .................................................................................................................................4 1. HOW TO USE THIS REPORT ............................................................................................................6 2. BACKGROUND AND OVERVIEW OF MEASURE METHODOLOGY .......................................................7 2.1 Background on the Complication Measure ........................................................................ 7 2.2 Overview of Measure Methodology ................................................................................... 7 2.2.1 Cohort ...................................................................................................................... 7 2.2.2 Outcome .................................................................................................................. 9 2.2.3 Risk-Adjustment Variables....................................................................................
    [Show full text]
  • Operation Guide 3448
    MO1611-EA © 2016 CASIO COMPUTER CO., LTD. Operation Guide 3448 ENGLISH Congratulations upon your selection of this CASIO watch. Warning ! • The measurement functions built into this watch are not intended for taking measurements that require professional or industrial precision. Values produced by this watch should be considered as reasonable representations only. • Note that CASIO COMPUTER CO., LTD. assumes no responsibility for any damage or loss suffered by you or any third party arising through the use of your watch or its malfunction. E-1 About This Manual • Keep the watch away from audio speakers, magnetic necklaces, cell phones, and other devices that generate strong magnetism. Exposure to strong • Depending on the model of your watch, display text magnetism can magnetize the watch and cause incorrect direction readings. If appears either as dark figures on a light background, or incorrect readings continue even after you perform bidirectional calibration, it light figures on a dark background. All sample displays could mean that your watch has been magnetized. If this happens, contact in this manual are shown using dark figures on a light your original retailer or an authorized CASIO Service Center. background. • Button operations are indicated using the letters shown in the illustration. • Note that the product illustrations in this manual are intended for reference only, and so the actual product may appear somewhat different than depicted by an illustration. E-2 E-3 Things to check before using the watch Contents 1. Check the Home City and the daylight saving time (DST) setting. About This Manual …………………………………………………………………… E-3 Use the procedure under “To configure Home City settings” (page E-16) to configure your Things to check before using the watch ………………………………………… E-4 Home City and daylight saving time settings.
    [Show full text]
  • Capricious Suntime
    [Physics in daily life] I L.J.F. (Jo) Hermans - Leiden University, e Netherlands - [email protected] - DOI: 10.1051/epn/2011202 Capricious suntime t what time of the day does the sun reach its is that the solar time will gradually deviate from the time highest point, or culmination point, when on our watch. We expect this‘eccentricity effect’ to show a its position is exactly in the South? e ans - sine-like behaviour with a period of a year. A wer to this question is not so trivial. For ere is a second, even more important complication. It is one thing, it depends on our location within our time due to the fact that the rotational axis of the earth is not zone. For Berlin, which is near the Eastern end of the perpendicular to the ecliptic, but is tilted by about 23.5 Central European time zone, it may happen around degrees. is is, aer all, the cause of our seasons. To noon, whereas in Paris it may be close to 1 p.m. (we understand this ‘tilt effect’ we must realise that what mat - ignore the daylight saving ters for the deviation in time time which adds an extra is the variation of the sun’s hour in the summer). horizontal motion against But even for a fixed loca - the stellar background tion, the time at which the during the year. In mid- sun reaches its culmination summer and mid-winter, point varies throughout the when the sun reaches its year in a surprising way.
    [Show full text]
  • The Iberoamerican Contribution To
    RevMexAA (Serie de Conferencias), 25, 21{23 (2006) THE IBEROAMERICAN CONTRIBUTION TO INTERNATIONAL TIME KEEPING E. F. Arias1,2 RESUMEN Las escalas internacionales de tiempo, Tiempo At´omico Internacional (TAI) y Tiempo Universal Coordinado (UTC), son elaboradas en el Bureau Internacional des Poids et Mesures (BIPM), gracias a la contribuci´on de 57 laboratorios de tiempo nacionales que mantienen controles locales de UTC. La contribuci´on iberoamericana al c´alculo de TAI ha aumentado en los ultimos´ anos.~ Diez laboratorios en las Am´ericas y uno en Espana~ contribuyen a la estabilidad de TAI con el aporte de datos de relojes at´omicos industriales; una fuente de cesio mantenida en uno de ellos contribuye a mejorar la exactitud de TAI. Este art´ıculo resume las caracter´ısticas de las escalas de tiempo de referencia y describe la contribuci´on de los laboratorios iberoamericanos. ABSTRACT The international time scales, International Atomic Time (TAI) and Coordinated Universal Time (UTC), are elaborated at the Bureau International des Poids et Mesures (BIPM), thanks to the contribution of 57 national time laboratories that maintain local realizations of UTC. The Iberoamerican contribution to TAI has increased in the last years. Ten laboratories in America and one in Spain participate to the calculation of TAI , increasing its stability with the data of industrial atomic clocks and improving its accuracy with frequency measurements of a caesium source developed and maintained at one laboratory. This paper summarizes the characteristics of the reference time scales and describes the contributions of the Iberoamerican time laboratories to them. Key Words: TIME | REFERENCE SYSTEMS 1.
    [Show full text]
  • Grand Complication No. 97912 Fetches $2,251,750
    PRESS RELEASE | N E W Y O R K | 1 1 JUNE 2013 FOR IMMEDIATE RELEASE CHRISTIE’S NEW YORK IMPORTANT WATCHES AUCTION TOTALS $7,927,663 The Stephen S. Palmer PATEK PHILIPPE GRAND COMPLICATION NO. 97912 FETCHES $2,251,750 WORLD AUCTION RECORD FOR A PATEK PHILIPPE GRAND COMPLICATION * THE HIGHEST TOTAL ACHIEVED FOR ANY WATCH AT CHRISTIE’S NEW YORK THE HIGHEST PRICE ACHIEVED FOR ANY WATCH THUS FAR IN 2013 CHRISTIE’S CONTINUES TO LEAD THE MARKET FOR POCKETWATCHES AND WRISTWATCHES WITH US$50.3 MILLION IN AUCTION SALES ACHIEVED ACROSS 3 SALE SITES New York – On 11 June 2013, Christie’s New York auction of Important Watches achieved a total result of US$7,927,663 (£5,073,704 / €5,945,747), selling 87% by lot and 94% by value. The star lot of the day-long auction was the history changing Stephen S. Palmer Patek Philippe Grand Complication No. 97912 which achieved an impressive $2,251,750. Manufactured in 1898, this 18k pink gold openface minute repeating perpetual calendar split-seconds chronograph clockwatch with grande and petite sonnerie, and moon phases is a spectacular addition to scholarship surrounding Patek Philippe and Grand Complications in general. Aurel Bacs, International Head of Watches, commented: “Today’s auction marked an unparalleled event at Christie’s New York flagship saleroom in Rockefeller Center. The sale of Stephen S. Palmer Patek Philippe Grand Complication, No. 97912 cements Christie’s leadership in the category of the world’s most exceptional and rare timepieces. We were thrilled to see such active participation across 30 countries, 5 continents and over 250 Christie’s LIVE™ bidders demonstrating the ever increasing demand of our exceptionally curated sales.” WORLD AUCTION RECORD FOR ROLEX REFERENCE 5036 The Rolex, Reference 5036, a fine and rare 18K pink gold triple calendar chronograph wristwatch featuring a two-toned silvered dial with two apertures for day and month in French, circa 1949 sold for $171,750 / £109,920 / €128,813, establishing a new world auction record for the reference.
    [Show full text]
  • Unprecedented Collecting Opportunites at SPRING 2012 IMPORTANT WATCHES AUCTION
    For Immediate Release 3 May 2012 Contact: Luyang Jiang (Hong Kong) +852 2978 9919 [email protected] Belinda Chen (Beijing) +8610 6500 6517 [email protected] CHRISTIE‟S HONG KONG PRESENTS: Unprecedented Collecting Opportunites at SPRING 2012 IMPORTANT WATCHES AUCTION Offering More than 500 timepieces valued in excess of HK$120 million/US$16 million An important private collection of 20 examples of haute horology leads the season, including the Franck Muller Aeternitas Mega 4 - the most complicated wristwatch ever manufactured with a 36 complications The largest selection of vintage Patek Philippes ever offered in Asia An extraordinary collection of the famed Harry Winston Opus Series never before seen at auction Important Watches 9.30am & 2pm, Wednesday, 30 May, 2012 Woods Room, Convention Hall, Hong Kong Convention and Exhibition Centre No. 1 Harbour Road, Wan Chai, Hong Kong Click here to view a short video of auction highlights Hong Kong –Christie‟s will present more than 500 of the world‟s finest and rarest timepieces on 30 May with its Spring auction Important Watches. Valued in excess of HK$120 million/US$16 million, the sale offers an array of highly collectible horological creations that promises to excite and inspire the most discerning collectors, including masterworks from every top manufacturer. Leading the sale is one of the largest single owner collection of contemporary watches from world‟s top makers including brands never before offered at auction, the most prominent collections of Harry Winston Opus series watches ever offered at auction, an array of vintage and modern complicated wristwatches, stunning high jewellery wristwatches, as well rare and historical pocket watches.
    [Show full text]
  • Time, Clocks, Day
    IN NO VA TION 10 12 or better. But over the long tern1 , its fre­ quency can drift by several parts in 10 11 per Time, Clocks, day. In order to keep two clocks using quartz crystal oscillators synchronized to l microsec­ and GPS ond . you wou ld have to reset them at least every few hours. The resonators used in atomic clocks have Richard B. Langley surpassed considerably the accuracy and sta­ bility of quartz resonators. University of New Brunswick ATOMIC RESONATORS An atomic clock contains an oscillator whose oscillati ons are governed by a particular erating the satellite's signals. But just what atomic process. According to the quantum pic­ is an atomic clock? Before we answer ture of matter. atoms and molecules exist in thi s question, let"s examine so me of the well-defined energy states. An atom that bas ic concepts associated with clocks and fa lls from a higher to a lower energy state timekeeping. emits radiation in the form of light or radio waves with a frequency that is directly pro­ THE QUARTZ CRYSTAL RESONATOR portional to the change in energy of the All clocks contai n an oscillator, which in atom. Conversely. an atom that jumps from turn contains a frequency-determining ele­ a lower energy state to a higher one absorbs ment called a resonator. A resonator is any radiat ion of exactly the same frequency. The "Innovation" is a regular column in GPS device that vibrates or osc illates with a well­ existence of such quantum jumps means that World featuring discussions on recent defin ed frequency when excited.
    [Show full text]
  • GLONASS Time. 2. Generation of System Timescale
    GLONASS TIME SCALE DESCRIPTION Definition of System 1. System timescale: GLONASS Time. 2. Generation of system timescale: on the basis of time scales of GLONASS Central Synchronizers (CS). 3. Is the timescale steered to a reference UTC timescale: Yes. a. To which reference timescale: UTC(SU), generated by State Time and Frequency Reference (STFR). b. Whole second offset from reference timescale: 10800 s (03 hrs 00 min 00 s). tGLONASS =UTC (SU ) + 03 hrs 00 min c. Maximum offset (modulo 1s) from reference timescale: 660 ns (probability 0.95) – in 2014; 4 ns (probability 0.95) – in 2020. 4. Corrections to convert from satellite to system timescale: SVs broadcast corrections τn(tb) and γn(tb) in L1, L2 frequency bands for 30-minute segments of prediction interval. a. Type of corrections given; include statement on relativistic corrections: Linear coefficients broadcast in operative part of navigation message for each SV (in accordance with GLONASS ICD). Periodic part of relativistic corrections taking into account the deviation of individual SVs orbits from GLONASS nominal orbits is incorporated in calculation of broadcast corrections to convert from satellite timescale to GLONASS Time. b. Specified accuracy of corrections to system timescale: The accuracy of calculated offset between SV timescale and GLONASS Time – 5,6 ns (rms). c. Location of corrections in broadcast messages: L1/L2 - τn(t b) – line 4, bits 59 – 80 of navigation frame; - γn(t b) - line 3, bits 69 – 79 of navigation frame. d. Equation to correct satellite timescale to system timescale: L1/L2 tGLONASS = t +τ n (tb ) − γ n (tb )( t − tb ) where t - satellite time; τn(t b), γn(tb) - coefficients of frequency/time correction; tb - time of locking frequency/time parameters.
    [Show full text]
  • Multi-Facetted Sundials
    The Scientific Tourist: Aberdeen Multi-facetted sundials Scotland is rich in multi-facetted sundials, singularly rich in fact. One is hard pressed to find two the same. As well as being individual in appearance, each one combines an appreciation of science, mathematics, high skill in stonemasonry, art and spectacle in a single object. Besides all of that, most of them are remarkably old, dating from between 1625 and 1725 in round numbers. They are mainly found in the gardens of venerable country houses, sometimes castles, or if they have been moved then they come from old country estates. These dials have usually outlasted the original houses of the aristocracy who commissioned them. A good many are described and some illustrated in Mrs Gatty’s famous book of sundials1 and more recently in Andrew Somerville’s account of The Ancient Sundials of Scotland2. The very top of the great sundial at Glamis Castle, from an illustration by Mrs Their widespread occurrence over Scotland attests to the fact that Gatty they were fashionable for about a century but, curiously enough, we don’t know why that was so. Were they just ‘fun’ to have in the garden, effectively a pillar with multiple clock faces on it, sometimes more than 50? Each dial is quite small so they aren’t precision instruments but people didn’t worry overmuch about the exact time of day in 1700. Were they a symbolic representation of ‘Science’ in the garden, a centre-piece and statement in a formal garden, just as later in the 18th century one may have found an orrery in the library
    [Show full text]
  • GPS Operation V1 4.Fm
    Operation of the Courtyard CY490 SPG While Connected to the GPS Receiver No part of this document may be transmitted or reproduced in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from Courtyard Electronics Limited. Introduction One of the best sources of reference for both frequency and time, is the Global Positioning System. The GPS system only transmits a complete UTC-GPS time message once every 12.5 minutes. So when powering up the GPS receiver it might be best to wait 12.5 minutes before relying on the GPS time. The CY490 SPG uses a 12 channel GPS receiver. As the SPG is powered the GPS receiver begins searching for satellites from which it can get time, frequency and phase information. In a good reception area as many as 12 satellites may be visible. The SPG only requires 3 satellites to be located and fully decoded before it can start using the GPS data. The search for the first 3 satellites can take up to 3 minutes, but is often accomplished in 2. If less than 3 satellites are available, the SPG will not lock to GPS. The number of satellites can be monitored on the first menu and on the remote control program CY490MiniMessage. The CY490MiniMessage gives a graphic view of satellites and provides much information for the user. GPS and television From a GPS receiver, the Master Clock can derive UTC and also add the appropriate time offset and provide corrected local time.
    [Show full text]
  • Clinical Validation of the Comprehensive Complication Index in Colon Cancer Surgery
    cancers Article Clinical Validation of the Comprehensive Complication Index in Colon Cancer Surgery Nicolò Tamini 1,2,* , Davide Bernasconi 1 , Lorenzo Ripamonti 1 , Giulia Lo Bianco 1, Marco Braga 1,2 and Luca Nespoli 1,2 1 School of Medicine and Surgery, University Milano-Bicocca, 20900 Monza, Italy; [email protected] (D.B.); [email protected] (L.R.); [email protected] (G.L.B.); [email protected] (M.B.); [email protected] (L.N.) 2 ASST Ospedale San Gerardo, 20090 Monza, Italy * Correspondence: [email protected] Simple Summary: The results of this study showed a greater ability of the Comprehensive Compli- cation Index if compared to the conventional Clavien–Dindo classification to predict hospital stay in colon cancer patients, particularly in patients with multiple postoperative complications. These results encourage the routine use of the Comprehensive Complication Index to grade postoperative complications in colonic surgery. Abstract: (1) Introduction: To date, the sensitivity of the Comprehensive Complication Index (CCI) in a homogeneous cohort of colonic resections for oncologic purposes has not been reported. The present study aims to compare the CCI with the conventional Clavien–Dindo classification (CDC) in colon cancer patients. (2) Methods: The clinical data of patients submitted to an elective colectomy for adenocarcinoma were retrieved from a prospectively maintained database. Postoperative compli- cations and length of stay were reviewed, and CDC and CCI scores were calculated for each patient. Citation: Tamini, N.; Bernasconi, D.; The association of the CCI and the CDC with the length of stay, prolongation of stay and readmission Ripamonti, L.; Lo Bianco, G.; Braga, M.; Nespoli, L.
    [Show full text]