Heteromorphy and Flower Development in Primula
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A MOSAIC DISEASE of PRIMULA OBCONICA and ITS CONTROL' a Mosaic Disease of Primula Obconica Hance, Grown Extensively As a Potted
A MOSAIC DISEASE OF PRIMULA OBCONICA AND ITS CONTROL' By C. M. ToMPKiNS, assistant plant pathologist, and JOHN T. MIDDLETON, junior plant pathologist, California Agricultural Experiment Station ^ INTRODUCTION A mosaic disease of Primula obconica Hance, grown extensively as a potted ornamental plant in commercial greenhouses in San Fran- cisco, was first observed in August 1937. The incidence of the disease on very young to older seedling plants ranged from 5 to 25 percent and, because infected plants could not be marketed, serious financial losses were incurred. The results of studies on transmission, experimental host range, and properties of the virus, as well as control of the disease, are presented in this paper. REVIEW OF LITERATURE That many cultivated species of the genus Primula are generally susceptible to virus infection is indicated in the literature. In addi- tion to the mosaic diseases, the aster yellows, curly top, spotted wilt, and certain tobacco viruses may cause infection. Since this paper deals with a mosaic disease, only pertinent references are listed. In Japan, Fukushi (4.y in 1932 and Hino (6) in 1933 recorded the occurrence of a mosaic disease on Primula obconica. The latter also observed a similar disease on P. denticulata Sm. Smith (13) in England, in 1935, described a virus disease of the mosaic type on Primula obconica caused by cucumber virus 1. Later, Smith (14) stated that Cucumis virus 1 sometimes caused color break- ing of the fiowers and that other species of Primula were susceptible. Cucumis virus IB, a strain, induced '^a pronounced yellow and green mottling.'' In Germany, Ludwigs (7) and Pape {8) described very briefly a virus disease of Primula obconica without apparently establishing the identity of the virus. -
The Antioxidant and Radical Scavenging Activities of Primrose (Primula Vulgaris)
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library European Journal of Experimental Biology, 2014, 4(2):395-401 ISSN: 2248 –9215 CODEN (USA): EJEBAU The antioxidant and radical scavenging activities of Primrose (Primula vulgaris ) Nazan Demir 1*, Azize Alayli Gungor 2, Hayrunnisa Nadaroglu 3 and Ya şar Demir 1,4 1Mugla University, Faculty of Sciences, Department of Chemistry, Mugla, Turkey 2Atatürk University, Erzurum Vocational School, Department of Chemical Technology, Erzurum, Turkey 3Atatürk University, Erzurum Vocational School, Department of Food Technology, Erzurum, Turkey 4University of Mehmet Akif Ersoy, Faculty of Science, Department of Chemistry, Burdur, Turkey _____________________________________________________________________________________________ ABSTRACT People have become more interested in Primrose (Primula vulgaris) in recent years as it has different areas to be applied especially within the food and cosmetic world. This study evaluated the in vitro antioxidant activity of water and ethanol extracts of Primrose (Primula vulgaris). The antioxidant properties of the Primrose (Primula vulgaris) were evaluated the in vitro by antioxidant assays such as 2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH•) scavenging, superoxide anion radical scavenging, and metal chelating activities. α-Tocopherol, butylated hydroxyanisole (BHA), and ascorbic acid were used as the reference antioxidant compounds. The concentration of 45 µg/mL of water and ethanol extracts of Primrose (Primula vulgaris) showed 43,0 and 39,4% reducing power, respectively. On the other hand, 45 µg/mL of standard antioxidant such as α-tocopherol indicated 38,4% on reducing power. In addition primrose is an effective DPPH• scavenging, superoxide anion radical scavenging and metal chelating on ferrous ions activities. -
Poisonous Plants -John Philip Baumgardt TURIST Are Those of the Authors and Are Not Necessarily Tho Se of the Society
American · ulturist How you spray does make a differenee. Now, more than ever, it's im portant to use just the right amount of spray to rid your garden of harmful insects and disease . This is the kind of precise 12. Right &1pressure: A few 4. Right pattern: Just turn control you get with a Hudson strokes of the pump lets you spray nozzle to get a fine or sprayer. Here's why you get spray at pressure you select coarse spray . Or for close-up best results, help protect the -high for a fine mist (good or long-range spraying. environment: for flowers) or low for a wet 5. Most important, right place: With a Hudson sprayer, 1 L( 1 spra~ (:~Stfor weeds) you place spray right where the trouble is. With its long extension and adjustable noz zle, you easily reach all parts I. R;ghl m;" W;lh a Hudson of plant. Especially under the ~ leaves where many insects sprayer, you mix spray exact- . Iy 'as recommended And 3. Right amount: Squeeze hide and most disease starts. that's the way it goes o~ your handle, spray's on. Release, For a more beautiful garden plants-not too strong or too it's off. Spray just to the point -a better environment weak. of runoff. C?at the plant, keep you r sprayi ng right on .,.J... IJ:~:1i.~ ,don't drench It. target-with a Hudson spray er. Get yours now. How you spray does make a difference! SIGN OF THE BEST BUV SPRAYERS AND DUSTERS .,..~<tlt\O ' P * "'Al Cf O('f"(I,1: ~Good Housekeeping; ""'1,; GU, U N1(( S ~.'" Allow 2 to 4 weeks delivery, Offer expires December 31 , 1972. -
Primula Make It Suitable for a Variety of Applications and Markets
crop cultivation an all-time favorite The many species, cultivars, flower types and colors of primula make it suitable for a variety of applications and markets. Learn how to produce the most important species for late winter sales. By Meriam Karlsson he most important primula species CULTIVARS Quantum series from Goldsmith Seeds Inc. in production today include English English Primrose. The English primrose has 2- (Gilroy, Calif.). The Lovely series has smaller primrose or acaulis primula (Primula to 10-inch-long leaves in a compact rosette, as flowers than the Pageant series, although they vulgaris, synonym P. acaulis), polyan- suggested by the word acaulis, meaning “stem- both have a compact growth habit suitable for 4- thus,T polyantha primrose or hybrid primrose (P. less.” The flowers develop on individual, 2- to 8- inch or smaller pots. Several red and pink bicol- xpolyantha), fairy primrose or baby primrose (P. inch-long pedicels from the center of the plant. ors are included in the Pageant series. The malacoides), German primrose or poison primrose The native English primrose has pale yellow Quantum series has uniform germination rates (P. obconica) and cowslip (P. veris). Chinese prim- flowers. Through breeding efforts and the devel- and good postharvest quality. rose (P. sinensis) is also produced in limited num- opment of F1 hybrids, cultivars of English prim- The Dania (Dæhnfeldt Inc.), Finesse (Ernst bers and some interest exists in producing drum- rose are now available with flowers in many col- Benary Seed Growers Ltd., Hann. Muenden, stick primrose (P. denticulata) as a container plant. ors from white to purple. -
SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE
National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE Contents White / Cream ................................ 2 Grasses ...................................... 130 Yellow ..........................................33 Rushes ....................................... 138 Red .............................................63 Sedges ....................................... 140 Pink ............................................66 Shrubs / Trees .............................. 148 Blue / Purple .................................83 Wood-rushes ................................ 154 Green / Brown ............................. 106 Indexes Aquatics ..................................... 118 Common name ............................. 155 Clubmosses ................................. 124 Scientific name ............................. 160 Ferns / Horsetails .......................... 125 Appendix .................................... 165 Key Traffic light system WF symbol R A G Species with the symbol G are For those recording at the generally easier to identify; Wildflower Level only. species with the symbol A may be harder to identify and additional information is provided, particularly on illustrations, to support you. Those with the symbol R may be confused with other species. In this instance distinguishing features are provided. Introduction This guide has been produced to help you identify the plants we would like you to record for the National Plant Monitoring Scheme. There is an index at -
Populations of Primula Veris
Heredity 71 (1993) 252—258 Received 8 December 1992 Genetical Society of Great Britain Genetics of colonizing and established populations of Primula veris SUSAN ANTROBUS* & ANDREW J. LACK School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford OX3 OBP, U.K. Primulaveris, a long-lived iteroparous herb which has declined in abundance in southern England since the 1940s, has recently been observed colonizing disturbed sites. The genetic structure of P. veris populations in the Oxford region was investigated to determine whether colonizing popula- tions differ from those longer established. Nine enzyme systems, revealing 19 presumptive loci, were screened in 11 established and seven colonizing populations. Levels of variation were low in all populations, and all populations except one approximated panmixia. The proportion of the total variation among populations was small (FST =0.039) as were genetic distances between popula- tions. No significant differences in genetic structure were recorded between established and colon- izing populations. The lack of differentiation within and between populations is surprising for a long-lived, insect pollinated species with gravity dispersed seeds, for which gene flow would be expected to be spatially restricted. Keywords:colonization,dispersal, gene flow, genetic structure, isozyme, Primula veris. Introduction Yeo, 1973; Wedderburn & Richards, 1990). Pollen dispersal is normally up to 12 m and seed dispersal, by Theability of plant species to colonize new areas and gravity, is normally limited to 0.5 m (Richards & the ecological and genetic consequences of this coloni- Ibrahim, 1978). In mature habitats, Tamm (1972) zation have received much study. Successful colonizing observed that recruitment of seedlings into the adult plants are likely to have a good seed dispersal mechan- population was a rare event and that regeneration was ism and rapid reproduction or vegetative growth. -
(Rubiaceae), a Uniquely Distylous, Cleistogamous Species Eric (Eric Hunter) Jones
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2012 Floral Morphology and Development in Houstonia Procumbens (Rubiaceae), a Uniquely Distylous, Cleistogamous Species Eric (Eric Hunter) Jones Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES FLORAL MORPHOLOGY AND DEVELOPMENT IN HOUSTONIA PROCUMBENS (RUBIACEAE), A UNIQUELY DISTYLOUS, CLEISTOGAMOUS SPECIES By ERIC JONES A dissertation submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2012 Eric Jones defended this dissertation on June 11, 2012. The members of the supervisory committee were: Austin Mast Professor Directing Dissertation Matthew Day University Representative Hank W. Bass Committee Member Wu-Min Deng Committee Member Alice A. Winn Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii I hereby dedicate this work and the effort it represents to my parents Leroy E. Jones and Helen M. Jones for their love and support throughout my entire life. I have had the pleasure of working with my father as a collaborator on this project and his support and help have been invaluable in that regard. Unfortunately my mother did not live to see me accomplish this goal and I can only hope that somehow she knows how grateful I am for all she’s done. iii ACKNOWLEDGEMENTS I would like to acknowledge the members of my committee for their guidance and support, in particular Austin Mast for his patience and dedication to my success in this endeavor, Hank W. -
The Risk of Injurious and Toxic Plants Growing in Kindergartens Vanesa Pérez Cuadra, Viviana Cambi, María De Los Ángeles Rueda, and Melina Calfuán
Consequences of the Loss of Traditional Knowledge: The risk of injurious and toxic plants growing in kindergartens Vanesa Pérez Cuadra, Viviana Cambi, María de los Ángeles Rueda, and Melina Calfuán Education Abstract The plant kingdom is a producer of poisons from a vari- ered an option for people with poor education or low eco- ety of toxic species. Nevertheless prevention of plant poi- nomic status or simply as a religious superstition (Rates sonings in Argentina is disregarded. As children are more 2001). affected, an evaluation of the dangerous plants present in kindergartens, and about the knowledge of teachers in Man has always been attracted to plants whether for their charge about them, has been conducted. Floristic inven- beauty or economic use (source of food, fibers, dyes, etc.) tories and semi-structured interviews with teachers were but the idea that they might be harmful for health is ac- carried out at 85 institutions of Bahía Blanca City. A total tually uncommon (Turner & Szcawinski 1991, Wagstaff of 303 species were identified, from which 208 are consid- 2008). However, poisonings by plants in humans repre- ered to be harmless, 66 moderately and 29 highly harm- sent a significant percentage of toxicological consulta- ful. Of the moderately harmful, 54% produce phytodema- tions (Córdoba et al. 2003, Nelson et al. 2007). titis, and among the highly dangerous those with alkaloids and cyanogenic compounds predominate. The number of Although most plants do not have any known toxins, there dangerous plants species present in each institution var- is a variety of species with positive toxicological studies ies from none to 45. -
Buzz-Pollinated Dodecatheon Originated from Within The
American Journal of Botany 91(6): 926±942. 2004. BUZZ-POLLINATED DODECATHEON ORIGINATED FROM WITHIN THE HETEROSTYLOUS PRIMULA SUBGENUS AURICULASTRUM (PRIMULACEAE): ASEVEN-REGION CPDNA PHYLOGENY AND ITS IMPLICATIONS FOR FLORAL EVOLUTION1 AUSTIN R. MAST,2,4 DANIELLE M. S. FELLER,2,5 SYLVIA KELSO,3 AND ELENA CONTI2 2Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland; and 3Department of Biology, Colorado College, Colorado Springs, Colorado 80903 USA We sequenced seven cpDNA regions from 70 spp. in Dodecatheon, Primula subgenus Auriculastrum, and outgroups, reconstructed their cpDNA phylogeny with maximum parsimony, and determined branch support with bootstrap frequencies and Bayesian posterior probabilities. Strongly supported conclusions include the (1) paraphyly of Primula subgenus Auriculastrum with respect to a mono- phyletic Dodecatheon, (2) sister relationship between the North American Dodecatheon and the Californian P. suffrutescens, (3) novel basal split in Dodecatheon to produce one clade with rugose and one clade with smooth anther connectives, (4) monophyly of all sections of Primula subgenus Auriculastrum, and (5) exclusion of the enigmatic Primula section Amethystina from the similar Primula subgenus Auriculastrum. These results support the origin of the monomorphic, buzz-pollinated ¯ower of Dodecatheon from the heterostylous ¯ower of Primula. We marshal evidence to support the novel hypothesis that the solanoid ¯ower of Dodecatheon represents the ®xation of recessive alleles at the heterostyly linkage group (pin phenotype). Of the remaining traits associated with their solanoid ¯owers, we recognize at least six likely to have arisen with the origin of Dodecatheon, one that preceded it (¯ower coloration, a transfer exaptation in Dodecatheon), and one that followed it (rugose anther connectives, an adaptation to buzz pollination). -
Primula Elatior (L.) Hill, Flos
19 September 2012 EMA/HMPC/136583/2012 Committee on Herbal Medicinal Products (HMPC) Assessment report on Primula veris L. and/or Primula elatior (L.) Hill, flos Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC as amended (traditional use) Final Herbal substance(s) (binomial scientific name of Primula veris L., Primula elatior (L.) Hill, flos the plant, including plant part) Herbal preparation(s) A) Liquid extract (DER 1:1), extraction solvent ethanol 25% v/v B) Comminuted herbal substance Pharmaceutical form(s) Comminuted herbal substance as herbal tea for oral use. Other herbal preparations in liquid and solid dosage forms for oral use. Rapporteur R. Länger Assessor(s) R. Länger 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7523 7051 E -mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2013. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ................................................................................................................... 2 1. Introduction ....................................................................................................................... 3 1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof .. 3 1.2. Information about products on the market in the Member States ............................... 5 1.3. Search and assessment methodology .................................................................... -
Primula Veris Plants Derived from in Vitro Cultures and from Seeds: Genetic Stability, Morphology, and Seed Characteristics
Turkish Journal of Botany Turk J Bot (2018) 42: 412-422 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1802-7 Primula veris plants derived from in vitro cultures and from seeds: genetic stability, morphology, and seed characteristics 1, 1 2 3 Iwona JEDRZEJCZYK *, Maria MOROZOWSKA , Renata NOWIŃSKA , Andrzej M. JAGODZIŃSKI 1 Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland 2 Department of Botany, Poznań University of Life Sciences, Poznań, Poland 3 Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland Received: 05.02.2018 Accepted/Published Online: 25.04.2018 Final Version: 24.07.2018 Abstract: Flow cytometry measurement confirmed the genetic stability of Primula veris L. (cowslip) plants obtained during the micropropagation process. The mean 2C DNA content was 0.97 pg/2C and P. veris can be classified in the group of plants of very small genomes. Comparative morphological analysis of cowslip plants regenerated in vitro and derived from seeds was carried out in three subsequent years under common garden conditions, which limited the effects of environmental factors. The origin of specimens significantly influenced most of the morphological traits examined. Plants that originated from seeds were characterized by more intensive development rate and higher total seed production compared to micropropagated plants. Significant differences between the two groups of specimens were observed for the number of flower stalks, flowers, fruits, and seeds per plant. No interseasonal variation within the reproductive traits such as number of seeds per flower stalk and per plant was found for plants derived from in vitro cultures. -
Southern Garden History Plant Lists
Southern Plant Lists Southern Garden History Society A Joint Project With The Colonial Williamsburg Foundation September 2000 1 INTRODUCTION Plants are the major component of any garden, and it is paramount to understanding the history of gardens and gardening to know the history of plants. For those interested in the garden history of the American south, the provenance of plants in our gardens is a continuing challenge. A number of years ago the Southern Garden History Society set out to create a ‘southern plant list’ featuring the dates of introduction of plants into horticulture in the South. This proved to be a daunting task, as the date of introduction of a plant into gardens along the eastern seaboard of the Middle Atlantic States was different than the date of introduction along the Gulf Coast, or the Southern Highlands. To complicate maters, a plant native to the Mississippi River valley might be brought in to a New Orleans gardens many years before it found its way into a Virginia garden. A more logical project seemed to be to assemble a broad array plant lists, with lists from each geographic region and across the spectrum of time. The project’s purpose is to bring together in one place a base of information, a data base, if you will, that will allow those interested in old gardens to determine the plants available and popular in the different regions at certain times. This manual is the fruition of a joint undertaking between the Southern Garden History Society and the Colonial Williamsburg Foundation. In choosing lists to be included, I have been rather ruthless in expecting that the lists be specific to a place and a time.