Oviposition Preferences, Adjacency of Old Woodland and Isolation Explain the Distribution of the Duke of Burgundy Butterfly (Ham
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lepidoptera: Papilionoidea) Q ⇑ Marianne Espeland A,B, , Jason P.W
Molecular Phylogenetics and Evolution 93 (2015) 296–306 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Ancient Neotropical origin and recent recolonisation: Phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea) q ⇑ Marianne Espeland a,b, , Jason P.W. Hall c, Philip J. DeVries d, David C. Lees e, Mark Cornwall a, Yu-Feng Hsu f, Li-Wei Wu g, Dana L. Campbell a,h, Gerard Talavera a,i,j, Roger Vila i, Shayla Salzman a, Sophie Ruehr k, David J. Lohman l, Naomi E. Pierce a a Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA b McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Powell Hall, 2315 Hull Road, Gainesville, FL 32611, USA c Department of Systematic Biology-Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-127, USA d Department of Biological Sciences, University of New Orleans, 2000 Lake Shore Drive, New Orleans, LA 70148, USA e Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK f Department of Life Science, National Taiwan Normal University, Taipei, Taiwan g The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Nantou, Taiwan h Division of Biological Sciences, School of Science, Technology, Engineering & Mathematics, University of Washington Bothell, Box 358500, 18115 Campus Way NE, Bothell, WA 98011-8246, USA i Institut de Biologia Evolutiva (CSIC-UPF), Pg. Marítim de la Barceloneta 37, 08003 Barcelona, Spain j Faculty of Biology & Soil Science, St. -
SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae. -
Big Creek Lepidoptera Checklist
Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae -
Genomic Analysis of the Tribe Emesidini (Lepidoptera: Riodinidae)
Zootaxa 4668 (4): 475–488 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4668.4.2 http://zoobank.org/urn:lsid:zoobank.org:pub:211AFB6A-8C0A-4AB2-8CF6-981E12C24934 Genomic analysis of the tribe Emesidini (Lepidoptera: Riodinidae) JING ZHANG1, JINHUI SHEN1, QIAN CONG1,2 & NICK V. GRISHIN1,3 1Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, and 3Howard Hughes Medical Insti- tute, 5323 Harry Hines Blvd, Dallas, TX, USA 75390-9050; [email protected] 2present address: Institute for Protein Design and Department of Biochemistry, University of Washington, 1959 NE Pacific Street, HSB J-405, Seattle, WA, USA 98195; [email protected] Abstract We obtained and phylogenetically analyzed whole genome shotgun sequences of nearly all species from the tribe Emesidini Seraphim, Freitas & Kaminski, 2018 (Riodinidae) and representatives from other Riodinidae tribes. We see that the recently proposed genera Neoapodemia Trujano, 2018 and Plesioarida Trujano & García, 2018 are closely allied with Apodemia C. & R. Felder, [1865] and are better viewed as its subgenera, new status. Overall, Emesis Fabricius, 1807 and Apodemia (even after inclusion of the two subgenera) are so phylogenetically close that several species have been previously swapped between these two genera. New combinations are: Apodemia (Neoapodemia) zela (Butler, 1870), Apodemia (Neoapodemia) ares (Edwards, 1882), and Apodemia (Neoapodemia) arnacis (Stichel, 1928) (not Emesis); and Emesis phyciodoides (Barnes & Benjamin, 1924) (not Apodemia), assigned to each genus by their monophyly in genomic trees with the type species (TS) of the genus. -
Phylogeny and Evolution of Lepidoptera
EN62CH15-Mitter ARI 5 November 2016 12:1 I Review in Advance first posted online V E W E on November 16, 2016. (Changes may R S still occur before final publication online and in print.) I E N C N A D V A Phylogeny and Evolution of Lepidoptera Charles Mitter,1,∗ Donald R. Davis,2 and Michael P. Cummings3 1Department of Entomology, University of Maryland, College Park, Maryland 20742; email: [email protected] 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 3Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742 Annu. Rev. Entomol. 2017. 62:265–83 Keywords Annu. Rev. Entomol. 2017.62. Downloaded from www.annualreviews.org The Annual Review of Entomology is online at Hexapoda, insect, systematics, classification, butterfly, moth, molecular ento.annualreviews.org systematics This article’s doi: Access provided by University of Maryland - College Park on 11/20/16. For personal use only. 10.1146/annurev-ento-031616-035125 Abstract Copyright c 2017 by Annual Reviews. Until recently, deep-level phylogeny in Lepidoptera, the largest single ra- All rights reserved diation of plant-feeding insects, was very poorly understood. Over the past ∗ Corresponding author two decades, building on a preceding era of morphological cladistic stud- ies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yield- ing to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution. -
Apodemia Mormo ) Oviposition Behaviour in Canada
34 THE CANADIAN FIELD -N ATURALIST Vol. 126 First Observations of Mormon Metalmark ( Apodemia mormo ) Oviposition Behaviour in Canada ASHLEY ANNE WICK 1, 4 , JOHANE JANELLE 2, SHELLEY PRUSS 3, and NADIR ERBILGIN 1 1Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3 Canada ; email: [email protected] 2Box 218, Val Marie, Saskatchewan S0N 2T0 Canada 3Parks Canada Agency, Western and Northern Service Centre, Calgary, Alberta T2P 3M3 Canada 4Corresponding author Wick, Ashley Anne, Johane Janelle, Shelley Pruss, and Nadir Erbilgin. 2012. First observations of Mormon Metalmark (Apodemia mormo ) oviposition behaviour in Canada. Canadian Field-Naturalist 126(1): 3 4–37. We present new information on oviposition behaviour in the Mormon Metalmark, Apodemia mormo Felder and Felder, 1859 , documented in Grasslands National Park of Canada, Saskatchewan, in August 2011. The Mormon Metalmark is found through - out the U.S. southwest; little is known about its life history in the northern populations found in Canada. We provide photo - graphic documentation of the butterfly laying single eggs directly on soil or rocks. These observations differ from those recorded in the southern part of its range, where it lays eggs in groups of 2–4 on various locations of the host plant, Branched Umbrella- Plant, Eriogonum pauciflorum Pursh. This is the first published account of oviposition behaviour of this species in Canada in the most northern part of its range. Key Words: Mormon Metalmark, Apodemia mormo, Grasslands National Park of Canada, Saskatchewan, Lepidoptera, ovipo - sition, eggs. The Mormon Metalmark, Apodemia mormo Felder Recent work on the population genetics of the Mor - and Felder, 1859, is a butterfly of the primarily neo - mon Metalmark in the northern part of its range has tropical family Riodinidae. -
Final Project Report
1. Contestant profile . Contestant name: Elena Buhaciuc-Ionita . Contestant occupation: Researcher . University / Organisation S.C.E.C.B. NATURA-Z . Number of people in your team: 4 2. Project overview Title: Quarry ecosystems sustainability. Key species identification and local conservation status increase Contest: (Research/Community) Research Quarry name: Baita-Craciunesti 1/3 Abstract Although a quarry is represented by industrial activities, being itself an ecosystem with specific environmental factors values, it is not separated by the surrounding ecosystems. As the species know no borders, between the quarry and the surroundings exists connective "green channels”. This channels are used by key species for supply and energy exchange between the quarry and the surroundings. In order to be sustainable a quarry management needs to maintain this connections at optimal levels. Therefore, there are three steps to follow: 1. An inventory of the key species present at the quarry level and in the surroundings. 2. The conservation status assessment of the key species.3. Adopting a set of measures in order to increase the conservation status of the identified key species. Following this three steps will bring a real visibility over the quarry ecosystem functioning in connection with natural habitats. Therefore we have identified 71 mushroom species, 3 lichens species, 3 moss species, 3 fern species, 77 superior plant species, 24 day butterfly species, 32 night butterfly species, 72 other invertebrate species, 7 amphibian species, 5 reptile species, 29 bird species (6 day raptors, 2 night raptors, 20 other species), 9 large mammal species, 4 small insectivore mammal species, 7 small rodent mammal species, 9 bat species. -
The Antioxidant and Radical Scavenging Activities of Primrose (Primula Vulgaris)
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library European Journal of Experimental Biology, 2014, 4(2):395-401 ISSN: 2248 –9215 CODEN (USA): EJEBAU The antioxidant and radical scavenging activities of Primrose (Primula vulgaris ) Nazan Demir 1*, Azize Alayli Gungor 2, Hayrunnisa Nadaroglu 3 and Ya şar Demir 1,4 1Mugla University, Faculty of Sciences, Department of Chemistry, Mugla, Turkey 2Atatürk University, Erzurum Vocational School, Department of Chemical Technology, Erzurum, Turkey 3Atatürk University, Erzurum Vocational School, Department of Food Technology, Erzurum, Turkey 4University of Mehmet Akif Ersoy, Faculty of Science, Department of Chemistry, Burdur, Turkey _____________________________________________________________________________________________ ABSTRACT People have become more interested in Primrose (Primula vulgaris) in recent years as it has different areas to be applied especially within the food and cosmetic world. This study evaluated the in vitro antioxidant activity of water and ethanol extracts of Primrose (Primula vulgaris). The antioxidant properties of the Primrose (Primula vulgaris) were evaluated the in vitro by antioxidant assays such as 2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH•) scavenging, superoxide anion radical scavenging, and metal chelating activities. α-Tocopherol, butylated hydroxyanisole (BHA), and ascorbic acid were used as the reference antioxidant compounds. The concentration of 45 µg/mL of water and ethanol extracts of Primrose (Primula vulgaris) showed 43,0 and 39,4% reducing power, respectively. On the other hand, 45 µg/mL of standard antioxidant such as α-tocopherol indicated 38,4% on reducing power. In addition primrose is an effective DPPH• scavenging, superoxide anion radical scavenging and metal chelating on ferrous ions activities. -
NAOMI PIERCE, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA
Journal of the Lepidopterists' Society 51(1), 1997, 102 W. D. WINTER COLLECTION TO THE MUSEUM OF COMPARATIVE ZOOLOGY, CAMBRIDGE Additional key words: Geometridae, Noctuidae, New England. In October 1996, the Lepidoptera collection of William D. (Dave) Winter (Westwood, Massachusetts) was donated to the Museum of Comparative Zoology at Harvard Univer sity (MCZ). This collection represents a most important regional taxonomic resource, with superbly prepared and documented specimens, often with an abundance of affiliated host plant and related biological information. The Winter material at the MCZ presently totals 18,077 specimens, 16,079 from the 1996 donation and 1998 from donations between 1979- 1989. The strongest holdings are in the Noctuidae and Geometridae, although there is good representation of many groups. Virtually all the material was either collected personally by Dave, or reared by him from stock that he secured or obtained from other lepidopter ists (few specimens are the result of direct exchange or gift). Dave ran a light trap for moths regularly in his back yard, with the back yard moving around in Westwood (from the early 1960s to 1975) and then on to nearby Dedham (1975 to 1995), in mostly semi open environments with mixed hardwoods. Over time, the radius of his local butterfly and moth collecting expanded to include mucb of New England, Long Island, and northern New Jersey. Dave and his wife, Jo Brewer, also traveled extenSively throughout North America to photograph and collect, with favored localities including Sanibel and Captiva Islands in Florida, and Ossibaw Island in Georgia. Table 1 provides a synopsis of the MCZ donation. -
Primula Make It Suitable for a Variety of Applications and Markets
crop cultivation an all-time favorite The many species, cultivars, flower types and colors of primula make it suitable for a variety of applications and markets. Learn how to produce the most important species for late winter sales. By Meriam Karlsson he most important primula species CULTIVARS Quantum series from Goldsmith Seeds Inc. in production today include English English Primrose. The English primrose has 2- (Gilroy, Calif.). The Lovely series has smaller primrose or acaulis primula (Primula to 10-inch-long leaves in a compact rosette, as flowers than the Pageant series, although they vulgaris, synonym P. acaulis), polyan- suggested by the word acaulis, meaning “stem- both have a compact growth habit suitable for 4- thus,T polyantha primrose or hybrid primrose (P. less.” The flowers develop on individual, 2- to 8- inch or smaller pots. Several red and pink bicol- xpolyantha), fairy primrose or baby primrose (P. inch-long pedicels from the center of the plant. ors are included in the Pageant series. The malacoides), German primrose or poison primrose The native English primrose has pale yellow Quantum series has uniform germination rates (P. obconica) and cowslip (P. veris). Chinese prim- flowers. Through breeding efforts and the devel- and good postharvest quality. rose (P. sinensis) is also produced in limited num- opment of F1 hybrids, cultivars of English prim- The Dania (Dæhnfeldt Inc.), Finesse (Ernst bers and some interest exists in producing drum- rose are now available with flowers in many col- Benary Seed Growers Ltd., Hann. Muenden, stick primrose (P. denticulata) as a container plant. ors from white to purple. -
Consistent Oviposition Preferences of the Duke of Burgundy Butterfy Over 14 Years on a Chalk Grassland Reserve in Bedfordshire, UK
Journal of Insect Conservation https://doi.org/10.1007/s10841-021-00327-6 ORIGINAL PAPER Consistent oviposition preferences of the Duke of Burgundy butterfy over 14 years on a chalk grassland reserve in Bedfordshire, UK M. P. Hayes1 · E. Ashe‑Jepson1 · G. E. Hitchcock2 · R. I. Knock2 · C. B. H. Lucas2 · A. J. Bladon1 · E. C. Turner1 Received: 11 January 2021 / Accepted: 28 May 2021 © The Author(s) 2021 Abstract The Duke of Burgundy butterfy (Hamearis lucina) is known to have specifc habitat requirements for its larval foodplants. However, no studies have yet investigated whether these preferences vary over time or in relation to climate, and there is a paucity of data on whether management on reserves can replicate preferred conditions. Here, we build upon existing research to confrm which characteristics Duke of Burgundy prefer for their larval foodplants, whether preferences remain consistent across years, and whether conservation management on reserves can replicate these conditions. Fieldwork was carried out at Totternhoe Quarry Reserve, a chalk grassland site in Bedfordshire, UK. Confrming previous research, we found that large Primula plants in dense patches were chosen for oviposition, but that once chosen there was no preference to lay eggs on a plant’s largest leaf. Chosen foodplants were also more sheltered and in closer proximity to scrub than their controls. How- ever, at a fner scale, we found little evidence for any preference based on diferences in microclimate, or vegetation height immediately surrounding the plants. This suggests features that alter microclimatic conditions at a larger scale are relatively more important for determining the suitability of oviposition sites. -
SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE
National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE Contents White / Cream ................................ 2 Grasses ...................................... 130 Yellow ..........................................33 Rushes ....................................... 138 Red .............................................63 Sedges ....................................... 140 Pink ............................................66 Shrubs / Trees .............................. 148 Blue / Purple .................................83 Wood-rushes ................................ 154 Green / Brown ............................. 106 Indexes Aquatics ..................................... 118 Common name ............................. 155 Clubmosses ................................. 124 Scientific name ............................. 160 Ferns / Horsetails .......................... 125 Appendix .................................... 165 Key Traffic light system WF symbol R A G Species with the symbol G are For those recording at the generally easier to identify; Wildflower Level only. species with the symbol A may be harder to identify and additional information is provided, particularly on illustrations, to support you. Those with the symbol R may be confused with other species. In this instance distinguishing features are provided. Introduction This guide has been produced to help you identify the plants we would like you to record for the National Plant Monitoring Scheme. There is an index at