Paleo Ice Flow and Subglacial Meltwater Dynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript. -
Crag-And-Tail Features on the Amundsen Sea Continental Shelf, West Antarctica
Downloaded from http://mem.lyellcollection.org/ by guest on November 30, 2016 Crag-and-tail features on the Amundsen Sea continental shelf, West Antarctica F. O. NITSCHE1*, R. D. LARTER2, K. GOHL3, A. G. C. GRAHAM4 & G. KUHN3 1Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA 2British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK 3Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, D-27568 Bremerhaven, Germany 4College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter EX4 4RJ, UK *Corresponding author (e-mail: [email protected]) On parts of glaciated continental margins, especially the inner leads to its characteristic tapering and allows formation of the sec- shelves around Antarctica, grounded ice has removed pre-existing ondary features. Multiple, elongated ridges in the tail could be sedimentary cover, leaving subglacial bedforms on eroded sub- related to the unevenness of the top of the ‘crags’. Secondary, strates (Anderson et al. 2001; Wellner et al. 2001). While the smaller crag-and-tail features might reflect variations in the under- dominant subglacial bedforms often follow a distinct, relatively lying substrate or ice-flow dynamics. uniform pattern that can be related to overall trends in palaeo- While the length-to-width ratio of crag-and-tail features in this ice flow and substrate geology (Wellner et al. 2006), others are case is much lower than for drumlins or elongate lineations, the more randomly distributed and may reflect local substrate varia- boundary between feature classes is indistinct. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Glacier Change Along West Antarctica's Marie Byrd Land Sector
Glacier change along West Antarctica’s Marie Byrd Land Sector and links to inter-decadal atmosphere-ocean variability Frazer D.W. Christie1, Robert G. Bingham1, Noel Gourmelen1, Eric J. Steig2, Rosie R. Bisset1, Hamish D. Pritchard3, Kate Snow1 and Simon F.B. Tett1 5 1School of GeoSciences, University of Edinburgh, Edinburgh, UK 2Department of Earth & Space Sciences, University of Washington, Seattle, USA 3British Antarctic Survey, Cambridge, UK Correspondence to: Frazer D.W. Christie ([email protected]) Abstract. Over the past 20 years satellite remote sensing has captured significant downwasting of glaciers that drain the West 10 Antarctic Ice Sheet into the ocean, particularly across the Amundsen Sea Sector. Along the neighbouring Marie Byrd Land Sector, situated west of Thwaites Glacier to Ross Ice Shelf, glaciological change has been only sparsely monitored. Here, we use optical satellite imagery to track grounding-line migration along the Marie Byrd Land Sector between 2003 and 2015, and compare observed changes with ICESat and CryoSat-2-derived surface elevation and thickness change records. During the observational period, 33% of the grounding line underwent retreat, with no significant advance recorded over the remainder 15 of the ~2200 km long coastline. The greatest retreat rates were observed along the 650-km-long Getz Ice Shelf, further west of which only minor retreat occurred. The relative glaciological stability west of Getz Ice Shelf can be attributed to a divergence of the Antarctic Circumpolar Current from the continental-shelf break at 135° W, coincident with a transition in the morphology of the continental shelf. Along Getz Ice Shelf, grounding-line retreat reduced by 68% during the CryoSat-2 era relative to earlier observations. -
Adobe PDF of Proposed Flight Lines
Fall 2012 IceBridge DC-8 Flight Plans 7 September 2012 Draft compiled by John Sonntag Introduction to Flight Plans This document is a translation of the NASA Operation IceBridge (OIB) scientific objectives articulated in the Level 1 OIB Science Requirements, at the June IceBridge Antarctic planning meeting held at the University of Washington, through official science team telecons and through e-mail communication and iterations into a series of operationally realistic flight plans, intended to be flown by NASA's DC-8 aircraft, beginning in mid-October and ending in late November 2012. The material is shown on the following pages in the distilled form of a map and brief text description of each science flight. Google Earth (KML) versions of these flight plans are available via anonymous FTP at the following address: ftp://atm.wff.nasa.gov/outgoing/oibscienceteam/. Note that some users have reported problems connecting to this address with certain browsers. Command-line FTP and software tools such as Filezilla may be of help in such situations. For each planned mission, we give a map and brief text description for the mission. All of the missions are planned to be flown from Punta Arenas, Chile. At the end of the document we add an appendix of supplementary information, such as more detailed maps of certain missions and composite maps where several missions are designed to work together. On the maps for the land ice missions, the background image is from the Rignot et. al. 1-km InSAR-based ice velocity map. 2009-2011 OIB flight lines are depicted in yellow. -
Catalogue of Place Names in Northern East Greenland
Catalogue of place names in northern East Greenland In this section all officially approved, and many Greenlandic names are spelt according to the unapproved, names are listed, together with explana- modern Greenland orthography (spelling reform tions where known. Approved names are listed in 1973), with cross-references from the old-style normal type or bold type, whereas unapproved spelling still to be found on many published maps. names are always given in italics. Names of ships are Prospectors place names used only in confidential given in small CAPITALS. Individual name entries are company reports are not found in this volume. In listed in Danish alphabetical order, such that names general, only selected unapproved names introduced beginning with the Danish letters Æ, Ø and Å come by scientific or climbing expeditions are included. after Z. This means that Danish names beginning Incomplete documentation of climbing activities with Å or Aa (e.g. Aage Bertelsen Gletscher, Aage de by expeditions claiming ‘first ascents’ on Milne Land Lemos Dal, Åkerblom Ø, Ålborg Fjord etc) are found and in nunatak regions such as Dronning Louise towards the end of this catalogue. Å replaced aa in Land, has led to a decision to exclude them. Many Danish spelling for most purposes in 1948, but aa is recent expeditions to Dronning Louise Land, and commonly retained in personal names, and is option- other nunatak areas, have gained access to their al in some Danish town names (e.g. Ålborg or Aalborg region of interest using Twin Otter aircraft, such that are both correct). However, Greenlandic names be - the remaining ‘climb’ to the summits of some peaks ginning with aa following the spelling reform dating may be as little as a few hundred metres; this raises from 1973 (a long vowel sound rather than short) are the question of what constitutes an ‘ascent’? treated as two consecutive ‘a’s. -
Glacial Geology of Adams Inlet, Southeastern Alaska
Institute of Polar Studies Report No. 25 Glacial Geology of Adams Inlet, Southeastern Alaska l/h':'~~~~2l:gtf"'" SN" I" '" '" 7, r.• "'. ~ i~' _~~ ... 1!!JW'IIA8 ~ ' ... ':~ ~l·::,.:~·,~I"~,.!};·'o":?"~~"''''''''''''~ r .! np:~} 3TATE Uf-4lVERSnY by t) '{;fS~MACf< ROAD \:.~i~bYMaUi. OHlOGltltM Garry D. McKenzie " Institute of Polar Studies November 1970 GOLDTHWAIT POLAR LIBRARY The Ohio State University BYRD POLAR RESEARCH CENTER Research Foundation THE OHIO STATE UNIVERSITY Columbus, Ohio 43212 1090 CARMACK ROAD COLUMBUS, OHIO 43210 USA INSTITUTE OF POLAR STUDIES Report No. 25 GLACIAL GEOLOGY OF ADAMS INLET, SOUTHEASTERN ALASKA by Garry D. McKenzie Institute of Polar Studies November 1970 The Ohio State University Research Foundation Columbus, Ohio 43212 ABSTRACT Adams Inlet is in the rolling and rugged Chilkat-Baranof Mountains in the eastern part of Glacier Bay National Monument, Alaska. Rapid deglaciation of the area in the first half of the twentieth century has exposed thick sections of post-Hypsithermal deposits and some of the oldest unconsolidated deposits in Glacier Bay. About 30 percent of the area is underlain by uncon solidated material; 14 percent of the area is still covered with ice. The formations present in Adams Inlet are, from the oldest to the youngest: Granite Canyon till, Forest Creek glaciomarine sediments, Van Horn Formation (lower gravel member), Adams lacustrine-till complex, Berg gravel and sand, Glacier Bay drift, and Seal River gravel. No evidence of an early post-Wisconsin ice advance, indicated by the Muir Formation in nearby Muir Inlet, is present in Adams Inlet. Following deposition of the late Wisconsin Granite Canyon till, the Forest Creek glaciomarine sediments were laid down in water 2 to 20 m deep; they now occur as much as 30 m above present sea level. -
Glaciers and Glacial Erosional Landforms
GLACIERS AND GLACIAL EROSIONAL LANDFORMS Dr. NANDINI CHATTERJEE Associate Professor Department of Geography Taki Govt College Taki, North 24 Parganas, West Bengal Part I Geography Honours Paper I Group B -Geomorphology Topic 5- Development of Landforms GLACIER AND ICE CAPS Glacier is an extended mass of ice formed from snow falling and accumulating over the years and moving very slowly, either descending from high mountains, as in valley glaciers, or moving outward from centers of accumulation, as in continental glaciers. • Ice Cap - less than 50,000 km2. • Ice Sheet - cover major portion of a continent. • Ice thicker than topography. • Ice flows in direction of slope of the glacier. • Greenland and Antarctica - 3000 to 4000 m thick (10 - 13 thousand feet or 1.5 to 2 miles!) FORMATION AND MOVEMENT OF GLACIERS • Glaciers begin to form when snow remains Once the glacier becomes heavy enough, it in the same area year-round, where starts to move. There are two types of enough snow accumulates to transform glacial movement, and most glacial into ice. Each year, new layers of snow bury movement is a mixture of both: and compress the previous layers. This Internal deformation, or strain, in glacier compression forces the snow to re- ice is a response to shear stresses arising crystallize, forming grains similar in size and from the weight of the ice (ice thickness) shape to grains of sugar. Gradually the and the degree of slope of the glacier grains grow larger and the air pockets surface. This is the slow creep of ice due to between the grains get smaller, causing the slippage within and between the ice snow to slowly compact and increase in crystals. -
Provenance Signatures of the Antarctic Ice Sheets in the Ross Embayment During the Late Miocene to Early Pliocene: the ANDRILL AND-1B Core Record
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln ANDRILL Research and Publications Antarctic Drilling Program 11-2009 Provenance signatures of the Antarctic Ice Sheets in the Ross Embayment during the Late Miocene to Early Pliocene: The ANDRILL AND-1B core record Franco M. Talarico Università di Siena, [email protected] Sonia Sandroni Università di Siena, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/andrillrespub Part of the Environmental Indicators and Impact Assessment Commons Talarico, Franco M. and Sandroni, Sonia, "Provenance signatures of the Antarctic Ice Sheets in the Ross Embayment during the Late Miocene to Early Pliocene: The ANDRILL AND-1B core record" (2009). ANDRILL Research and Publications. 49. https://digitalcommons.unl.edu/andrillrespub/49 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in ANDRILL Research and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Global and Planetary Change 69:3 (November 2009), pp. 103–123; doi:10.1016/j.gloplacha.2009.04.007 Copyright © 2009 Elsevier B.V. Used by permission. Submitted December 23, 2008; accepted April 22, 2009; published online May 4, 2009. Provenance signatures of the Antarctic Ice Sheets in the Ross Embayment during the Late Miocene to Early Pliocene: The ANDRILL AND-1B core record F. M. Talarico Dipartimento di Scienze della Terra, Università di Siena, Via Laterina 8, Siena, Italy (Corresponding author; tel 39 577233812, fax 39 577233938, email [email protected] ) S. Sandroni Museo Nazionale dell’Antartide, Università di Siena, Via Laterina 8, Siena, Italy Abstract Significant down-core modal and compositional variations are described for granule- to cobble-sized clasts in the Early Pliocene to Middle/Late Miocene sedimentary cycles of the AND-1B drill core at the NW edge of the Ross Ice Shelf (McMurdo Sound). -
Using Knowledge of Glacial Processes in Mineral Exploration
PROSPECTING UNDER COVER: Using Knowledge of Glacial Processes in Mineral Exploration Notes to accompany CIM Short Course November 5 2014 Denise Brushett Geological Survey of Newfoundland and Labrador Introduction As a glacier advances it grinds down and erodes the bedrock beneath the ice. Conceivably, ore deposits are also eroded, resulting in mineralized grains and boulders being picked up and incorporated into the advancing ice. With melting and subsequent ice retreat, all entrapped rock and mineral grains, fragments and boulders will be deposited in the form of thin or occasionally thick veneers of glacial sediment. In large areas of Newfoundland and Labrador the bedrock surface is covered with unconsolidated glacial sediment which also prevents direct observation of bedrock and therefore, of potential economic mineral deposits. A general understanding of the origin of glacial sediments provides the background necessary for use as an effective tool for mineral exploration and is necessary in order to identify economically significant minerals or geochemical anomalies within these sediments and to trace these minerals back to their source, which may be exposed bedrock or drift-covered bedrock. Glaciers & Glaciation: General Principles There were multiple glaciations in the Quaternary Period (last 1.9 Ma) during which Canada experienced at least four periods of glaciation, each followed by long interglacial periods where climatic conditions were much warmer than they are today (Figure 1). The four major glacial episodes, from oldest to youngest, have been termed the Nebraskan, Kansan, Illinoian, and Wisconsinan. Some earlier glaciations (e.g., Illinoian) were more extensive than the latest one (Wisconsinan). Up to 97% of Canada was covered during these glacial extremes, whereas today only 1% of the land surface is covered by glacial ice, mainly in the Queen Elizabeth Islands, Baffin Island and mountainous regions in western Canada and the Torngat Mountains of Labrador. -
Seafloor Geomorphology of Western Antarctic Peninsula Bays
The Cryosphere, 12, 205–225, 2018 https://doi.org/10.5194/tc-12-205-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Seafloor geomorphology of western Antarctic Peninsula bays: a signature of ice flow behaviour Yuribia P. Munoz and Julia S. Wellner Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA Correspondence: Yuribia P. Munoz ([email protected]) Received: 12 June 2017 – Discussion started: 22 June 2017 Revised: 4 November 2017 – Accepted: 13 November 2017 – Published: 22 January 2018 Abstract. Glacial geomorphology is used in Antarctica to 1 Introduction reconstruct ice advance during the Last Glacial Maximum and subsequent retreat across the continental shelf. Analo- While warming temperatures in the Antarctic Peninsula (AP) gous geomorphic assemblages are found in glaciated fjords have resulted in the retreat of 90 % of the regional glaciers and are used to interpret the glacial history and glacial dy- (Cook et al., 2014) and the collapse of ice shelves (Morris namics in those areas. In addition, understanding the distri- and Vaughan, 2003; Cook and Vaughan, 2010), recent stud- bution of submarine landforms in bays and the local con- ies have shown that since the late 1990s this region is cur- trols exerted on ice flow can help improve numerical models rently experiencing a cooling trend (Turner et al., 2016). The by providing constraints through these drainage areas. We AP is a dynamic region that serves as a natural laboratory present multibeam swath bathymetry from several bays in to study ice flow and the resulting sediment deposits. -
Seafloor Geomorphology of Western Antarctic Peninsula Bays: a Signature of Ice Flow Behaviour Yuribia P
Seafloor geomorphology of western Antarctic Peninsula bays: a signature of ice flow behaviour Yuribia P. Munoz1, Julia S. Wellner1 1Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204 USA 5 Correspondence to: Y.P. Munoz ([email protected]) Abstract. Glacial geomorphology is used in Antarctica to reconstruct ice advance during the Last Glacial Maximum and subsequent retreat across the continental shelf. Analogous geomorphic assemblages are found in glaciated fjords and are used to interpret the glacial history and glacial dynamics in those areas. In addition, understanding the distribution of 10 submarine landforms in bays and the local controls exerted on ice flow can help improve numerical models by providing constraints through these drainage areas. We present multibeam swath bathymetry from several bays in the South Shetland Islands and the western Antarctic Peninsula. The submarine landforms are described and interpreted in detail. A schematic model was developed showing the features found in the bays; from glacial lineations and moraines in the inner bay, to grounding zone wedges and drumlinoid features in the middle bay, and streamlined features and meltwater channels in the 15 outer bay areas. In addition, we analysed local variables in the bays and observe that: 1) the number of landforms found in the bays scales to the size of the bay, however the geometry of the bays dictates the types of features that form, specifically, we observe a correlation between the bay width and the number of transverse features present in the bays; 2) the smaller seafloor features are present only in the smaller glacial systems indicating that short-lived atmospheric and oceanographic fluctuations, responsible for the formation of these landforms, are only recorded in these smaller systems; and 3) meltwater 20 channels are abundant on the seafloor, however some are subglacial, carved in bedrock, and some are modern erosional features, carved on soft sediment.